sanity: replace tabulars by spaces

* spot/ltsmin/ltsmin.cc,
spot/mc/ec.hh, spot/mc/intersect.hh,
spot/mc/reachability.hh, spot/mc/unionfind.cc,
spot/mc/utils.hh, spot/twacube/cube.cc,
spot/twacube/twacube.cc,
spot/twacube/twacube.hh,
spot/twacube_algos/convert.cc,
spot/twacube_algos/convert.hh,
tests/core/bricks.cc,
tests/core/cube.cc,
tests/core/twacube.cc,
tests/ltsmin/modelcheck.cc: here.
This commit is contained in:
Etienne Renault 2016-04-11 14:20:34 +02:00
parent 681c2b2011
commit f04074bd6d
15 changed files with 935 additions and 936 deletions

View file

@ -1144,9 +1144,8 @@ namespace spot
}
};
//brick::hashset::FastConcurrent<both , both_hasher> ht2;
typedef brick::hashset::FastConcurrent<cspins_state,
cspins_state_hasher> cspins_state_map;
cspins_state_hasher> cspins_state_map;
////////////////////////////////////////////////////////////////////////
// A manager for Cspins states.
@ -1205,9 +1204,9 @@ namespace spot
void dealloc(cspins_state s)
{
if (compress_)
msp_.deallocate(s, (s[1]+2)*sizeof(int));
msp_.deallocate(s, (s[1]+2)*sizeof(int));
else
p_.deallocate(s);
p_.deallocate(s);
}
unsigned int size() const
@ -1249,15 +1248,15 @@ namespace spot
{
public:
cspins_iterator(cspins_state s,
const spot::spins_interface* d,
cspins_state_manager& manager,
cspins_state_map& map,
inner_callback_parameters& inner,
int defvalue,
cube cond,
bool compress,
bool selfloopize,
cubeset& cubeset, int dead_idx)
const spot::spins_interface* d,
cspins_state_manager& manager,
cspins_state_map& map,
inner_callback_parameters& inner,
int defvalue,
cube cond,
bool compress,
bool selfloopize,
cubeset& cubeset, int dead_idx)
: current_(0), cond_(cond)
{
successors_.reserve(10);
@ -1270,41 +1269,41 @@ namespace spot
int* ref = s;
if (compress)
// already filled by compute_condition
ref = inner.uncompressed_;
// already filled by compute_condition
ref = inner.uncompressed_;
int n = d->get_successors
(nullptr, manager.unbox_state(ref),
[](void* arg, transition_info_t*, int *dst){
inner_callback_parameters* inner =
static_cast<inner_callback_parameters*>(arg);
cspins_state s =
inner->manager->alloc_setup(dst, inner->compressed_,
inner->manager->size() * 2);
auto it = inner->map->insert({s});
inner->succ->push_back(*it);
if (!it.isnew())
inner->manager->dealloc(s);
},
&inner);
(nullptr, manager.unbox_state(ref),
[](void* arg, transition_info_t*, int *dst){
inner_callback_parameters* inner =
static_cast<inner_callback_parameters*>(arg);
cspins_state s =
inner->manager->alloc_setup(dst, inner->compressed_,
inner->manager->size() * 2);
auto it = inner->map->insert({s});
inner->succ->push_back(*it);
if (!it.isnew())
inner->manager->dealloc(s);
},
&inner);
if (!n && selfloopize)
{
successors_.push_back(s);
if (dead_idx != -1)
cubeset.set_true_var(cond, dead_idx);
}
{
successors_.push_back(s);
if (dead_idx != -1)
cubeset.set_true_var(cond, dead_idx);
}
}
void recycle(cspins_state s,
const spot::spins_interface* d,
cspins_state_manager& manager,
cspins_state_map& map,
inner_callback_parameters& inner,
int defvalue,
cube cond,
bool compress,
bool selfloopize,
cubeset& cubeset, int dead_idx)
const spot::spins_interface* d,
cspins_state_manager& manager,
cspins_state_map& map,
inner_callback_parameters& inner,
int defvalue,
cube cond,
bool compress,
bool selfloopize,
cubeset& cubeset, int dead_idx)
{
cond_ = cond;
current_ = 0;
@ -1319,35 +1318,35 @@ namespace spot
int* ref = s;
if (compress)
// Already filled by compute_condition
ref = inner.uncompressed_;
// Already filled by compute_condition
ref = inner.uncompressed_;
int n = d->get_successors
(nullptr, manager.unbox_state(ref),
[](void* arg, transition_info_t*, int *dst){
inner_callback_parameters* inner =
static_cast<inner_callback_parameters*>(arg);
cspins_state s =
inner->manager->alloc_setup(dst, inner->compressed_,
inner->manager->size() * 2);
auto it = inner->map->insert({s});
inner->succ->push_back(*it);
if (!it.isnew())
inner->manager->dealloc(s);
},
&inner);
(nullptr, manager.unbox_state(ref),
[](void* arg, transition_info_t*, int *dst){
inner_callback_parameters* inner =
static_cast<inner_callback_parameters*>(arg);
cspins_state s =
inner->manager->alloc_setup(dst, inner->compressed_,
inner->manager->size() * 2);
auto it = inner->map->insert({s});
inner->succ->push_back(*it);
if (!it.isnew())
inner->manager->dealloc(s);
},
&inner);
if (!n && selfloopize)
{
successors_.push_back(s);
if (dead_idx != -1)
cubeset.set_true_var(cond, dead_idx);
}
{
successors_.push_back(s);
if (dead_idx != -1)
cubeset.set_true_var(cond, dead_idx);
}
}
~cspins_iterator()
{
// Do not release successors states, the manager
// will do it on time.
// Do not release successors states, the manager
// will do it on time.
}
void next()
@ -1420,20 +1419,20 @@ namespace spot
}
~kripkecube()
{
for (auto i: recycle_)
{
cubeset_.release(i->condition());
delete i;
}
delete inner_.compressed_;
delete inner_.uncompressed_;
for (auto i: recycle_)
{
cubeset_.release(i->condition());
delete i;
}
delete inner_.compressed_;
delete inner_.uncompressed_;
}
cspins_state initial()
{
d_->get_initial_state(inner_.uncompressed_);
return manager_.alloc_setup(inner_.uncompressed_, inner_.compressed_,
manager_.size() * 2);
manager_.size() * 2);
}
std::string to_string(const cspins_state s) const
@ -1442,13 +1441,13 @@ namespace spot
cspins_state out = manager_.unbox_state(s);
cspins_state ref = out;
if (compress_)
{
manager_.decompress(s, inner_.uncompressed_, manager_.size());
ref = inner_.uncompressed_;
}
{
manager_.decompress(s, inner_.uncompressed_, manager_.size());
ref = inner_.uncompressed_;
}
for (int i = 0; i < d_->get_state_size(); ++i)
res += (d_->get_state_variable_name(i)) +
("=" + std::to_string(ref[i])) + ",";
res += (d_->get_state_variable_name(i)) +
("=" + std::to_string(ref[i])) + ",";
res.pop_back();
return res;
}
@ -1456,20 +1455,20 @@ namespace spot
cspins_iterator* succ(const cspins_state s)
{
if (SPOT_LIKELY(!recycle_.empty()))
{
auto tmp = recycle_.back();
recycle_.pop_back();
compute_condition(tmp->condition(), s);
tmp->recycle(s, d_, manager_, map_, inner_, -1,
tmp->condition(), compress_, selfloopize_,
cubeset_, dead_idx_);
return tmp;
}
{
auto tmp = recycle_.back();
recycle_.pop_back();
compute_condition(tmp->condition(), s);
tmp->recycle(s, d_, manager_, map_, inner_, -1,
tmp->condition(), compress_, selfloopize_,
cubeset_, dead_idx_);
return tmp;
}
cube cond = cubeset_.alloc();
compute_condition(cond, s);
return new cspins_iterator(s, d_, manager_, map_, inner_,
-1, cond, compress_, selfloopize_,
cubeset_, dead_idx_);
-1, cond, compress_, selfloopize_,
cubeset_, dead_idx_);
}
void recycle(cspins_iterator* it)
@ -1518,80 +1517,80 @@ namespace spot
// State is compressed, uncompress it
if (compress_)
{
manager_.decompress(s, inner_.uncompressed_+2, manager_.size());
vars = inner_.uncompressed_ + 2;
manager_.decompress(s, inner_.uncompressed_+2, manager_.size());
vars = inner_.uncompressed_ + 2;
}
for (auto& ap: pset_)
{
++i;
bool cond = false;
switch (ap.op)
{
case OP_EQ_VAR:
cond = (ap.lval == vars[ap.rval]);
break;
case OP_NE_VAR:
cond = (ap.lval != vars[ap.rval]);
break;
case OP_LT_VAR:
cond = (ap.lval < vars[ap.rval]);
break;
case OP_GT_VAR:
cond = (ap.lval > vars[ap.rval]);
break;
case OP_LE_VAR:
cond = (ap.lval <= vars[ap.rval]);
break;
case OP_GE_VAR:
cond = (ap.lval >= vars[ap.rval]);
break;
case VAR_OP_EQ:
cond = (vars[ap.lval] == ap.rval);
break;
case VAR_OP_NE:
cond = (vars[ap.lval] != ap.rval);
break;
case VAR_OP_LT:
cond = (vars[ap.lval] < ap.rval);
break;
case VAR_OP_GT:
cond = (vars[ap.lval] > ap.rval);
break;
case VAR_OP_LE:
cond = (vars[ap.lval] <= ap.rval);
break;
case VAR_OP_GE:
cond = (vars[ap.lval] >= ap.rval);
break;
case VAR_OP_EQ_VAR:
cond = (vars[ap.lval] == vars[ap.rval]);
break;
case VAR_OP_NE_VAR:
cond = (vars[ap.lval] != vars[ap.rval]);
break;
case VAR_OP_LT_VAR:
cond = (vars[ap.lval] < vars[ap.rval]);
break;
case VAR_OP_GT_VAR:
cond = (vars[ap.lval] > vars[ap.rval]);
break;
case VAR_OP_LE_VAR:
cond = (vars[ap.lval] <= vars[ap.rval]);
break;
case VAR_OP_GE_VAR:
cond = (vars[ap.lval] >= vars[ap.rval]);
break;
case VAR_DEAD:
break;
default:
assert(false);
}
++i;
bool cond = false;
switch (ap.op)
{
case OP_EQ_VAR:
cond = (ap.lval == vars[ap.rval]);
break;
case OP_NE_VAR:
cond = (ap.lval != vars[ap.rval]);
break;
case OP_LT_VAR:
cond = (ap.lval < vars[ap.rval]);
break;
case OP_GT_VAR:
cond = (ap.lval > vars[ap.rval]);
break;
case OP_LE_VAR:
cond = (ap.lval <= vars[ap.rval]);
break;
case OP_GE_VAR:
cond = (ap.lval >= vars[ap.rval]);
break;
case VAR_OP_EQ:
cond = (vars[ap.lval] == ap.rval);
break;
case VAR_OP_NE:
cond = (vars[ap.lval] != ap.rval);
break;
case VAR_OP_LT:
cond = (vars[ap.lval] < ap.rval);
break;
case VAR_OP_GT:
cond = (vars[ap.lval] > ap.rval);
break;
case VAR_OP_LE:
cond = (vars[ap.lval] <= ap.rval);
break;
case VAR_OP_GE:
cond = (vars[ap.lval] >= ap.rval);
break;
case VAR_OP_EQ_VAR:
cond = (vars[ap.lval] == vars[ap.rval]);
break;
case VAR_OP_NE_VAR:
cond = (vars[ap.lval] != vars[ap.rval]);
break;
case VAR_OP_LT_VAR:
cond = (vars[ap.lval] < vars[ap.rval]);
break;
case VAR_OP_GT_VAR:
cond = (vars[ap.lval] > vars[ap.rval]);
break;
case VAR_OP_LE_VAR:
cond = (vars[ap.lval] <= vars[ap.rval]);
break;
case VAR_OP_GE_VAR:
cond = (vars[ap.lval] >= vars[ap.rval]);
break;
case VAR_DEAD:
break;
default:
assert(false);
}
if (cond)
cubeset_.set_true_var(c, i);
else
cubeset_.set_false_var(c, i);
if (cond)
cubeset_.set_true_var(c, i);
else
cubeset_.set_false_var(c, i);
}
}
@ -1615,10 +1614,10 @@ namespace spot
std::unordered_map<std::string, int> matcher;
for (int i = 0; i < type_count; ++i)
{
matcher[d_->get_type_name(i)] = i;
int enum_count = d_->get_type_value_count(i);
for (int j = 0; j < enum_count; ++j)
enum_map[i].emplace(d_->get_type_value_name(i, j), j);
matcher[d_->get_type_name(i)] = i;
int enum_count = d_->get_type_value_count(i);
for (int j = 0; j < enum_count; ++j)
enum_map[i].emplace(d_->get_type_value_name(i, j), j);
}
// Then we extract the basic atomics propositions from the Kripke
@ -1630,308 +1629,308 @@ namespace spot
int i = -1;
for (auto ap: aps)
{
++i;
++i;
// Grab dead property
if (ap.compare(dead_prop) == 0)
{
dead_idx_ = i;
pset_.push_back({i , VAR_DEAD, 0});
continue;
}
// Grab dead property
if (ap.compare(dead_prop) == 0)
{
dead_idx_ = i;
pset_.push_back({i , VAR_DEAD, 0});
continue;
}
// Get ap name and remove all extra whitespace
ap.erase(std::remove_if(ap.begin(), ap.end(),
[](char x){
return std::isspace(x);
}),
ap.end());
// Get ap name and remove all extra whitespace
ap.erase(std::remove_if(ap.begin(), ap.end(),
[](char x){
return std::isspace(x);
}),
ap.end());
// Look if it is a well known atomic proposition
auto it = std::find(k_aps.begin(), k_aps.end(), ap);
if (it != k_aps.end())
{
// The aps is directly an AP of the system, we will just
// have to detect if the variable is 0 or not.
pset_.push_back({(int)std::distance(k_aps.begin(), it),
VAR_OP_NE, 0});
continue;
}
// Look if it is a well known atomic proposition
auto it = std::find(k_aps.begin(), k_aps.end(), ap);
if (it != k_aps.end())
{
// The aps is directly an AP of the system, we will just
// have to detect if the variable is 0 or not.
pset_.push_back({(int)std::distance(k_aps.begin(), it),
VAR_OP_NE, 0});
continue;
}
// The ap is not known. We distinguish many cases:
// - It is a State name, i.e P_0.S or P_0 == S
// - It refers a specific variable value, i.e. P_0.var == 2,
// P_0.var < 2, P_0.var != 2, ...
// - It's an unknown variable
// Note that we do not support P_0.state1 == 12 since we do not
// know how to interpret such atomic proposition.
// The ap is not known. We distinguish many cases:
// - It is a State name, i.e P_0.S or P_0 == S
// - It refers a specific variable value, i.e. P_0.var == 2,
// P_0.var < 2, P_0.var != 2, ...
// - It's an unknown variable
// Note that we do not support P_0.state1 == 12 since we do not
// know how to interpret such atomic proposition.
// We split the formula according to operators
std::size_t found_op_first = ap.find_first_of("=<>!");
std::size_t found_op_last = ap.find_last_of("=<>!");
std::string left;
std::string right;
std::string ap_error;
std::string op;
// We split the formula according to operators
std::size_t found_op_first = ap.find_first_of("=<>!");
std::size_t found_op_last = ap.find_last_of("=<>!");
std::string left;
std::string right;
std::string ap_error;
std::string op;
if (found_op_first == 0 || found_op_last == ap.size()-1)
{
err << "Invalid operator use in " << ap << '\n';
++errors;
continue;
}
if (found_op_first == 0 || found_op_last == ap.size()-1)
{
err << "Invalid operator use in " << ap << '\n';
++errors;
continue;
}
if (std::string::npos == found_op_first)
{
left = ap;
right = "";
op = "";
}
else
{
left = ap.substr(0, found_op_first);
right = ap.substr(found_op_last+1, ap.size()-found_op_last);
op = ap.substr(found_op_first, found_op_last+1-found_op_first);
}
if (std::string::npos == found_op_first)
{
left = ap;
right = "";
op = "";
}
else
{
left = ap.substr(0, found_op_first);
right = ap.substr(found_op_last+1, ap.size()-found_op_last);
op = ap.substr(found_op_first, found_op_last+1-found_op_first);
}
// Variables to store the left part of the atomic proposition
bool left_is_digit = false;
int lval;
// Variables to store the left part of the atomic proposition
bool left_is_digit = false;
int lval;
// Variables to store the right part of the atomic proposition
bool right_is_digit = false;
int rval;
// Variables to store the right part of the atomic proposition
bool right_is_digit = false;
int rval;
// And finally the operator
relop oper;
// And finally the operator
relop oper;
// Now, left and (possibly) right are should refer atomic
// propositions or specific state inside of a process.
// First check if it is a known atomic proposition
it = std::find(k_aps.begin(), k_aps.end(), left);
if (it != k_aps.end())
{
// The aps is directly an AP of the system, we will just
// have to detect if the variable is 0 or not.
lval = std::distance(k_aps.begin(), it);
}
else
{
// Detect if it is a process state
std::size_t found_dot = left.find_first_of('.');
if (std::string::npos != found_dot)
{
std::string proc_name = left.substr(0, found_dot);
std::string st_name = left.substr(found_dot+1,
left.size()-found_dot);
// Now, left and (possibly) right are should refer atomic
// propositions or specific state inside of a process.
// First check if it is a known atomic proposition
it = std::find(k_aps.begin(), k_aps.end(), left);
if (it != k_aps.end())
{
// The aps is directly an AP of the system, we will just
// have to detect if the variable is 0 or not.
lval = std::distance(k_aps.begin(), it);
}
else
{
// Detect if it is a process state
std::size_t found_dot = left.find_first_of('.');
if (std::string::npos != found_dot)
{
std::string proc_name = left.substr(0, found_dot);
std::string st_name = left.substr(found_dot+1,
left.size()-found_dot);
auto ni = matcher.find(proc_name);
if (ni == matcher.end())
{
ap_error = left;
goto error_ap_unknown;
}
int type_num = ni->second;
enum_map_t::const_iterator ei =
enum_map[type_num].find(st_name);
if (ei == enum_map[type_num].end())
{
ap_error = left;
goto error_ap_unknown;
}
auto ni = matcher.find(proc_name);
if (ni == matcher.end())
{
ap_error = left;
goto error_ap_unknown;
}
int type_num = ni->second;
enum_map_t::const_iterator ei =
enum_map[type_num].find(st_name);
if (ei == enum_map[type_num].end())
{
ap_error = left;
goto error_ap_unknown;
}
if (right.compare("") != 0)
{
// We are in the case P.state1 == something.. We don't
// know how to interpret this.
ap_error = op + right;
err << "\nOperation " << op << " in \"" << ap_error
<< "\" is not available for process's state"
<< " (i.e. " << left << ")\n";
++errors;
continue;
}
if (right.compare("") != 0)
{
// We are in the case P.state1 == something.. We don't
// know how to interpret this.
ap_error = op + right;
err << "\nOperation " << op << " in \"" << ap_error
<< "\" is not available for process's state"
<< " (i.e. " << left << ")\n";
++errors;
continue;
}
pset_.push_back({
(int) std::distance(k_aps.begin(),
std::find(k_aps.begin(),
k_aps.end(), proc_name)),
VAR_OP_EQ, ei->second});
continue;
}
else
{
// Finally, it's a number...
left_is_digit = true;
for (auto c: left)
if (!isdigit(c))
left_is_digit = false;
pset_.push_back({
(int) std::distance(k_aps.begin(),
std::find(k_aps.begin(),
k_aps.end(), proc_name)),
VAR_OP_EQ, ei->second});
continue;
}
else
{
// Finally, it's a number...
left_is_digit = true;
for (auto c: left)
if (!isdigit(c))
left_is_digit = false;
if (left_is_digit)
lval = std::strtol (left.c_str(), nullptr, 10);
else
{
// ... or something like: State1 == P_0
// so it doesn't contains '.'
if (std::string::npos != right.find_first_of('.'))
{
err << "\nOperation \"" << right
<< "\" does not refer a process"
<< " (i.e. " << left << " is not valid)\n";
++errors;
continue;
}
if (left_is_digit)
lval = std::strtol (left.c_str(), nullptr, 10);
else
{
// ... or something like: State1 == P_0
// so it doesn't contains '.'
if (std::string::npos != right.find_first_of('.'))
{
err << "\nOperation \"" << right
<< "\" does not refer a process"
<< " (i.e. " << left << " is not valid)\n";
++errors;
continue;
}
// or something like: P_0 == State1
auto ni = matcher.find(right);
if (ni == matcher.end())
{
ap_error = ap;
goto error_ap_unknown;
}
int type_num = ni->second;
enum_map_t::const_iterator ei =
enum_map[type_num].find(left);
if (ei == enum_map[type_num].end())
{
ap_error = left;
goto error_ap_unknown;
}
pset_.push_back({
(int) std::distance(k_aps.begin(),
std::find(k_aps.begin(),
k_aps.end(), right)),
VAR_OP_EQ, ei->second});
continue;
}
}
}
// or something like: P_0 == State1
auto ni = matcher.find(right);
if (ni == matcher.end())
{
ap_error = ap;
goto error_ap_unknown;
}
int type_num = ni->second;
enum_map_t::const_iterator ei =
enum_map[type_num].find(left);
if (ei == enum_map[type_num].end())
{
ap_error = left;
goto error_ap_unknown;
}
pset_.push_back({
(int) std::distance(k_aps.begin(),
std::find(k_aps.begin(),
k_aps.end(), right)),
VAR_OP_EQ, ei->second});
continue;
}
}
}
// Here Left is known. Just detect cases where left is digit there is
// no right part.
if (left_is_digit && right.empty())
{
ap_error = ap;
goto error_ap_unknown;
}
// Here Left is known. Just detect cases where left is digit there is
// no right part.
if (left_is_digit && right.empty())
{
ap_error = ap;
goto error_ap_unknown;
}
assert(!right.empty() && !op.empty());
assert(!right.empty() && !op.empty());
// Parse right part of the atomic proposition
// Check if it is a known atomic proposition
it = std::find(k_aps.begin(), k_aps.end(), right);
if (it != k_aps.end())
{
// The aps is directly an AP of the system, we will just
// have to detect if the variable is 0 or not.
rval = std::distance(k_aps.begin(), it);
}
else
{
// We are is the right part, so if it is a process state
// we do not know how to interpret (xxx == P.state1). Abort
std::size_t found_dot = right.find_first_of('.');
if (std::string::npos != found_dot)
{
ap_error = left + op;
err << "\nOperation " << op << " in \"" << ap_error
<< "\" is not available for process's state"
<< " (i.e. " << right << ")\n";
++errors;
continue;
}
else
{
// Finally, it's a number
right_is_digit = true;
for (auto c: right)
if (!isdigit(c))
right_is_digit = false;
// Parse right part of the atomic proposition
// Check if it is a known atomic proposition
it = std::find(k_aps.begin(), k_aps.end(), right);
if (it != k_aps.end())
{
// The aps is directly an AP of the system, we will just
// have to detect if the variable is 0 or not.
rval = std::distance(k_aps.begin(), it);
}
else
{
// We are is the right part, so if it is a process state
// we do not know how to interpret (xxx == P.state1). Abort
std::size_t found_dot = right.find_first_of('.');
if (std::string::npos != found_dot)
{
ap_error = left + op;
err << "\nOperation " << op << " in \"" << ap_error
<< "\" is not available for process's state"
<< " (i.e. " << right << ")\n";
++errors;
continue;
}
else
{
// Finally, it's a number
right_is_digit = true;
for (auto c: right)
if (!isdigit(c))
right_is_digit = false;
if (right_is_digit)
rval = std::strtol (right.c_str(), nullptr, 10);
else
{
if (std::string::npos != left.find_first_of('.'))
{
err << "\nProposition \"" << ap
<< "\" cannot be interpreted"
<< " (i.e. " << op + right << " is not valid)\n";
++errors;
continue;
}
if (right_is_digit)
rval = std::strtol (right.c_str(), nullptr, 10);
else
{
if (std::string::npos != left.find_first_of('.'))
{
err << "\nProposition \"" << ap
<< "\" cannot be interpreted"
<< " (i.e. " << op + right << " is not valid)\n";
++errors;
continue;
}
// or something like: P_0 == State1
auto ni = matcher.find(left);
if (ni == matcher.end())
{
// or something like: P_0 == State1
auto ni = matcher.find(left);
if (ni == matcher.end())
{
ap_error = left;
goto error_ap_unknown;
}
int type_num = ni->second;
enum_map_t::const_iterator ei =
enum_map[type_num].find(right);
if (ei == enum_map[type_num].end())
{
ap_error = right;
goto error_ap_unknown;
}
pset_.push_back({
(int) std::distance(k_aps.begin(),
std::find(k_aps.begin(),
k_aps.end(), left)),
VAR_OP_EQ, ei->second});
continue;
}
}
}
ap_error = left;
goto error_ap_unknown;
}
int type_num = ni->second;
enum_map_t::const_iterator ei =
enum_map[type_num].find(right);
if (ei == enum_map[type_num].end())
{
ap_error = right;
goto error_ap_unknown;
}
pset_.push_back({
(int) std::distance(k_aps.begin(),
std::find(k_aps.begin(),
k_aps.end(), left)),
VAR_OP_EQ, ei->second});
continue;
}
}
}
if (left_is_digit && right_is_digit)
{
err << "\nOperation \"" << op
<< "\" between two numbers not available"
<< " (i.e. " << right << " and, "
<< left << ")\n";
++errors;
continue;
}
if (left_is_digit && right_is_digit)
{
err << "\nOperation \"" << op
<< "\" between two numbers not available"
<< " (i.e. " << right << " and, "
<< left << ")\n";
++errors;
continue;
}
// Left and Right are know, just analyse the operator.
if (op.compare("==") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_EQ_VAR :
(left_is_digit? OP_EQ_VAR : VAR_OP_EQ);
else if (op.compare("!=") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_NE_VAR :
(left_is_digit? OP_NE_VAR : VAR_OP_NE);
else if (op.compare("<") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_LT_VAR :
(left_is_digit? OP_LT_VAR : VAR_OP_LT);
else if (op.compare(">") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_GT_VAR :
(left_is_digit? OP_GT_VAR : VAR_OP_GT);
else if (op.compare("<=") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_LE_VAR :
(left_is_digit? OP_LE_VAR : VAR_OP_LE);
else if (op.compare(">=") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_GE_VAR :
(left_is_digit? OP_GE_VAR : VAR_OP_GE);
else
{
err << "\nOperation \"" << op
<< "\" is unknown\n";
++errors;
continue;
}
// Left and Right are know, just analyse the operator.
if (op.compare("==") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_EQ_VAR :
(left_is_digit? OP_EQ_VAR : VAR_OP_EQ);
else if (op.compare("!=") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_NE_VAR :
(left_is_digit? OP_NE_VAR : VAR_OP_NE);
else if (op.compare("<") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_LT_VAR :
(left_is_digit? OP_LT_VAR : VAR_OP_LT);
else if (op.compare(">") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_GT_VAR :
(left_is_digit? OP_GT_VAR : VAR_OP_GT);
else if (op.compare("<=") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_LE_VAR :
(left_is_digit? OP_LE_VAR : VAR_OP_LE);
else if (op.compare(">=") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_GE_VAR :
(left_is_digit? OP_GE_VAR : VAR_OP_GE);
else
{
err << "\nOperation \"" << op
<< "\" is unknown\n";
++errors;
continue;
}
pset_.push_back({lval, oper, rval});
continue;
pset_.push_back({lval, oper, rval});
continue;
error_ap_unknown:
err << "\nProposition \"" << ap_error << "\" does not exist\n";
++errors;
continue;
err << "\nProposition \"" << ap_error << "\" does not exist\n";
++errors;
continue;
}
if (errors)