rename src/ as spot/ and use include <spot/...>

* NEWS: Mention the change.
* src/: Rename as ...
* spot/: ... this, adjust all headers to include <spot/...> instead of
"...", and adjust all Makefile.am to search headers from the top-level
directory.
* HACKING: Add conventions about #include.
* spot/sanity/style.test: Add a few more grep to catch cases
that do not follow these conventions.
* .gitignore, Makefile.am, README, bench/stutter/Makefile.am,
bench/stutter/stutter_invariance_formulas.cc,
bench/stutter/stutter_invariance_randomgraph.cc, configure.ac,
debian/rules, doc/Doxyfile.in, doc/Makefile.am,
doc/org/.dir-locals.el.in, doc/org/g++wrap.in, doc/org/init.el.in,
doc/org/tut01.org, doc/org/tut02.org, doc/org/tut03.org,
doc/org/tut10.org, doc/org/tut20.org, doc/org/tut21.org,
doc/org/tut22.org, doc/org/tut30.org, iface/ltsmin/Makefile.am,
iface/ltsmin/kripke.test, iface/ltsmin/ltsmin.cc,
iface/ltsmin/ltsmin.hh, iface/ltsmin/modelcheck.cc,
wrap/python/Makefile.am, wrap/python/ajax/spotcgi.in,
wrap/python/spot_impl.i, wrap/python/tests/ltl2tgba.py,
wrap/python/tests/randgen.py, wrap/python/tests/run.in: Adjust.
This commit is contained in:
Alexandre Duret-Lutz 2015-12-04 19:42:23 +01:00
parent 1fddfe60ec
commit f120dd3206
529 changed files with 1308 additions and 1262 deletions

43
spot/taalgos/Makefile.am Normal file
View file

@ -0,0 +1,43 @@
## -*- coding: utf-8 -*-
## Copyright (C) 2010, 2012, 2013, 2015 Laboratoire de Recherche et
## Développement de l'Epita (LRDE).
##
## This file is part of Spot, a model checking library.
##
## Spot is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## Spot is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
## or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
## License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
AM_CPPFLAGS = -I$(top_builddir) -I$(top_srcdir) -I.. $(BUDDY_CPPFLAGS)
AM_CXXFLAGS = $(WARNING_CXXFLAGS)
taalgosdir = $(pkgincludedir)/taalgos
taalgos_HEADERS = \
tgba2ta.hh \
dot.hh \
reachiter.hh \
stats.hh \
statessetbuilder.hh \
minimize.hh \
emptinessta.hh
noinst_LTLIBRARIES = libtaalgos.la
libtaalgos_la_SOURCES = \
tgba2ta.cc \
dot.cc \
reachiter.cc \
stats.cc \
statessetbuilder.cc \
minimize.cc \
emptinessta.cc

241
spot/taalgos/dot.cc Normal file
View file

@ -0,0 +1,241 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2010, 2012, 2014, 2015 Laboratoire de Recherche et
// Developpement de l Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include <ostream>
#include <spot/taalgos/dot.hh>
#include <spot/twa/bddprint.hh>
#include <spot/taalgos/reachiter.hh>
#include <spot/misc/escape.hh>
#include <spot/misc/bareword.hh>
#include <cstdlib>
#include <cstring>
namespace spot
{
namespace
{
class dotty_bfs : public ta_reachable_iterator_breadth_first
{
void
parse_opts(const char* options)
{
const char* orig = options;
while (char c = *options++)
switch (c)
{
case '.':
{
// Copy the value in a string, so future calls to
// parse_opts do not fail if the environment has
// changed. (This matters particularly in an ipython
// notebook, where it is tempting to redefine
// SPOT_DOTDEFAULT.)
static std::string def = []()
{
auto s = getenv("SPOT_DOTDEFAULT");
return s ? s : "";
}();
// Prevent infinite recursions...
if (orig == def.c_str())
throw std::runtime_error
(std::string("SPOT_DOTDEFAULT should not contain '.'"));
if (!def.empty())
parse_opts(def.c_str());
break;
}
case 'A':
opt_hide_sets_ = true;
break;
case 'c':
opt_circles_ = true;
break;
case 'h':
opt_horizontal_ = true;
break;
case 'f':
if (*options != '(')
throw std::runtime_error
(std::string("invalid font specification for dotty()"));
{
auto* end = strchr(++options, ')');
if (!end)
throw std::runtime_error
(std::string("invalid font specification for dotty()"));
opt_font_ = std::string(options, end - options);
options = end + 1;
}
break;
case 'v':
opt_horizontal_ = false;
break;
case '1':
case 'a':
case 'b':
case 'B':
case 'e':
case 'n':
case 'N':
case 'o':
case 'r':
case 'R':
case 's':
case 't':
// All these options are implemented by dotty() on TGBA,
// but are not implemented here. We simply ignore them,
// because raising an exception if they are in
// SPOT_DEFAULT would be annoying.
break;
default:
throw std::runtime_error
(std::string("unknown option for dotty(): ") + c);
}
}
public:
dotty_bfs(std::ostream& os, const const_ta_ptr& a,
const char* opt) :
ta_reachable_iterator_breadth_first(a), os_(os)
{
parse_opts(opt ? opt : ".");
}
void
start()
{
os_ << "digraph G {\n";
if (opt_horizontal_)
os_ << " rankdir=LR\n";
if (opt_circles_)
os_ << " node [shape=\"circle\"]\n";
if (!opt_font_.empty())
os_ << " fontname=\"" << opt_font_
<< "\"\n node [fontname=\"" << opt_font_
<< "\"]\n edge [fontname=\"" << opt_font_
<< "\"]\n";
// Always copy the environment variable into a static string,
// so that we (1) look it up once, but (2) won't crash if the
// environment is changed.
static std::string extra = []()
{
auto s = getenv("SPOT_DOTEXTRA");
return s ? s : "";
}();
// Any extra text passed in the SPOT_DOTEXTRA environment
// variable should be output at the end of the "header", so
// that our setup can be overridden.
if (!extra.empty())
os_ << " " << extra << '\n';
artificial_initial_state_ = t_automata_->get_artificial_initial_state();
ta::const_states_set_t init_states_set;
if (artificial_initial_state_)
{
init_states_set.insert(artificial_initial_state_);
os_ << " 0 [label=\"\", style=invis, height=0]\n 0 -> 1\n";
}
else
{
int n = 0;
init_states_set = t_automata_->get_initial_states_set();
for (auto s: init_states_set)
{
bdd init_condition = t_automata_->get_state_condition(s);
std::string label = bdd_format_formula(t_automata_->get_dict(),
init_condition);
++n;
os_ << " " << -n << " [label=\"\", style=invis, height=0]\n "
<< -n << " -> " << n << " [label=\"" << label << "\"]\n";
}
}
}
void
end()
{
os_ << '}' << std::endl;
}
void
process_state(const state* s, int n)
{
std::string style;
if (t_automata_->is_accepting_state(s))
style = ",peripheries=2";
if (t_automata_->is_livelock_accepting_state(s))
style += ",shape=box";
os_ << " " << n << " [label=";
if (s == artificial_initial_state_)
os_ << "init";
else
os_ << quote_unless_bare_word(t_automata_->format_state(s));
os_ << style << "]\n";
}
void
process_link(int in, int out, const ta_succ_iterator* si)
{
bdd_dict_ptr d = t_automata_->get_dict();
std::string label =
((in == 1 && artificial_initial_state_)
? bdd_format_formula(d, si->cond())
: bdd_format_accset(d, si->cond()));
if (label.empty())
label = "{}";
if (!opt_hide_sets_)
{
label += "\n";
label += t_automata_->acc().
format(si->acc());
}
os_ << " " << in << " -> " << out << " [label=\"";
escape_str(os_, label);
os_ << "\"]\n";
}
private:
std::ostream& os_;
const spot::state* artificial_initial_state_;
bool opt_horizontal_ = true;
bool opt_circles_ = false;
bool opt_hide_sets_ = false;
std::string opt_font_;
};
}
std::ostream&
print_dot(std::ostream& os, const const_ta_ptr& a, const char* opt)
{
dotty_bfs d(os, a, opt);
d.run();
return os;
}
}

30
spot/taalgos/dot.hh Normal file
View file

@ -0,0 +1,30 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2010, 2013, 2014, 2015 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#pragma once
#include <spot/ta/ta.hh>
#include <iosfwd>
namespace spot
{
SPOT_API std::ostream&
print_dot(std::ostream& os, const const_ta_ptr& a,
const char* opt = nullptr);
}

626
spot/taalgos/emptinessta.cc Normal file
View file

@ -0,0 +1,626 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2010, 2011, 2012, 2013, 2014, 2015 Laboratoire de
// Recherche et Développement de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//#define TRACE
#include <iostream>
#ifdef TRACE
#define trace std::clog
#else
#define trace while (0) std::clog
#endif
#include <spot/taalgos/emptinessta.hh>
#include <spot/misc/memusage.hh>
#include <cstdlib>
#include <spot/twa/bddprint.hh>
namespace spot
{
ta_check::ta_check(const const_ta_product_ptr& a, option_map o) :
a_(a), o_(o)
{
is_full_2_pass_ = o.get("is_full_2_pass", 0);
}
ta_check::~ta_check()
{
}
bool
ta_check::check(bool disable_second_pass,
bool disable_heuristic_for_livelock_detection)
{
// We use five main data in this algorithm:
// * scc: (attribute) a stack of strongly connected components (SCC)
// * arc, a stack of acceptance conditions between each of these SCC,
std::stack<acc_cond::mark_t> arc;
// * h: a hash of all visited nodes, with their order,
// (it is called "Hash" in Couvreur's paper)
hash_type h;
// * num: the number of visited nodes. Used to set the order of each
// visited node,
int num = 1;
// * todo: the depth-first search stack. This holds pairs of the
// form (STATE, ITERATOR) where ITERATOR is a ta_succ_iterator_product
// over the successors of STATE. In our use, ITERATOR should
// always be freed when TODO is popped, but STATE should not because
// it is also used as a key in H.
std::stack<pair_state_iter> todo;
trace
<< "PASS 1" << std::endl;
std::unordered_map<const state*,
std::set<const state*, state_ptr_less_than>,
state_ptr_hash, state_ptr_equal> liveset;
std::stack<spot::state*> livelock_roots;
bool livelock_acceptance_states_not_found = true;
bool activate_heuristic = !disable_heuristic_for_livelock_detection
&& (is_full_2_pass_ == disable_second_pass);
// Setup depth-first search from initial states.
auto& ta_ = a_->get_ta();
auto& kripke_ = a_->get_kripke();
auto kripke_init_state = kripke_->get_init_state();
bdd kripke_init_state_condition = kripke_->state_condition(
kripke_init_state);
auto artificial_initial_state = ta_->get_artificial_initial_state();
ta_succ_iterator* ta_init_it_ = ta_->succ_iter(artificial_initial_state,
kripke_init_state_condition);
kripke_init_state->destroy();
for (ta_init_it_->first(); !ta_init_it_->done(); ta_init_it_->next())
{
state_ta_product* init = new state_ta_product(
(ta_init_it_->dst()), kripke_init_state->clone());
if (!h.emplace(init, num + 1).second)
{
init->destroy();
continue;
}
scc.push(++num);
arc.push(0U);
ta_succ_iterator_product* iter = a_->succ_iter(init);
iter->first();
todo.emplace(init, iter);
inc_depth();
//push potential root of live-lock accepting cycle
if (activate_heuristic && a_->is_livelock_accepting_state(init))
livelock_roots.push(init);
while (!todo.empty())
{
auto curr = todo.top().first;
// We are looking at the next successor in SUCC.
ta_succ_iterator_product* succ = todo.top().second;
// If there is no more successor, backtrack.
if (succ->done())
{
// We have explored all successors of state CURR.
// Backtrack TODO.
todo.pop();
dec_depth();
trace << "PASS 1 : backtrack\n";
if (a_->is_livelock_accepting_state(curr)
&& !a_->is_accepting_state(curr))
{
livelock_acceptance_states_not_found = false;
trace << "PASS 1 : livelock accepting state found\n";
}
// fill rem with any component removed,
auto i = h.find(curr);
assert(i != h.end());
scc.rem().push_front(curr);
inc_depth();
// set the h value of the Backtracked state to negative value.
i->second = -std::abs(i->second);
// Backtrack livelock_roots.
if (activate_heuristic && !livelock_roots.empty()
&& !livelock_roots.top()->compare(curr))
livelock_roots.pop();
// When backtracking the root of an SSCC, we must also
// remove that SSCC from the ROOT stacks. We must
// discard from H all reachable states from this SSCC.
assert(!scc.empty());
if (scc.top().index == std::abs(i->second))
{
// removing states
for (auto j: scc.rem())
h[j] = -1;
dec_depth(scc.rem().size());
scc.pop();
assert(!arc.empty());
arc.pop();
}
delete succ;
// Do not delete CURR: it is a key in H.
continue;
}
// We have a successor to look at.
inc_transitions();
trace << "PASS 1: transition\n";
// Fetch the values destination state we are interested in...
state* dest = succ->dst();
auto acc_cond = succ->acc();
bool curr_is_livelock_hole_state_in_ta_component =
(a_->is_hole_state_in_ta_component(curr))
&& a_->is_livelock_accepting_state(curr);
// May be Buchi accepting scc or livelock accepting scc
// (contains a livelock accepting state that have no
// successors in TA).
scc.top().is_accepting = (a_->is_accepting_state(curr)
&& (!succ->is_stuttering_transition()
|| a_->is_livelock_accepting_state(curr)))
|| curr_is_livelock_hole_state_in_ta_component;
bool is_stuttering_transition = succ->is_stuttering_transition();
// ... and point the iterator to the next successor, for
// the next iteration.
succ->next();
// We do not need SUCC from now on.
// Are we going to a new state?
auto p = h.emplace(dest, num + 1);
if (p.second)
{
// Number it, stack it, and register its successors
// for later processing.
scc.push(++num);
arc.push(acc_cond);
ta_succ_iterator_product* iter = a_->succ_iter(dest);
iter->first();
todo.emplace(dest, iter);
inc_depth();
//push potential root of live-lock accepting cycle
if (activate_heuristic && a_->is_livelock_accepting_state(dest)
&& !is_stuttering_transition)
livelock_roots.push(dest);
continue;
}
// If we have reached a dead component, ignore it.
if (p.first->second == -1)
continue;
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SSCC. Any such
// non-dead SSCC has necessarily been crossed by our path to
// this state: there is a state S2 in our path which belongs
// to this SSCC too. We are going to merge all states between
// this S1 and S2 into this SSCC.
//
// This merge is easy to do because the order of the SSCC in
// ROOT is ascending: we just have to merge all SSCCs from the
// top of ROOT that have an index greater to the one of
// the SSCC of S2 (called the "threshold").
int threshold = std::abs(p.first->second);
std::list<const state*> rem;
bool acc = false;
trace << "***PASS 1: CYCLE***\n";
while (threshold < scc.top().index)
{
assert(!scc.empty());
assert(!arc.empty());
acc |= scc.top().is_accepting;
acc_cond |= scc.top().condition;
acc_cond |= arc.top();
rem.splice(rem.end(), scc.rem());
scc.pop();
arc.pop();
}
// Note that we do not always have
// threshold == scc.top().index
// after this loop, the SSCC whose index is threshold might have
// been merged with a lower SSCC.
// Accumulate all acceptance conditions into the merged SSCC.
scc.top().is_accepting |= acc;
scc.top().condition |= acc_cond;
scc.rem().splice(scc.rem().end(), rem);
bool is_accepting_sscc = scc.top().is_accepting
|| a_->acc().accepting(scc.top().condition);
if (is_accepting_sscc)
{
trace
<< "PASS 1: SUCCESS: a_->is_livelock_accepting_state(curr): "
<< a_->is_livelock_accepting_state(curr) << '\n';
trace
<< "PASS 1: scc.top().condition : "
<< scc.top().condition << '\n';
trace
<< "PASS 1: a_->acc().all_sets() : "
<< (a_->acc().all_sets()) << '\n';
trace
<< ("PASS 1 CYCLE and accepting? ")
<< a_->acc().accepting(scc.top().condition)
<< std::endl;
clear(h, todo, ta_init_it_);
return true;
}
//ADDLINKS
if (activate_heuristic && a_->is_livelock_accepting_state(curr)
&& is_stuttering_transition)
{
trace << "PASS 1: heuristic livelock detection \n";
const state* dest = p.first->first;
std::set<const state*, state_ptr_less_than> liveset_dest =
liveset[dest];
std::set<const state*, state_ptr_less_than> liveset_curr =
liveset[curr];
int h_livelock_root = 0;
if (!livelock_roots.empty())
h_livelock_root = h[livelock_roots.top()];
if (heuristic_livelock_detection(dest, h, h_livelock_root,
liveset_curr))
{
clear(h, todo, ta_init_it_);
return true;
}
for (const state* succ: liveset_dest)
if (heuristic_livelock_detection(succ, h, h_livelock_root,
liveset_curr))
{
clear(h, todo, ta_init_it_);
return true;
}
}
}
}
clear(h, todo, ta_init_it_);
if (disable_second_pass || livelock_acceptance_states_not_found)
return false;
return livelock_detection(a_);
}
bool
ta_check::heuristic_livelock_detection(const state * u,
hash_type& h, int h_livelock_root, std::set<const state*,
state_ptr_less_than> liveset_curr)
{
int hu = h[u];
if (hu > 0)
{
if (hu >= h_livelock_root)
{
trace << "PASS 1: heuristic livelock detection SUCCESS\n";
return true;
}
liveset_curr.insert(u);
}
return false;
}
bool
ta_check::livelock_detection(const const_ta_product_ptr& t)
{
// We use five main data in this algorithm:
// * sscc: a stack of strongly stuttering-connected components (SSCC)
// * h: a hash of all visited nodes, with their order,
// (it is called "Hash" in Couvreur's paper)
hash_type h;
// * num: the number of visited nodes. Used to set the order of each
// visited node,
trace
<< "PASS 2" << std::endl;
int num = 0;
// * todo: the depth-first search stack. This holds pairs of the
// form (STATE, ITERATOR) where ITERATOR is a twa_succ_iterator
// over the successors of STATE. In our use, ITERATOR should
// always be freed when TODO is popped, but STATE should not because
// it is also used as a key in H.
std::stack<pair_state_iter> todo;
// * init: the set of the depth-first search initial states
std::queue<const spot::state*> ta_init_it_;
auto init_states_set = a_->get_initial_states_set();
for (auto init_state: init_states_set)
ta_init_it_.push(init_state);
while (!ta_init_it_.empty())
{
// Setup depth-first search from initial states.
{
auto init = ta_init_it_.front();
ta_init_it_.pop();
if (!h.emplace(init, num + 1).second)
{
init->destroy();
continue;
}
sscc.push(num);
sscc.top().is_accepting = t->is_livelock_accepting_state(init);
ta_succ_iterator_product* iter = t->succ_iter(init);
iter->first();
todo.emplace(init, iter);
inc_depth();
}
while (!todo.empty())
{
auto curr = todo.top().first;
// We are looking at the next successor in SUCC.
ta_succ_iterator_product* succ = todo.top().second;
// If there is no more successor, backtrack.
if (succ->done())
{
// We have explored all successors of state CURR.
// Backtrack TODO.
todo.pop();
dec_depth();
trace << "PASS 2 : backtrack\n";
// fill rem with any component removed,
auto i = h.find(curr);
assert(i != h.end());
sscc.rem().push_front(curr);
inc_depth();
// When backtracking the root of an SSCC, we must also
// remove that SSCC from the ROOT stacks. We must
// discard from H all reachable states from this SSCC.
assert(!sscc.empty());
if (sscc.top().index == i->second)
{
// removing states
for (auto j: sscc.rem())
h[j] = -1;
dec_depth(sscc.rem().size());
sscc.pop();
}
delete succ;
// Do not delete CURR: it is a key in H.
continue;
}
// We have a successor to look at.
inc_transitions();
trace << "PASS 2 : transition\n";
// Fetch the values destination state we are interested in...
state* dest = succ->dst();
bool is_stuttering_transition = succ->is_stuttering_transition();
// ... and point the iterator to the next successor, for
// the next iteration.
succ->next();
// We do not need SUCC from now on.
auto i = h.find(dest);
// Is this a new state?
if (i == h.end())
{
// Are we going to a new state through a stuttering transition?
if (!is_stuttering_transition)
{
ta_init_it_.push(dest);
continue;
}
// Number it, stack it, and register its successors
// for later processing.
h[dest] = ++num;
sscc.push(num);
sscc.top().is_accepting = t->is_livelock_accepting_state(dest);
ta_succ_iterator_product* iter = t->succ_iter(dest);
iter->first();
todo.emplace(dest, iter);
inc_depth();
continue;
}
else
{
dest->destroy();
}
// If we have reached a dead component, ignore it.
if (i->second == -1)
continue;
//self loop state
if (!curr->compare(i->first))
if (t->is_livelock_accepting_state(curr))
{
clear(h, todo, ta_init_it_);
trace << "PASS 2: SUCCESS\n";
return true;
}
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SSCC. Any such
// non-dead SSCC has necessarily been crossed by our path to
// this state: there is a state S2 in our path which belongs
// to this SSCC too. We are going to merge all states between
// this S1 and S2 into this SSCC.
//
// This merge is easy to do because the order of the SSCC in
// ROOT is ascending: we just have to merge all SSCCs from the
// top of ROOT that have an index greater to the one of
// the SSCC of S2 (called the "threshold").
int threshold = i->second;
std::list<const state*> rem;
bool acc = false;
while (threshold < sscc.top().index)
{
assert(!sscc.empty());
acc |= sscc.top().is_accepting;
rem.splice(rem.end(), sscc.rem());
sscc.pop();
}
// Note that we do not always have
// threshold == sscc.top().index
// after this loop, the SSCC whose index is threshold might have
// been merged with a lower SSCC.
// Accumulate all acceptance conditions into the merged SSCC.
sscc.top().is_accepting |= acc;
sscc.rem().splice(sscc.rem().end(), rem);
if (sscc.top().is_accepting)
{
clear(h, todo, ta_init_it_);
trace
<< "PASS 2: SUCCESS" << std::endl;
return true;
}
}
}
clear(h, todo, ta_init_it_);
return false;
}
void
ta_check::clear(hash_type& h, std::stack<pair_state_iter> todo,
std::queue<const spot::state*> init_states)
{
set_states(states() + h.size());
while (!init_states.empty())
{
a_->free_state(init_states.front());
init_states.pop();
}
// Release all iterators in TODO.
while (!todo.empty())
{
delete todo.top().second;
todo.pop();
dec_depth();
}
}
void
ta_check::clear(hash_type& h, std::stack<pair_state_iter> todo,
spot::ta_succ_iterator* init_states_it)
{
set_states(states() + h.size());
delete init_states_it;
// Release all iterators in TODO.
while (!todo.empty())
{
delete todo.top().second;
todo.pop();
dec_depth();
}
}
std::ostream&
ta_check::print_stats(std::ostream& os) const
{
// ecs_->print_stats(os);
os << states() << " unique states visited" << std::endl;
//TODO sscc;
os << scc.size() << " strongly connected components in search stack"
<< std::endl;
os << transitions() << " transitions explored" << std::endl;
os << max_depth() << " items max in DFS search stack" << std::endl;
return os;
}
//////////////////////////////////////////////////////////////////////
}

162
spot/taalgos/emptinessta.hh Normal file
View file

@ -0,0 +1,162 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2008, 2012, 2013, 2014 Laboratoire de Recherche et
// Dévelopment de l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire d'Informatique de
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#pragma once
#include <spot/ta/taproduct.hh>
#include <spot/misc/optionmap.hh>
#include <spot/twaalgos/emptiness_stats.hh>
#include <stack>
#include <queue>
namespace spot
{
namespace
{
typedef std::pair<const spot::state*,
ta_succ_iterator_product*> pair_state_iter;
}
/// \addtogroup ta_emptiness_check Emptiness-checks
/// \ingroup ta_algorithms
///
/// \brief Check whether the language of a product (spot::ta_product) between
/// a Kripke structure and a TA is empty. It works also for the product
/// using Generalized TA (GTA and SGTA).
///
/// you should call spot::ta_check::check() to check the product automaton.
/// If spot::ta_check::check() returns false, then the product automaton
/// was found empty. Otherwise the automaton accepts some run.
///
/// This is based on the following paper.
/** \verbatim
@InProceedings{ geldenhuys.06.spin,
author = {Jaco Geldenhuys and Henri Hansen},
title = {Larger Automata and Less Work for {LTL} Model Checking},
booktitle = {Proceedings of the 13th International SPIN Workshop
(SPIN'06)},
year = {2006},
pages = {53--70},
series = {Lecture Notes in Computer Science},
volume = {3925},
publisher = {Springer}
}
\endverbatim */
///
/// the implementation of spot::ta_check::check() is inspired from the
/// two-pass algorithm of the paper above:
/// - the fist-pass detect all Buchi-accepting cycles and includes
/// the heuristic proposed in the paper to detect some
/// livelock-accepting cycles.
/// - the second-pass detect all livelock-accepting cycles.
/// In addition, we add some optimizations to the fist pass:
/// 1- Detection of all cycles containing a least
/// one state that is both livelock and Buchi accepting states
/// 2- Detection of all livelock-accepting cycles containing a least
/// one state (k,t) such as its "TA component" t is a livelock-accepting
/// state that has no successors in the TA automaton.
///
/// The implementation of the algorithm of each pass is a SCC-based algorithm
/// inspired from spot::gtec.hh.
/// @{
/// \brief An implementation of the emptiness-check algorithm for a product
/// between a TA and a Kripke structure
///
/// See the paper cited above.
class SPOT_API ta_check : public ec_statistics
{
typedef std::unordered_map<const state*, int,
state_ptr_hash, state_ptr_equal> hash_type;
public:
ta_check(const const_ta_product_ptr& a, option_map o = option_map());
virtual
~ta_check();
/// \brief Check whether the TA product automaton contains an accepting run:
/// it detects the two kinds of accepting runs: Buchi-accepting runs
/// and livelock-accepting runs. This emptiness check algorithm can also
/// check a product using the generalized form of TA.
///
/// Return false if the product automaton accepts no run, otherwise true
///
/// \param disable_second_pass is used to disable the second pass when
/// when it is not necessary, for example when all the livelock-accepting
/// states of the TA automaton have no successors, we call this kind of
/// TA as STA (Single-pass Testing Automata)
/// (see spot::tgba2ta::add_artificial_livelock_accepting_state() for an
/// automatic transformation of any TA automaton into STA automaton
///
/// \param disable_heuristic_for_livelock_detection disable the heuristic
/// used in the first pass to detect livelock-accepting runs,
/// this heuristic is described in the paper cited above
virtual bool
check(bool disable_second_pass = false,
bool disable_heuristic_for_livelock_detection = false);
/// \brief Check whether the product automaton contains
/// a livelock-accepting run
/// Return false if the product automaton accepts no livelock-accepting run,
/// otherwise true
virtual bool
livelock_detection(const const_ta_product_ptr& t);
/// Print statistics, if any.
virtual std::ostream&
print_stats(std::ostream& os) const;
protected:
void
clear(hash_type& h, std::stack<pair_state_iter> todo, std::queue<
const spot::state*> init_set);
void
clear(hash_type& h, std::stack<pair_state_iter> todo,
spot::ta_succ_iterator* init_states_it);
/// the heuristic for livelock-accepting runs detection, it's described
/// in the paper cited above
bool
heuristic_livelock_detection(const state * stuttering_succ,
hash_type& h, int h_livelock_root, std::set<const state*,
state_ptr_less_than> liveset_curr);
const_ta_product_ptr a_; ///< The automaton.
option_map o_; ///< The options
// Force the second pass
bool is_full_2_pass_;
// scc: a stack of strongly connected components (SCC)
scc_stack_ta scc;
// sscc: a stack of strongly stuttering-connected components (SSCC)
scc_stack_ta sscc;
};
/// @}
/// \addtogroup ta_emptiness_check_algorithms Emptiness-check algorithms
/// \ingroup ta_emptiness_check
}

547
spot/taalgos/minimize.cc Normal file
View file

@ -0,0 +1,547 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2010, 2011, 2012, 2013, 2014, 2015 Laboratoire de
// Recherche et Développement de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//#define TRACE
#ifdef TRACE
# define trace std::cerr
#else
# define trace while (0) std::cerr
#endif
#include <set>
#include <list>
#include <sstream>
#include <spot/taalgos/minimize.hh>
#include <spot/misc/hash.hh>
#include <spot/misc/bddlt.hh>
#include <spot/ta/tgtaexplicit.hh>
#include <spot/taalgos/statessetbuilder.hh>
#include <spot/twa/twagraph.hh>
#include <spot/twa/bddprint.hh>
namespace spot
{
typedef std::unordered_set<const state*,
state_ptr_hash, state_ptr_equal> hash_set;
typedef std::unordered_map<const state*, unsigned,
state_ptr_hash, state_ptr_equal> hash_map;
typedef std::list<hash_set*> partition_t;
namespace
{
static std::ostream&
dump_hash_set(const hash_set* hs,
const const_ta_ptr& aut,
std::ostream& out)
{
out << '{';
const char* sep = "";
for (hash_set::const_iterator i = hs->begin(); i != hs->end(); ++i)
{
out << sep << aut->format_state(*i);
sep = ", ";
}
out << '}';
return out;
}
static std::string
format_hash_set(const hash_set* hs, const const_ta_ptr& aut)
{
std::ostringstream s;
dump_hash_set(hs, aut, s);
return s.str();
}
// From the base automaton and the list of sets, build the minimal
// automaton
static void
build_result(const const_ta_ptr& a, std::list<hash_set*>& sets,
twa_graph_ptr result_tgba, const ta_explicit_ptr& result)
{
// For each set, create a state in the tgbaulting automaton.
// For a state s, state_num[s] is the number of the state in the minimal
// automaton.
hash_map state_num;
std::list<hash_set*>::iterator sit;
unsigned num = 0;
for (sit = sets.begin(); sit != sets.end(); ++sit)
{
hash_set::iterator hit;
hash_set* h = *sit;
for (hit = h->begin(); hit != h->end(); ++hit)
state_num[*hit] = num;
result_tgba->new_state();
++num;
}
// For each transition in the initial automaton, add the corresponding
// transition in ta.
for (sit = sets.begin(); sit != sets.end(); ++sit)
{
hash_set::iterator hit;
hash_set* h = *sit;
hit = h->begin();
const state* src = *hit;
unsigned src_num = state_num[src];
bdd tgba_condition = bddtrue;
bool is_initial_state = a->is_initial_state(src);
if (!a->get_artificial_initial_state() && is_initial_state)
tgba_condition = a->get_state_condition(src);
bool is_accepting_state = a->is_accepting_state(src);
bool is_livelock_accepting_state =
a->is_livelock_accepting_state(src);
state_ta_explicit* new_src =
new state_ta_explicit(result_tgba->state_from_number(src_num),
tgba_condition, is_initial_state,
is_accepting_state,
is_livelock_accepting_state);
state_ta_explicit* ta_src = result->add_state(new_src);
if (ta_src != new_src)
{
delete new_src;
}
else if (a->get_artificial_initial_state())
{
if (a->get_artificial_initial_state() == src)
result->set_artificial_initial_state(new_src);
}
else if (is_initial_state)
{
result->add_to_initial_states_set(new_src);
}
ta_succ_iterator* succit = a->succ_iter(src);
for (succit->first(); !succit->done(); succit->next())
{
const state* dst = succit->dst();
hash_map::const_iterator i = state_num.find(dst);
if (i == state_num.end()) // Ignore useless destinations.
continue;
bdd tgba_condition = bddtrue;
is_initial_state = a->is_initial_state(dst);
if (!a->get_artificial_initial_state() && is_initial_state)
tgba_condition = a->get_state_condition(dst);
bool is_accepting_state = a->is_accepting_state(dst);
bool is_livelock_accepting_state =
a->is_livelock_accepting_state(dst);
state_ta_explicit* new_dst =
new state_ta_explicit
(result_tgba->state_from_number(i->second),
tgba_condition, is_initial_state,
is_accepting_state,
is_livelock_accepting_state);
state_ta_explicit* ta_dst = result->add_state(new_dst);
if (ta_dst != new_dst)
{
delete new_dst;
}
else if (a->get_artificial_initial_state())
{
if (a->get_artificial_initial_state() == dst)
result->set_artificial_initial_state(new_dst);
}
else if (is_initial_state)
result->add_to_initial_states_set(new_dst);
result->create_transition
(ta_src, succit->cond(),
succit->acc(),
ta_dst);
}
delete succit;
}
}
static partition_t
build_partition(const const_ta_ptr& ta_)
{
unsigned num_sets = ta_->acc().num_sets();
std::map<acc_cond::mark_t, bdd> m2b;
int acc_vars = ta_->get_dict()->register_anonymous_variables(num_sets,
&m2b);
auto mark_to_bdd = [&](acc_cond::mark_t m) -> bdd
{
auto i = m2b.find(m);
if (i != m2b.end())
return i->second;
bdd res = bddtrue;
for (unsigned n = 0; n < num_sets; ++n)
if (m.has(n))
res &= bdd_ithvar(acc_vars + n);
else
res &= bdd_nithvar(acc_vars + n);
m2b.emplace_hint(i, m, res);
return res;
};
partition_t cur_run;
partition_t next_run;
// The list of equivalent states.
partition_t done;
std::set<const state*> states_set = get_states_set(ta_);
hash_set* I = new hash_set;
// livelock acceptance states
hash_set* G = new hash_set;
// Buchi acceptance states
hash_set* F = new hash_set;
// Buchi and livelock acceptance states
hash_set* G_F = new hash_set;
// the other states (non initial and not in G, F and G_F)
hash_set* S = new hash_set;
std::set<const state*>::iterator it;
auto artificial_initial_state = ta_->get_artificial_initial_state();
for (it = states_set.begin(); it != states_set.end(); ++it)
{
const state* s = *it;
if (s == artificial_initial_state)
I->insert(s);
else if (!artificial_initial_state && ta_->is_initial_state(s))
I->insert(s);
else if (ta_->is_livelock_accepting_state(s)
&& ta_->is_accepting_state(s))
G_F->insert(s);
else if (ta_->is_accepting_state(s))
F->insert(s);
else if (ta_->is_livelock_accepting_state(s))
G->insert(s);
else
S->insert(s);
}
hash_map state_set_map;
// Size of ta_
unsigned size = states_set.size() + 6;
// Use bdd variables to number sets. set_num is the first variable
// available.
unsigned set_num =
ta_->get_dict()->register_anonymous_variables(size, &m2b);
std::set<int> free_var;
for (unsigned i = set_num; i < set_num + size; ++i)
free_var.insert(i);
std::map<int, int> used_var;
for (hash_set::const_iterator i = I->begin(); i != I->end(); ++i)
{
hash_set* cI = new hash_set;
cI->insert(*i);
done.push_back(cI);
used_var[set_num] = 1;
free_var.erase(set_num);
state_set_map[*i] = set_num;
++set_num;
}
delete I;
if (!G->empty())
{
unsigned s = G->size();
unsigned num = set_num;
++set_num;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(G);
else
done.push_back(G);
for (hash_set::const_iterator i = G->begin(); i != G->end(); ++i)
state_set_map[*i] = num;
}
else
{
delete G;
}
if (!F->empty())
{
unsigned s = F->size();
unsigned num = set_num;
++set_num;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(F);
else
done.push_back(F);
for (hash_set::const_iterator i = F->begin(); i != F->end(); ++i)
state_set_map[*i] = num;
}
else
{
delete F;
}
if (!G_F->empty())
{
unsigned s = G_F->size();
unsigned num = set_num;
++set_num;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(G_F);
else
done.push_back(G_F);
for (hash_set::const_iterator i = G_F->begin(); i != G_F->end(); ++i)
state_set_map[*i] = num;
}
else
{
delete G_F;
}
if (!S->empty())
{
unsigned s = S->size();
unsigned num = set_num;
++set_num;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(S);
else
done.push_back(S);
for (hash_set::const_iterator i = S->begin(); i != S->end(); ++i)
state_set_map[*i] = num;
}
else
{
delete S;
}
// A bdd_states_map is a list of formulae (in a BDD form)
// associated with a destination set of states.
typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map;
bool did_split = true;
unsigned num = set_num;
++set_num;
used_var[num] = 1;
free_var.erase(num);
bdd bdd_false_acceptance_condition = bdd_ithvar(num);
while (did_split)
{
did_split = false;
while (!cur_run.empty())
{
// Get a set to process.
hash_set* cur = cur_run.front();
cur_run.pop_front();
trace
<< "processing " << format_hash_set(cur, ta_) << std::endl;
hash_set::iterator hi;
bdd_states_map bdd_map;
for (hi = cur->begin(); hi != cur->end(); ++hi)
{
const state* src = *hi;
bdd f = bddfalse;
ta_succ_iterator* si = ta_->succ_iter(src);
trace << "+src: " << src << std::endl;
for (si->first(); !si->done(); si->next())
{
const state* dst = si->dst();
hash_map::const_iterator i = state_set_map.find(dst);
assert(i != state_set_map.end());
auto curacc =
mark_to_bdd(si->acc());
f |= (bdd_ithvar(i->second)
& si->cond() & curacc);
trace
<< "+f: " << bdd_format_accset(ta_->get_dict(), f)
<< "\n -bdd_ithvar(i->second): "
<< bdd_format_accset(ta_->get_dict(),
bdd_ithvar(i->second))
<< "\n -si->cond(): "
<< bdd_format_accset(ta_->get_dict(),
si->cond())
<< "\n -current_acceptance_conditions: "
<< si->acc()
<< std::endl;
}
delete si;
// Have we already seen this formula ?
bdd_states_map::iterator bsi = bdd_map.find(f);
if (bsi == bdd_map.end())
{
// No, create a new set.
hash_set* new_set = new hash_set;
new_set->insert(src);
bdd_map[f] = new_set;
}
else
{
// Yes, add the current state to the set.
bsi->second->insert(src);
}
}
bdd_states_map::iterator bsi = bdd_map.begin();
if (bdd_map.size() == 1)
{
// The set was not split.
trace
<< "set " << format_hash_set(bsi->second, ta_)
<< " was not split" << std::endl;
next_run.push_back(bsi->second);
}
else
{
did_split = true;
for (; bsi != bdd_map.end(); ++bsi)
{
hash_set* set = bsi->second;
// Free the number associated to these states.
unsigned num = state_set_map[*set->begin()];
assert(used_var.find(num) != used_var.end());
unsigned left = (used_var[num] -= set->size());
// Make sure LEFT does not become negative
// (hence bigger than SIZE when read as unsigned)
assert(left < size);
if (left == 0)
{
used_var.erase(num);
free_var.insert(num);
}
// Pick a free number
assert(!free_var.empty());
num = *free_var.begin();
free_var.erase(free_var.begin());
used_var[num] = set->size();
for (hash_set::iterator hit = set->begin();
hit != set->end(); ++hit)
state_set_map[*hit] = num;
// Trivial sets can't be splitted any further.
if (set->size() == 1)
{
trace
<< "set " << format_hash_set(set, ta_)
<< " is minimal" << std::endl;
done.push_back(set);
}
else
{
trace
<< "set " << format_hash_set(set, ta_)
<< " should be processed further" << std::endl;
next_run.push_back(set);
}
}
}
delete cur;
}
if (did_split)
trace
<< "splitting did occur during this pass." << std::endl;
std::swap(cur_run, next_run);
}
done.splice(done.end(), cur_run);
#ifdef TRACE
trace << "Final partition: ";
for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i)
trace << format_hash_set(*i, ta_) << ' ';
trace << std::endl;
#endif
ta_->get_dict()->unregister_all_my_variables(&m2b);
return done;
}
}
ta_explicit_ptr
minimize_ta(const const_ta_ptr& ta_)
{
auto tgba = make_twa_graph(ta_->get_dict());
auto res = make_ta_explicit(tgba, ta_->acc().num_sets(), nullptr);
partition_t partition = build_partition(ta_);
// Build the ta automata result.
build_result(ta_, partition, tgba, res);
// Free all the allocated memory.
std::list<hash_set*>::iterator itdone;
for (itdone = partition.begin(); itdone != partition.end(); ++itdone)
delete *itdone;
return res;
}
tgta_explicit_ptr
minimize_tgta(const const_tgta_explicit_ptr& tgta_)
{
auto tgba = make_twa_graph(tgta_->get_dict());
auto res = make_tgta_explicit(tgba, tgta_->acc().num_sets(), nullptr);
auto ta = tgta_->get_ta();
partition_t partition = build_partition(ta);
// Build the minimal tgta automaton.
build_result(ta, partition, tgba, res->get_ta());
// Free all the allocated memory.
std::list<hash_set*>::iterator itdone;
for (itdone = partition.begin(); itdone != partition.end(); ++itdone)
delete *itdone;
return res;
}
}

76
spot/taalgos/minimize.hh Normal file
View file

@ -0,0 +1,76 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2010, 2011, 2012, 2013, 2014 Laboratoire de
// Recherche et Développement de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#pragma once
#include <spot/ta/ta.hh>
#include <spot/ta/tgta.hh>
#include <spot/ta/tgtaexplicit.hh>
namespace spot
{
/// \addtogroup ta_reduction
/// @{
/// \brief Construct a simplified TA by merging bisimilar states.
///
/// A TA automaton can be simplified by merging bisimilar states:
/// Two states are bisimilar if the automaton can accept the
/// same executions starting for either of these states. This can be
/// achieved using any algorithm based on partition refinement
///
/// For more detail about this type of algorithm, see the following paper:
/** \verbatim
@InProceedings{valmari.09.icatpn,
author = {Antti Valmari},
title = {Bisimilarity Minimization in in O(m logn) Time},
booktitle = {Proceedings of the 30th International Conference on
the Applications and Theory of Petri Nets
(ICATPN'09)},
series = {Lecture Notes in Computer Science},
publisher = {Springer},
isbn = {978-3-642-02423-8},
pages = {123--142},
volume = 5606,
url = {http://dx.doi.org/10.1007/978-3-642-02424-5_9},
year = {2009}
}
\endverbatim */
///
/// \param ta_ the TA automaton to convert into a simplified TA
SPOT_API ta_explicit_ptr
minimize_ta(const const_ta_ptr& ta_);
/// \brief Construct a simplified TGTA by merging bisimilar states.
///
/// A TGTA automaton can be simplified by merging bisimilar states:
/// Two states are bisimilar if the automaton can accept the
/// same executions starting for either of these states. This can be
/// achieved using same algorithm used to simplify a TA taking into account
/// the acceptance conditions of the outgoing transitions.
///
/// \param tgta_ the TGTA automaton to convert into a simplified TGTA
SPOT_API tgta_explicit_ptr
minimize_tgta(const const_tgta_explicit_ptr& tgta_);
/// @}
}

183
spot/taalgos/reachiter.cc Normal file
View file

@ -0,0 +1,183 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2010, 2012, 2014, 2015 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include <cassert>
#include <spot/taalgos/reachiter.hh>
#include <iostream>
using namespace std;
namespace spot
{
// ta_reachable_iterator
//////////////////////////////////////////////////////////////////////
ta_reachable_iterator::ta_reachable_iterator(const const_ta_ptr& a) :
t_automata_(a)
{
}
ta_reachable_iterator::~ta_reachable_iterator()
{
seen_map::const_iterator s = seen.begin();
while (s != seen.end())
{
// Advance the iterator before deleting the "key" pointer.
const state* ptr = s->first;
++s;
t_automata_->free_state(ptr);
}
}
void
ta_reachable_iterator::run()
{
int n = 0;
start();
const spot::state* artificial_initial_state =
t_automata_->get_artificial_initial_state();
ta::const_states_set_t init_states_set;
if (artificial_initial_state)
{
init_states_set.insert(artificial_initial_state);
}
else
{
init_states_set = t_automata_->get_initial_states_set();
}
for (auto init_state: init_states_set)
{
if (want_state(init_state))
add_state(init_state);
seen[init_state] = ++n;
}
const state* t;
while ((t = next_state()))
{
assert(seen.find(t) != seen.end());
int tn = seen[t];
ta_succ_iterator* si = t_automata_->succ_iter(t);
process_state(t, tn);
for (si->first(); !si->done(); si->next())
{
const state* current = si->dst();
seen_map::const_iterator s = seen.find(current);
bool ws = want_state(current);
if (s == seen.end())
{
seen[current] = ++n;
if (ws)
{
add_state(current);
process_link(tn, n, si);
}
}
else
{
if (ws)
process_link(tn, s->second, si);
t_automata_->free_state(current);
}
}
delete si;
}
end();
}
bool
ta_reachable_iterator::want_state(const state*) const
{
return true;
}
void
ta_reachable_iterator::start()
{
}
void
ta_reachable_iterator::end()
{
}
void
ta_reachable_iterator::process_state(const state*, int)
{
}
void
ta_reachable_iterator::process_link(int, int, const ta_succ_iterator*)
{
}
// ta_reachable_iterator_depth_first
//////////////////////////////////////////////////////////////////////
ta_reachable_iterator_depth_first::ta_reachable_iterator_depth_first(
const const_ta_ptr& a) :
ta_reachable_iterator(a)
{
}
void
ta_reachable_iterator_depth_first::add_state(const state* s)
{
todo.push(s);
}
const state*
ta_reachable_iterator_depth_first::next_state()
{
if (todo.empty())
return nullptr;
const state* s = todo.top();
todo.pop();
return s;
}
// ta_reachable_iterator_breadth_first
//////////////////////////////////////////////////////////////////////
ta_reachable_iterator_breadth_first::ta_reachable_iterator_breadth_first(
const const_ta_ptr& a) :
ta_reachable_iterator(a)
{
}
void
ta_reachable_iterator_breadth_first::add_state(const state* s)
{
todo.push_back(s);
}
const state*
ta_reachable_iterator_breadth_first::next_state()
{
if (todo.empty())
return nullptr;
const state* s = todo.front();
todo.pop_front();
return s;
}
}

131
spot/taalgos/reachiter.hh Normal file
View file

@ -0,0 +1,131 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2010, 2011, 2012, 2013, 2014 Laboratoire de Recherche
// et Développement de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#pragma once
#include <spot/misc/hash.hh>
#include <spot/ta/ta.hh>
#include <stack>
#include <deque>
namespace spot
{
/// \ingroup ta_generic
/// \brief Iterate over all reachable states of a spot::ta.
class SPOT_API ta_reachable_iterator
{
public:
ta_reachable_iterator(const const_ta_ptr& a);
virtual
~ta_reachable_iterator();
/// \brief Iterate over all reachable states of a spot::ta.
///
/// This is a template method that will call add_state(), next_state(),
/// start(), end(), process_state(), and process_link(), while it
/// iterates over states.
void
run();
/// \name Todo list management.
///
/// spot::ta_reachable_iterator_depth_first and
/// spot::ta_reachable_iterator_breadth_first offer two precanned
/// implementations for these functions.
/// \{
/// \brief Called by run() to register newly discovered states.
virtual void
add_state(const state* s) = 0;
/// \brief Called by run() to obtain the next state to process.
virtual const state*
next_state() = 0;
/// \}
/// Called by add_state or next_states implementations to filter
/// states. Default implementation always return true.
virtual bool
want_state(const state* s) const;
/// Called by run() before starting its iteration.
virtual void
start();
/// Called by run() once all states have been explored.
virtual void
end();
/// Called by run() to process a state.
///
/// \param s The current state.
/// \param n A unique number assigned to \a s.
virtual void
process_state(const state* s, int n);
/// Called by run() to process a transition.
///
/// \param in The source state number.
/// \param out The destination state number.
/// \param si The spot::twa_succ_iterator positionned on the current
/// transition.
virtual void
process_link(int in, int out, const ta_succ_iterator* si);
protected:
const_ta_ptr t_automata_; ///< The spot::ta to explore.
typedef std::unordered_map<const state*, int,
state_ptr_hash, state_ptr_equal> seen_map;
seen_map seen; ///< States already seen.
};
/// \ingroup ta_generic
/// \brief An implementation of spot::ta_reachable_iterator that browses
/// states depth first.
class SPOT_API ta_reachable_iterator_depth_first
: public ta_reachable_iterator
{
public:
ta_reachable_iterator_depth_first(const const_ta_ptr& a);
virtual void
add_state(const state* s);
virtual const state*
next_state();
protected:
std::stack<const state*> todo; ///< A stack of states yet to explore.
};
/// \ingroup ta_generic
/// \brief An implementation of spot::ta_reachable_iterator that browses
/// states breadth first.
class SPOT_API ta_reachable_iterator_breadth_first
: public ta_reachable_iterator
{
public:
ta_reachable_iterator_breadth_first(const const_ta_ptr& a);
virtual void
add_state(const state* s);
virtual const state*
next_state();
protected:
std::deque<const state*> todo; ///< A queue of states yet to explore.
};
}

View file

@ -0,0 +1,68 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2010, 2014 Laboratoire de Recherche et Développement
// de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include <iostream>
#include <spot/ta/ta.hh>
#include <spot/taalgos/statessetbuilder.hh>
#include <spot/taalgos/reachiter.hh>
namespace spot
{
namespace
{
class states_set_builder_bfs : public ta_reachable_iterator_breadth_first
{
public:
states_set_builder_bfs(const const_ta_ptr& a) :
ta_reachable_iterator_breadth_first(a)
{
}
void
process_state(const state* s, int)
{
states_set_.insert(s);
}
void
process_link(int, int, const ta_succ_iterator*)
{
}
std::set<const state*>
get_states_set()
{
return states_set_;
}
private:
std::set<const state*> states_set_;
};
} // anonymous
std::set<const state*>
get_states_set(const const_ta_ptr& t)
{
states_set_builder_bfs d(t);
d.run();
return d.get_states_set();
}
}

View file

@ -0,0 +1,30 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2010, 2013, 2014 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#pragma once
#include <spot/ta/ta.hh>
namespace spot
{
/// \brief Compute states set for an automaton.
SPOT_API std::set<const state*> get_states_set(const const_ta_ptr& t);
/// @}
}

78
spot/taalgos/stats.cc Normal file
View file

@ -0,0 +1,78 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2008, 2014, 2015 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
// Copyright (C) 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include <iostream>
#include <spot/ta/ta.hh>
#include <spot/taalgos/stats.hh>
#include <spot/taalgos/reachiter.hh>
namespace spot
{
namespace
{
class stats_bfs : public ta_reachable_iterator_breadth_first
{
public:
stats_bfs(const const_ta_ptr a, ta_statistics& s) :
ta_reachable_iterator_breadth_first(a), s_(s)
{
}
void
process_state(const state* s, int)
{
++s_.states;
if (t_automata_->is_accepting_state(s)
|| t_automata_->is_livelock_accepting_state(s))
++s_.acceptance_states;
}
void
process_link(int, int, const ta_succ_iterator*)
{
++s_.edges;
}
private:
ta_statistics& s_;
};
} // anonymous
std::ostream&
ta_statistics::dump(std::ostream& out) const
{
out << "edges: " << edges << std::endl;
out << "states: " << states << std::endl;
return out;
}
ta_statistics
stats_reachable(const const_ta_ptr& t)
{
ta_statistics s =
{ 0, 0, 0};
stats_bfs d(t, s);
d.run();
return s;
}
}

44
spot/taalgos/stats.hh Normal file
View file

@ -0,0 +1,44 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2011, 2013, 2014, 2015 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#pragma once
#include <spot/ta/ta.hh>
#include <iosfwd>
namespace spot
{
/// \addtogroup ta_misc
/// @{
struct SPOT_API ta_statistics
{
unsigned edges;
unsigned states;
unsigned acceptance_states;
std::ostream& dump(std::ostream& out) const;
};
/// \brief Compute statistics for an automaton.
SPOT_API ta_statistics stats_reachable(const const_ta_ptr& t);
/// @}
}

659
spot/taalgos/tgba2ta.cc Normal file
View file

@ -0,0 +1,659 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2010, 2011, 2012, 2013, 2014, 2015 Laboratoire de
// Recherche et Développement de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//#define TRACE
#include <iostream>
#ifdef TRACE
#define trace std::clog
#else
#define trace while (0) std::clog
#endif
#include <spot/twa/formula2bdd.hh>
#include <cassert>
#include <iostream>
#include <spot/twa/bddprint.hh>
#include <stack>
#include <spot/taalgos/tgba2ta.hh>
#include <spot/taalgos/statessetbuilder.hh>
#include <spot/ta/tgtaexplicit.hh>
using namespace std;
namespace spot
{
namespace
{
typedef std::pair<const spot::state*, twa_succ_iterator*> pair_state_iter;
static void
transform_to_single_pass_automaton
(const ta_explicit_ptr& testing_automata,
state_ta_explicit* artificial_livelock_acc_state = nullptr)
{
if (artificial_livelock_acc_state)
{
auto artificial_livelock_acc_state_added =
testing_automata->add_state(artificial_livelock_acc_state);
// unique artificial_livelock_acc_state
assert(artificial_livelock_acc_state_added
== artificial_livelock_acc_state);
(void)artificial_livelock_acc_state_added;
artificial_livelock_acc_state->set_livelock_accepting_state(true);
artificial_livelock_acc_state->free_transitions();
}
ta::states_set_t states_set = testing_automata->get_states_set();
ta::states_set_t::iterator it;
state_ta_explicit::transitions* transitions_to_livelock_states =
new state_ta_explicit::transitions;
for (it = states_set.begin(); it != states_set.end(); ++it)
{
auto source = const_cast<state_ta_explicit*>
(static_cast<const state_ta_explicit*>(*it));
transitions_to_livelock_states->clear();
state_ta_explicit::transitions* trans = source->get_transitions();
state_ta_explicit::transitions::iterator it_trans;
if (trans)
for (it_trans = trans->begin(); it_trans != trans->end();)
{
auto dest = const_cast<state_ta_explicit*>((*it_trans)->dest);
state_ta_explicit::transitions* dest_trans =
dest->get_transitions();
bool dest_trans_empty = !dest_trans || dest_trans->empty();
//select transitions where a destination is a livelock state
// which isn't a Buchi accepting state and has successors
if (dest->is_livelock_accepting_state()
&& (!dest->is_accepting_state()) && (!dest_trans_empty))
transitions_to_livelock_states->push_front(*it_trans);
// optimization to have, after minimization, an unique
// livelock state which has no successors
if (dest->is_livelock_accepting_state() && (dest_trans_empty))
dest->set_accepting_state(false);
++it_trans;
}
if (transitions_to_livelock_states)
{
state_ta_explicit::transitions::iterator it_trans;
for (it_trans = transitions_to_livelock_states->begin();
it_trans != transitions_to_livelock_states->end();
++it_trans)
{
if (artificial_livelock_acc_state)
{
testing_automata->create_transition
(source,
(*it_trans)->condition,
(*it_trans)->acceptance_conditions,
artificial_livelock_acc_state, true);
}
else
{
testing_automata->create_transition
(source,
(*it_trans)->condition,
(*it_trans)->acceptance_conditions,
((*it_trans)->dest)->stuttering_reachable_livelock,
true);
}
}
}
}
delete transitions_to_livelock_states;
for (it = states_set.begin(); it != states_set.end(); ++it)
{
state_ta_explicit* state = static_cast<state_ta_explicit*> (*it);
state_ta_explicit::transitions* state_trans =
(state)->get_transitions();
bool state_trans_empty = !state_trans || state_trans->empty();
if (state->is_livelock_accepting_state()
&& (!state->is_accepting_state()) && (!state_trans_empty))
state->set_livelock_accepting_state(false);
}
}
static void
compute_livelock_acceptance_states(const ta_explicit_ptr& testing_aut,
bool single_pass_emptiness_check,
state_ta_explicit*
artificial_livelock_acc_state)
{
// We use five main data in this algorithm:
// * sscc: a stack of strongly stuttering-connected components (SSCC)
scc_stack_ta sscc;
// * arc, a stack of acceptance conditions between each of these SCC,
std::stack<acc_cond::mark_t> arc;
// * h: a hash of all visited nodes, with their order,
// (it is called "Hash" in Couvreur's paper)
typedef std::unordered_map<const state*, int,
state_ptr_hash, state_ptr_equal> hash_type;
hash_type h; ///< Heap of visited states.
// * num: the number of visited nodes. Used to set the order of each
// visited node,
int num = 0;
// * todo: the depth-first search stack. This holds pairs of the
// form (STATE, ITERATOR) where ITERATOR is a twa_succ_iterator
// over the successors of STATE. In our use, ITERATOR should
// always be freed when TODO is popped, but STATE should not because
// it is also used as a key in H.
std::stack<pair_state_iter> todo;
// * init: the set of the depth-first search initial states
std::stack<const state*> init_set;
for (auto s: testing_aut->get_initial_states_set())
init_set.push(s);
while (!init_set.empty())
{
// Setup depth-first search from initial states.
{
auto init = down_cast<const state_ta_explicit*> (init_set.top());
init_set.pop();
if (!h.emplace(init, num + 1).second)
{
init->destroy();
continue;
}
sscc.push(++num);
arc.push(0U);
sscc.top().is_accepting
= testing_aut->is_accepting_state(init);
twa_succ_iterator* iter = testing_aut->succ_iter(init);
iter->first();
todo.emplace(init, iter);
}
while (!todo.empty())
{
auto curr = todo.top().first;
auto i = h.find(curr);
// If we have reached a dead component, ignore it.
if (i != h.end() && i->second == -1)
{
todo.pop();
continue;
}
// We are looking at the next successor in SUCC.
twa_succ_iterator* succ = todo.top().second;
// If there is no more successor, backtrack.
if (succ->done())
{
// We have explored all successors of state CURR.
// Backtrack TODO.
todo.pop();
// fill rem with any component removed,
assert(i != h.end());
sscc.rem().push_front(curr);
// When backtracking the root of an SSCC, we must also
// remove that SSCC from the ROOT stacks. We must
// discard from H all reachable states from this SSCC.
assert(!sscc.empty());
if (sscc.top().index == i->second)
{
// removing states
bool is_livelock_accepting_sscc = (sscc.rem().size() > 1)
&& ((sscc.top().is_accepting) ||
(testing_aut->acc().
accepting(sscc.top().condition)));
trace << "*** sscc.size() = ***" << sscc.size() << '\n';
for (auto j: sscc.rem())
{
h[j] = -1;
if (is_livelock_accepting_sscc)
{
// if it is an accepting sscc add the state to
// G (=the livelock-accepting states set)
trace << "*** sscc.size() > 1: states: ***"
<< testing_aut->format_state(j)
<< '\n';
auto livelock_accepting_state =
const_cast<state_ta_explicit*>
(down_cast<const state_ta_explicit*>(j));
livelock_accepting_state->
set_livelock_accepting_state(true);
if (single_pass_emptiness_check)
{
livelock_accepting_state
->set_accepting_state(true);
livelock_accepting_state
->stuttering_reachable_livelock
= livelock_accepting_state;
}
}
}
assert(!arc.empty());
sscc.pop();
arc.pop();
}
// automata reduction
testing_aut->delete_stuttering_and_hole_successors(curr);
delete succ;
// Do not delete CURR: it is a key in H.
continue;
}
// Fetch the values destination state we are interested in...
auto dest = succ->dst();
auto acc_cond = succ->acc();
// ... and point the iterator to the next successor, for
// the next iteration.
succ->next();
// We do not need SUCC from now on.
// Are we going to a new state through a stuttering transition?
bool is_stuttering_transition =
testing_aut->get_state_condition(curr)
== testing_aut->get_state_condition(dest);
auto id = h.find(dest);
// Is this a new state?
if (id == h.end())
{
if (!is_stuttering_transition)
{
init_set.push(dest);
dest->destroy();
continue;
}
// Number it, stack it, and register its successors
// for later processing.
h[dest] = ++num;
sscc.push(num);
arc.push(acc_cond);
sscc.top().is_accepting =
testing_aut->is_accepting_state(dest);
twa_succ_iterator* iter = testing_aut->succ_iter(dest);
iter->first();
todo.emplace(dest, iter);
continue;
}
dest->destroy();
// If we have reached a dead component, ignore it.
if (id->second == -1)
continue;
trace << "***compute_livelock_acceptance_states: CYCLE***\n";
if (!curr->compare(id->first))
{
auto self_loop_state = const_cast<state_ta_explicit*>
(down_cast<const state_ta_explicit*>(curr));
assert(self_loop_state);
if (testing_aut->is_accepting_state(self_loop_state)
|| (testing_aut->acc().accepting(acc_cond)))
{
self_loop_state->set_livelock_accepting_state(true);
if (single_pass_emptiness_check)
{
self_loop_state->set_accepting_state(true);
self_loop_state->stuttering_reachable_livelock
= self_loop_state;
}
}
trace
<< "***compute_livelock_acceptance_states: CYCLE: "
<< "self_loop_state***\n";
}
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SSCC. Any such
// non-dead SSCC has necessarily been crossed by our path to
// this state: there is a state S2 in our path which belongs
// to this SSCC too. We are going to merge all states between
// this S1 and S2 into this SSCC.
//
// This merge is easy to do because the order of the SSCC in
// ROOT is ascending: we just have to merge all SSCCs from the
// top of ROOT that have an index greater to the one of
// the SSCC of S2 (called the "threshold").
int threshold = id->second;
std::list<const state*> rem;
bool acc = false;
while (threshold < sscc.top().index)
{
assert(!sscc.empty());
assert(!arc.empty());
acc |= sscc.top().is_accepting;
acc_cond |= sscc.top().condition;
acc_cond |= arc.top();
rem.splice(rem.end(), sscc.rem());
sscc.pop();
arc.pop();
}
// Note that we do not always have
// threshold == sscc.top().index
// after this loop, the SSCC whose index is threshold might have
// been merged with a lower SSCC.
// Accumulate all acceptance conditions into the merged SSCC.
sscc.top().is_accepting |= acc;
sscc.top().condition |= acc_cond;
sscc.rem().splice(sscc.rem().end(), rem);
}
}
if (artificial_livelock_acc_state || single_pass_emptiness_check)
transform_to_single_pass_automaton(testing_aut,
artificial_livelock_acc_state);
}
ta_explicit_ptr
build_ta(const ta_explicit_ptr& ta, bdd atomic_propositions_set_,
bool degeneralized,
bool single_pass_emptiness_check,
bool artificial_livelock_state_mode,
bool no_livelock)
{
std::stack<state_ta_explicit*> todo;
const_twa_ptr tgba_ = ta->get_tgba();
// build Initial states set:
auto tgba_init_state = tgba_->get_init_state();
bdd tgba_condition = tgba_->support_conditions(tgba_init_state);
bool is_acc = false;
if (degeneralized)
{
twa_succ_iterator* it = tgba_->succ_iter(tgba_init_state);
it->first();
if (!it->done())
is_acc = it->acc() != 0U;
delete it;
}
bdd satone_tgba_condition;
while ((satone_tgba_condition = bdd_satoneset(tgba_condition,
atomic_propositions_set_,
bddtrue)) != bddfalse)
{
tgba_condition -= satone_tgba_condition;
state_ta_explicit* init_state = new
state_ta_explicit(tgba_init_state->clone(),
satone_tgba_condition, true, is_acc);
state_ta_explicit* s = ta->add_state(init_state);
assert(s == init_state);
ta->add_to_initial_states_set(s);
todo.push(init_state);
}
tgba_init_state->destroy();
while (!todo.empty())
{
state_ta_explicit* source = todo.top();
todo.pop();
twa_succ_iterator* twa_succ_it =
tgba_->succ_iter(source->get_tgba_state());
for (twa_succ_it->first(); !twa_succ_it->done();
twa_succ_it->next())
{
const state* tgba_state = twa_succ_it->dst();
bdd tgba_condition = twa_succ_it->cond();
acc_cond::mark_t tgba_acceptance_conditions =
twa_succ_it->acc();
bdd satone_tgba_condition;
while ((satone_tgba_condition =
bdd_satoneset(tgba_condition,
atomic_propositions_set_, bddtrue))
!= bddfalse)
{
tgba_condition -= satone_tgba_condition;
bdd all_props = bddtrue;
bdd dest_condition;
bool is_acc = false;
if (degeneralized)
{
twa_succ_iterator* it = tgba_->succ_iter(tgba_state);
it->first();
if (!it->done())
is_acc = it->acc() != 0U;
delete it;
}
if (satone_tgba_condition == source->get_tgba_condition())
while ((dest_condition =
bdd_satoneset(all_props,
atomic_propositions_set_, bddtrue))
!= bddfalse)
{
all_props -= dest_condition;
state_ta_explicit* new_dest =
new state_ta_explicit(tgba_state->clone(),
dest_condition, false, is_acc);
state_ta_explicit* dest = ta->add_state(new_dest);
if (dest != new_dest)
{
// the state dest already exists in the automaton
new_dest->get_tgba_state()->destroy();
delete new_dest;
}
else
{
todo.push(dest);
}
bdd cs = bdd_setxor(source->get_tgba_condition(),
dest->get_tgba_condition());
ta->create_transition(source, cs,
tgba_acceptance_conditions, dest);
}
}
tgba_state->destroy();
}
delete twa_succ_it;
}
if (no_livelock)
return ta;
state_ta_explicit* artificial_livelock_acc_state = nullptr;
trace << "*** build_ta: artificial_livelock_acc_state_mode = ***"
<< artificial_livelock_state_mode << std::endl;
if (artificial_livelock_state_mode)
{
single_pass_emptiness_check = true;
artificial_livelock_acc_state =
new state_ta_explicit(ta->get_tgba()->get_init_state(), bddtrue,
false, false, true, nullptr);
trace
<< "*** build_ta: artificial_livelock_acc_state = ***"
<< artificial_livelock_acc_state << std::endl;
}
compute_livelock_acceptance_states(ta, single_pass_emptiness_check,
artificial_livelock_acc_state);
return ta;
}
}
ta_explicit_ptr
tgba_to_ta(const const_twa_ptr& tgba_, bdd atomic_propositions_set_,
bool degeneralized, bool artificial_initial_state_mode,
bool single_pass_emptiness_check,
bool artificial_livelock_state_mode,
bool no_livelock)
{
ta_explicit_ptr ta;
auto tgba_init_state = tgba_->get_init_state();
if (artificial_initial_state_mode)
{
state_ta_explicit* artificial_init_state =
new state_ta_explicit(tgba_init_state->clone(), bddfalse, true);
ta = make_ta_explicit(tgba_, tgba_->acc().num_sets(),
artificial_init_state);
}
else
{
ta = make_ta_explicit(tgba_, tgba_->acc().num_sets());
}
tgba_init_state->destroy();
// build ta automaton
build_ta(ta, atomic_propositions_set_, degeneralized,
single_pass_emptiness_check, artificial_livelock_state_mode,
no_livelock);
// (degeneralized=true) => TA
if (degeneralized)
return ta;
// (degeneralized=false) => GTA
// adapt a GTA to remove acceptance conditions from states
ta::states_set_t states_set = ta->get_states_set();
ta::states_set_t::iterator it;
for (it = states_set.begin(); it != states_set.end(); ++it)
{
state_ta_explicit* state = static_cast<state_ta_explicit*> (*it);
if (state->is_accepting_state())
{
state_ta_explicit::transitions* trans = state->get_transitions();
state_ta_explicit::transitions::iterator it_trans;
for (it_trans = trans->begin(); it_trans != trans->end();
++it_trans)
(*it_trans)->acceptance_conditions = ta->acc().all_sets();
state->set_accepting_state(false);
}
}
return ta;
}
tgta_explicit_ptr
tgba_to_tgta(const const_twa_ptr& tgba_, bdd atomic_propositions_set_)
{
auto tgba_init_state = tgba_->get_init_state();
auto artificial_init_state = new state_ta_explicit(tgba_init_state->clone(),
bddfalse, true);
tgba_init_state->destroy();
auto tgta = make_tgta_explicit(tgba_, tgba_->acc().num_sets(),
artificial_init_state);
// build a Generalized TA automaton involving a single_pass_emptiness_check
// (without an artificial livelock state):
auto ta = tgta->get_ta();
build_ta(ta, atomic_propositions_set_, false, true, false, false);
trace << "***tgba_to_tgbta: POST build_ta***" << std::endl;
// adapt a ta automata to build tgta automata :
ta::states_set_t states_set = ta->get_states_set();
ta::states_set_t::iterator it;
twa_succ_iterator* initial_states_iter =
ta->succ_iter(ta->get_artificial_initial_state());
initial_states_iter->first();
if (initial_states_iter->done())
{
delete initial_states_iter;
return tgta;
}
bdd first_state_condition = initial_states_iter->cond();
delete initial_states_iter;
bdd bdd_stutering_transition = bdd_setxor(first_state_condition,
first_state_condition);
for (it = states_set.begin(); it != states_set.end(); ++it)
{
state_ta_explicit* state = static_cast<state_ta_explicit*> (*it);
state_ta_explicit::transitions* trans = state->get_transitions();
if (state->is_livelock_accepting_state())
{
bool trans_empty = !trans || trans->empty();
if (trans_empty || state->is_accepting_state())
{
ta->create_transition(state, bdd_stutering_transition,
ta->acc().all_sets(), state);
}
}
if (state->compare(ta->get_artificial_initial_state()))
ta->create_transition(state, bdd_stutering_transition,
0U, state);
state->set_livelock_accepting_state(false);
state->set_accepting_state(false);
trace << "***tgba_to_tgbta: POST create_transition ***" << std::endl;
}
return tgta;
}
}

104
spot/taalgos/tgba2ta.hh Normal file
View file

@ -0,0 +1,104 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2010, 2012, 2013, 2014, 2015 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#pragma once
#include <spot/twa/twa.hh>
#include <spot/ta/taexplicit.hh>
#include <spot/ta/tgtaexplicit.hh>
namespace spot
{
/// \ingroup tgba_ta
/// \brief Build a spot::ta_explicit* (TA) from an LTL formula.
///
/// This is based on the following paper.
/** \verbatim
@InProceedings{ geldenhuys.06.spin,
author = {Jaco Geldenhuys and Henri Hansen},
title = {Larger Automata and Less Work for {LTL} Model Checking},
booktitle = {Proceedings of the 13th International SPIN Workshop
(SPIN'06)},
year = {2006},
pages = {53--70},
series = {Lecture Notes in Computer Science},
volume = {3925},
publisher = {Springer}
}
\endverbatim */
///
/// \param tgba_to_convert The TGBA automaton to convert into a TA automaton
///
/// \param atomic_propositions_set The set of atomic propositions used in the
/// input TGBA \a tgba_to_convert
///
/// \param degeneralized When false, the returned automaton is a generalized
/// form of TA, called GTA (Generalized Testing Automaton).
/// Like TGBA, GTA use Generalized Büchi acceptance
/// conditions intead of Buchi-accepting states: there are several acceptance
/// sets (of transitions), and a path is accepted if it traverses
/// at least one transition of each set infinitely often or if it contains a
/// livelock-accepting cycle (like a TA). The spot emptiness check algorithm
/// for TA (spot::ta_check::check) can also be used to check GTA.
///
/// \param artificial_initial_state_mode When set, the algorithm will build
/// a TA automaton with an unique initial state. This
/// artificial initial state have one transition to each real initial state,
/// and this transition is labeled by the corresponding initial condition.
/// (see spot::ta::get_artificial_initial_state())
///
/// \param single_pass_emptiness_check When set, the product between the
/// returned automaton and a kripke structure requires only the fist pass of
/// the emptiness check algorithm (see the parameter \c disable_second_pass
/// of the method spot::ta_check::check)
///
///
/// \param artificial_livelock_state_mode When set, the returned TA automaton
/// is a STA (Single-pass Testing Automata): a STA automaton is a TA
/// where: for every livelock-accepting state s, if s is not also a
/// Buchi-accepting state, then s has no successors. A STA product requires
/// only one-pass emptiness check algorithm (see spot::ta_check::check)
///
/// \param no_livelock when set, this disable the replacement of
/// stuttering components by livelock states. Use this flag to
/// demonstrate an intermediate step of the construction.
///
/// \return A spot::ta_explicit that recognizes the same language as the
/// TGBA \a tgba_to_convert.
SPOT_API ta_explicit_ptr
tgba_to_ta(const const_twa_ptr& tgba_to_convert, bdd atomic_propositions_set,
bool degeneralized = true,
bool artificial_initial_state_mode = true,
bool single_pass_emptiness_check = false,
bool artificial_livelock_state_mode = false,
bool no_livelock = false);
/// \ingroup tgba_ta
/// \brief Build a spot::tgta_explicit* (TGTA) from an LTL formula.
///
/// \param tgba_to_convert The TGBA automaton to convert into a TGTA automaton
/// \param atomic_propositions_set The set of atomic propositions used in the
/// input TGBA \a tgba_to_convert
///
/// \return A spot::tgta_explicit (spot::tgta) that recognizes the same
/// language as the TGBA \a tgba_to_convert.
SPOT_API tgta_explicit_ptr
tgba_to_tgta(const const_twa_ptr& tgba_to_convert,
bdd atomic_propositions_set);
}