Add a WDBA benchmark.
* bench/wdba/: New directory. * bench/Makefile.am (SUBDIRS): Add wdba. * NEWS: Mention it. * configure.ac: Output bench/wdba/defs and bench/wdba/Makefile.
This commit is contained in:
parent
aadef1fd87
commit
edc71b807e
8 changed files with 262 additions and 1 deletions
85
bench/wdba/README
Normal file
85
bench/wdba/README
Normal file
|
|
@ -0,0 +1,85 @@
|
|||
This benchmark shows the size of 40 obligation formulae translated by
|
||||
Spot to degeneralized state-based Büchi automata, before and after
|
||||
reductions using the WDBA technique introduced in the following paper.
|
||||
|
||||
@InProceedings{ dax.07.atva,
|
||||
author = {Christian Dax and Jochen Eisinger and Felix Klaedtke},
|
||||
title = {Mechanizing the Powerset Construction for Restricted
|
||||
Classes of {$\omega$}-Automata},
|
||||
year = 2007,
|
||||
series = {Lecture Notes in Computer Science},
|
||||
publisher = {Springer-Verlag},
|
||||
volume = 4762,
|
||||
booktitle = {Proceedings of the 5th International Symposium on
|
||||
Automated Technology for Verification and Analysis
|
||||
(ATVA'07)},
|
||||
editor = {Kedar S. Namjoshi and Tomohiro Yoneda and Teruo Higashino
|
||||
and Yoshio Okamura},
|
||||
month = oct
|
||||
}
|
||||
|
||||
This is meant to complement the experiment 1 at
|
||||
http://www.daxc.de/eth/atva07/index.html
|
||||
|
||||
The formulae used here are the same as the formulae used on the above
|
||||
page, and are presented in the same order.
|
||||
|
||||
Running the `./run' script should produce an output similar to the
|
||||
following:
|
||||
|
||||
# form. nbr., states, trans., states minimized, trans. minimized, formula
|
||||
1, 2, 3, 2, 3, !(G(!p))
|
||||
2, 3, 5, 3, 5, !(Fr->(!p U r))
|
||||
3, 3, 6, 3, 6, !(G(q->G(!p)))
|
||||
4, 4, 8, 4, 9, !(G((q&!r&Fr)->(!p U r)))
|
||||
5, 3, 6, 3, 7, !(G(q&!r->((!p U r)|G!p)))
|
||||
6, 1, 1, 1, 1, !(Fp)
|
||||
7, 2, 3, 2, 3, !((!r U (p&!r))|(G!r))
|
||||
8, 2, 3, 2, 3, !(G(!q)|F(q&Fp))
|
||||
9, 3, 5, 3, 6, !(G(q&!r->((!r U (p&!r))|G!r)))
|
||||
10, 6, 11, 6, 11, !((!p U ((p U ((!p U ((p U G!p)|Gp))|G!p))|Gp))|G!p)
|
||||
11, 7, 13, 7, 13, !(Fr->((!p&!r)U(r|((p&!r)U(r|((!p&!r)U(r|((p&!r)U(r|(!p U r))))))))))
|
||||
12, 7, 14, 7, 14, !(Fq->(!q U (q&((!p U ((p U ((!p U ((p U G!p)|Gp))|G!p))|Gp))|G!p))))
|
||||
13, 8, 16, 8, 21, !(G((q&Fr)->((!p&!r)U(r|((p&!r)U(r|((!p&!r)U(r|((p&!r)U(r|(!p U r)))))))))))
|
||||
14, 7, 14, 7, 19, !(G(q->((!p&!r)U(r|((p&!r)U(r|((!p&!r)U(r|((p&!r)U(r|((!p U r)|G!p)|Gp))))))))))
|
||||
15, 2, 3, 2, 3, !(G(p))
|
||||
16, 3, 5, 3, 5, !(Fr->(p U r))
|
||||
17, 3, 6, 3, 6, !(G(q->G(p)))
|
||||
18, 4, 7, 4, 8, !(G((p&!r&Fr)->(p U r)))
|
||||
19, 3, 6, 3, 7, !(G(q&!r->((p U r)|Gp)))
|
||||
20, 4, 7, 4, 7, !((!p U s)|Gp)
|
||||
21, 3, 5, 3, 5, !(Fr->(!p U (s|r)))
|
||||
22, 4, 8, 4, 9, !(G((q&!r&Fr)->(!p U (s|r))))
|
||||
23, 3, 6, 3, 7, !(G(q&!r->((!p U (s|r))|G!p)))
|
||||
24, 3, 5, 3, 6, !(Fr->(p->(!r U (s&!r))) U r)
|
||||
25, 4, 8, 4, 10, !(G((q&!r&Fr)->(p->(!r U (s&!r))) U r))
|
||||
26, 3, 6, 3, 6, !(Fp->(!p U (s&!p&X(!p U t))))
|
||||
27, 4, 8, 4, 8, !(Fr->(!p U (r|(s&!p&X(!p U t)))))
|
||||
28, 4, 9, 4, 9, !((G!q)|(!q U (q&Fp->(!p U (s&!p&X(!p U t))))))
|
||||
29, 5, 12, 5, 15, !(G((q&Fr)->(!p U (r|(s&!p&X(!p U t))))))
|
||||
30, 4, 10, 4, 13, !(G(q->(Fp->(!p U (r|(s&!p&X(!p U t)))))))
|
||||
31, 4, 8, 3, 5, !((F(s&XFt))->((!s) U p))
|
||||
32, 4, 7, 4, 7, !(Fr->((!(s&(!r)&X(!r U (t&!r))))U(r|p)))
|
||||
33, 5, 12, 4, 8, !((G!q)|((!q)U(q&((F(s&XFt))->((!s) U p)))))
|
||||
34, 5, 10, 5, 12, !(G((q&Fr)->((!(s&(!r)&X(!r U (t&!r))))U(r|p))))
|
||||
35, 10, 28, 4, 10, !(G(q->(!(s&(!r)&X(!r U (t&!r)))U(r|p)|G(!(s&XFt)))))
|
||||
36, 4, 8, 5, 18, !(Fr->(s&X(!r U t)->X(!r U (t&Fp))) U r)
|
||||
37, 4, 9, 4, 11, !(Fr->(p->(!r U (s&!r&X(!r U t)))) U r)
|
||||
38, 5, 13, 5, 17, !(G((q&Fr)->(p->(!r U (s&!r&X(!r U t)))) U r))
|
||||
39, 4, 10, 4, 11, !(Fr->(p->(!r U (s&!r&!z&X((!r&!z) U t)))) U r)
|
||||
40, 5, 14, 5, 17, !(G((q&Fr)->(p->(!r U (s&!r&!z&X((!r&!z) U t)))) U r))
|
||||
|
||||
|
||||
The first number is the number of the formula, so you can compare with
|
||||
the number displayed at http://www.daxc.de/eth/atva07/index.html.
|
||||
The second and third numbers give the number of states and transition
|
||||
of the automaton produced by Spot (with formula simplifications and SCC
|
||||
simplifications turned on), while the fourth and fifth number show the
|
||||
number of states and transitions with an additional WDBA minimization step.
|
||||
|
||||
You can observe that some minimized automata have more transitions:
|
||||
this is because they have become deterministic. There is even one
|
||||
case where the minimized automaton got one more state (formula 36).
|
||||
|
||||
In two cases (formulae 31 and 35) the minimization actually removed
|
||||
states in addition to making the automata deterministic.
|
||||
Loading…
Add table
Add a link
Reference in a new issue