rename src/ as spot/ and use include <spot/...>

* NEWS: Mention the change.
* src/: Rename as ...
* spot/: ... this, adjust all headers to include <spot/...> instead of
"...", and adjust all Makefile.am to search headers from the top-level
directory.
* HACKING: Add conventions about #include.
* spot/sanity/style.test: Add a few more grep to catch cases
that do not follow these conventions.
* .gitignore, Makefile.am, README, bench/stutter/Makefile.am,
bench/stutter/stutter_invariance_formulas.cc,
bench/stutter/stutter_invariance_randomgraph.cc, configure.ac,
debian/rules, doc/Doxyfile.in, doc/Makefile.am,
doc/org/.dir-locals.el.in, doc/org/g++wrap.in, doc/org/init.el.in,
doc/org/tut01.org, doc/org/tut02.org, doc/org/tut03.org,
doc/org/tut10.org, doc/org/tut20.org, doc/org/tut21.org,
doc/org/tut22.org, doc/org/tut30.org, iface/ltsmin/Makefile.am,
iface/ltsmin/kripke.test, iface/ltsmin/ltsmin.cc,
iface/ltsmin/ltsmin.hh, iface/ltsmin/modelcheck.cc,
wrap/python/Makefile.am, wrap/python/ajax/spotcgi.in,
wrap/python/spot_impl.i, wrap/python/tests/ltl2tgba.py,
wrap/python/tests/randgen.py, wrap/python/tests/run.in: Adjust.
This commit is contained in:
Alexandre Duret-Lutz 2015-12-04 19:42:23 +01:00
parent 1fddfe60ec
commit f120dd3206
529 changed files with 1308 additions and 1262 deletions

608
spot/twaalgos/magic.cc Normal file
View file

@ -0,0 +1,608 @@
// -*- coding: utf-8 -*-
// Copyright (C) 2011, 2013, 2014, 2015 Laboratoire de recherche et
// développement de l'Epita (LRDE).
// Copyright (C) 2004, 2005 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//#define TRACE
#include <iostream>
#ifdef TRACE
#define trace std::cerr
#else
#define trace while (0) std::cerr
#endif
#include <cassert>
#include <list>
#include <spot/misc/hash.hh>
#include <spot/twa/twa.hh>
#include <spot/twaalgos/emptiness.hh>
#include <spot/twaalgos/emptiness_stats.hh>
#include <spot/twaalgos/magic.hh>
#include <spot/twaalgos/ndfs_result.hxx>
namespace spot
{
namespace
{
enum color {WHITE, BLUE, RED};
/// \brief Emptiness checker on spot::tgba automata having at most one
/// acceptance condition (i.e. a TBA).
template <typename heap>
class magic_search_ : public emptiness_check, public ec_statistics
{
public:
/// \brief Initialize the Magic Search algorithm on the automaton \a a
///
/// \pre The automaton \a a must have at most one acceptance
/// condition (i.e. it is a TBA).
magic_search_(const const_twa_ptr& a, size_t size,
option_map o = option_map())
: emptiness_check(a, o),
h(size)
{
assert(a->num_sets() <= 1);
}
virtual ~magic_search_()
{
// Release all iterators on the stacks.
while (!st_blue.empty())
{
h.pop_notify(st_blue.front().s);
a_->release_iter(st_blue.front().it);
st_blue.pop_front();
}
while (!st_red.empty())
{
h.pop_notify(st_red.front().s);
a_->release_iter(st_red.front().it);
st_red.pop_front();
}
}
/// \brief Perform a Magic Search.
///
/// \return non null pointer iff the algorithm has found a
/// new accepting path.
///
/// check() can be called several times (until it returns a null
/// pointer) to enumerate all the visited accepting paths. The method
/// visits only a finite set of accepting paths.
virtual emptiness_check_result_ptr check()
{
auto t = std::static_pointer_cast<magic_search_>
(this->emptiness_check::shared_from_this());
if (st_red.empty())
{
assert(st_blue.empty());
const state* s0 = a_->get_init_state();
inc_states();
h.add_new_state(s0, BLUE);
push(st_blue, s0, bddfalse, 0U);
if (dfs_blue())
return std::make_shared<magic_search_result>(t, options());
}
else
{
h.pop_notify(st_red.front().s);
pop(st_red);
if (!st_red.empty() && dfs_red())
return std::make_shared<magic_search_result>(t, options());
else
if (dfs_blue())
return std::make_shared<magic_search_result>(t, options());
}
return nullptr;
}
virtual std::ostream& print_stats(std::ostream &os) const
{
os << states() << " distinct nodes visited" << std::endl;
os << transitions() << " transitions explored" << std::endl;
os << max_depth() << " nodes for the maximal stack depth" << std::endl;
if (!st_red.empty())
{
assert(!st_blue.empty());
os << st_blue.size() + st_red.size() - 1
<< " nodes for the counter example" << std::endl;
}
return os;
}
virtual bool safe() const
{
return heap::Safe;
}
const heap& get_heap() const
{
return h;
}
const stack_type& get_st_blue() const
{
return st_blue;
}
const stack_type& get_st_red() const
{
return st_red;
}
private:
void push(stack_type& st, const state* s,
const bdd& label, acc_cond::mark_t acc)
{
inc_depth();
twa_succ_iterator* i = a_->succ_iter(s);
i->first();
st.emplace_front(s, i, label, acc);
}
void pop(stack_type& st)
{
dec_depth();
a_->release_iter(st.front().it);
st.pop_front();
}
/// \brief Stack of the blue dfs.
stack_type st_blue;
/// \brief Stack of the red dfs.
stack_type st_red;
/// \brief Map where each visited state is colored
/// by the last dfs visiting it.
heap h;
/// State targeted by the red dfs.
const state* target;
bool dfs_blue()
{
while (!st_blue.empty())
{
stack_item& f = st_blue.front();
trace << "DFS_BLUE treats: " << a_->format_state(f.s) << std::endl;
if (!f.it->done())
{
const state *s_prime = f.it->dst();
trace << " Visit the successor: "
<< a_->format_state(s_prime) << std::endl;
bdd label = f.it->cond();
auto acc = f.it->acc();
// Go down the edge (f.s, <label, acc>, s_prime)
f.it->next();
inc_transitions();
typename heap::color_ref c = h.get_color_ref(s_prime);
if (c.is_white())
{
trace << " It is white, go down" << std::endl;
inc_states();
h.add_new_state(s_prime, BLUE);
push(st_blue, s_prime, label, acc);
}
else
{
if (a_->acc().accepting(acc) && c.get_color() != RED)
{
// the test 'c.get_color() != RED' is added to limit
// the number of runs reported by successive
// calls to the check method. Without this
// functionnality, the test can be ommited.
trace << " It is blue and the arc is "
<< "accepting, start a red dfs" << std::endl;
target = f.s;
c.set_color(RED);
push(st_red, s_prime, label, acc);
if (dfs_red())
return true;
}
else
{
trace << " It is blue or red, pop it" << std::endl;
h.pop_notify(s_prime);
}
}
}
else
// Backtrack the edge
// (predecessor of f.s in st_blue, <f.label, f.acc>, f.s)
{
trace << " All the successors have been visited" << std::endl;
stack_item f_dest(f);
pop(st_blue);
typename heap::color_ref c = h.get_color_ref(f_dest.s);
assert(!c.is_white());
if (!st_blue.empty() &&
a_->acc().accepting(f_dest.acc) && c.get_color() != RED)
{
// the test 'c.get_color() != RED' is added to limit
// the number of runs reported by successive
// calls to the check method. Without this
// functionnality, the test can be ommited.
trace << " It is blue and the arc from "
<< a_->format_state(st_blue.front().s)
<< " to it is accepting, start a red dfs"
<< std::endl;
target = st_blue.front().s;
c.set_color(RED);
push(st_red, f_dest.s, f_dest.label, f_dest.acc);
if (dfs_red())
return true;
}
else
{
trace << " Pop it" << std::endl;
h.pop_notify(f_dest.s);
}
}
}
return false;
}
bool dfs_red()
{
assert(!st_red.empty());
if (target->compare(st_red.front().s) == 0)
return true;
while (!st_red.empty())
{
stack_item& f = st_red.front();
trace << "DFS_RED treats: " << a_->format_state(f.s) << std::endl;
if (!f.it->done())
{
const state *s_prime = f.it->dst();
trace << " Visit the successor: "
<< a_->format_state(s_prime) << std::endl;
bdd label = f.it->cond();
auto acc = f.it->acc();
// Go down the edge (f.s, <label, acc>, s_prime)
f.it->next();
inc_transitions();
typename heap::color_ref c = h.get_color_ref(s_prime);
if (c.is_white())
{
// If the red dfs find a white here, it must have crossed
// the blue stack and the target must be reached soon.
// Notice that this property holds only for explicit search.
// Collisions in bit-state hashing search can also lead
// to the visit of white state. Anyway, it is not necessary
// to visit white states either if a cycle can be missed
// with bit-state hashing search.
trace << " It is white, pop it" << std::endl;
s_prime->destroy();
}
else if (c.get_color() == BLUE)
{
trace << " It is blue, go down" << std::endl;
c.set_color(RED);
push(st_red, s_prime, label, acc);
if (target->compare(s_prime) == 0)
return true;
}
else
{
trace << " It is red, pop it" << std::endl;
h.pop_notify(s_prime);
}
}
else // Backtrack
{
trace << " All the successors have been visited, pop it"
<< std::endl;
h.pop_notify(f.s);
pop(st_red);
}
}
return false;
}
class result_from_stack: public emptiness_check_result,
public acss_statistics
{
public:
result_from_stack(std::shared_ptr<magic_search_> ms)
: emptiness_check_result(ms->automaton()), ms_(ms)
{
}
virtual twa_run_ptr accepting_run()
{
assert(!ms_->st_blue.empty());
assert(!ms_->st_red.empty());
auto run = std::make_shared<twa_run>(automaton());
typename stack_type::const_reverse_iterator i, j, end;
twa_run::steps* l;
l = &run->prefix;
i = ms_->st_blue.rbegin();
end = ms_->st_blue.rend(); --end;
j = i; ++j;
for (; i != end; ++i, ++j)
{
twa_run::step s = { i->s->clone(), j->label, j->acc };
l->push_back(s);
}
l = &run->cycle;
j = ms_->st_red.rbegin();
twa_run::step s = { i->s->clone(), j->label, j->acc };
l->push_back(s);
i = j; ++j;
end = ms_->st_red.rend(); --end;
for (; i != end; ++i, ++j)
{
twa_run::step s = { i->s->clone(), j->label, j->acc };
l->push_back(s);
}
return run;
}
unsigned acss_states() const
{
return 0;
}
private:
std::shared_ptr<magic_search_> ms_;
};
# define FROM_STACK "ar:from_stack"
class magic_search_result: public emptiness_check_result
{
public:
magic_search_result(const std::shared_ptr<magic_search_>& m,
option_map o = option_map())
: emptiness_check_result(m->automaton(), o), ms(m)
{
if (options()[FROM_STACK])
computer = new result_from_stack(ms);
else
computer = new ndfs_result<magic_search_<heap>, heap>(ms);
}
virtual void options_updated(const option_map& old)
{
if (old[FROM_STACK] && !options()[FROM_STACK])
{
delete computer;
computer = new ndfs_result<magic_search_<heap>, heap>(ms);
}
else if (!old[FROM_STACK] && options()[FROM_STACK])
{
delete computer;
computer = new result_from_stack(ms);
}
}
virtual ~magic_search_result()
{
delete computer;
}
virtual twa_run_ptr accepting_run()
{
return computer->accepting_run();
}
virtual const unsigned_statistics* statistics() const
{
return computer->statistics();
}
private:
emptiness_check_result* computer;
std::shared_ptr<magic_search_> ms;
};
};
class explicit_magic_search_heap
{
public:
enum { Safe = 1 };
class color_ref
{
public:
color_ref(color* c) :p(c)
{
}
color get_color() const
{
return *p;
}
void set_color(color c)
{
assert(!is_white());
*p=c;
}
bool is_white() const
{
return !p;
}
private:
color *p;
};
explicit_magic_search_heap(size_t)
{
}
~explicit_magic_search_heap()
{
hash_type::const_iterator s = h.begin();
while (s != h.end())
{
// Advance the iterator before deleting the "key" pointer.
const state* ptr = s->first;
++s;
ptr->destroy();
}
}
color_ref get_color_ref(const state*& s)
{
hash_type::iterator it = h.find(s);
if (it == h.end())
return color_ref(nullptr);
if (s != it->first)
{
s->destroy();
s = it->first;
}
return color_ref(&it->second);
}
void add_new_state(const state* s, color c)
{
assert(h.find(s) == h.end());
h.emplace(s, c);
}
void pop_notify(const state*) const
{
}
bool has_been_visited(const state* s) const
{
hash_type::const_iterator it = h.find(s);
return (it != h.end());
}
enum { Has_Size = 1 };
int size() const
{
return h.size();
}
private:
typedef std::unordered_map<const state*, color,
state_ptr_hash, state_ptr_equal> hash_type;
hash_type h;
};
class bsh_magic_search_heap
{
public:
enum { Safe = 0 };
class color_ref
{
public:
color_ref(unsigned char *b, unsigned char o): base(b), offset(o*2)
{
}
color get_color() const
{
return color(((*base) >> offset) & 3U);
}
void set_color(color c)
{
*base = (*base & ~(3U << offset)) | (c << offset);
}
bool is_white() const
{
return get_color() == WHITE;
}
private:
unsigned char *base;
unsigned char offset;
};
bsh_magic_search_heap(size_t s)
{
size_ = s;
h = new unsigned char[size_];
memset(h, WHITE, size_);
}
~bsh_magic_search_heap()
{
delete[] h;
}
color_ref get_color_ref(const state*& s)
{
size_t ha = s->hash();
return color_ref(&(h[ha%size_]), ha%4);
}
void add_new_state(const state* s, color c)
{
color_ref cr(get_color_ref(s));
assert(cr.is_white());
cr.set_color(c);
}
void pop_notify(const state* s) const
{
s->destroy();
}
bool has_been_visited(const state* s) const
{
size_t ha = s->hash();
return color((h[ha%size_] >> ((ha%4)*2)) & 3U) != WHITE;
}
enum { Has_Size = 0 };
private:
size_t size_;
unsigned char* h;
};
} // anonymous
emptiness_check_ptr
explicit_magic_search(const const_twa_ptr& a, option_map o)
{
return std::make_shared<magic_search_<explicit_magic_search_heap>>(a, 0, o);
}
emptiness_check_ptr
bit_state_hashing_magic_search(const const_twa_ptr& a,
size_t size, option_map o)
{
return std::make_shared<magic_search_<bsh_magic_search_heap>>(a, size, o);
}
emptiness_check_ptr
magic_search(const const_twa_ptr& a, option_map o)
{
size_t size = o.get("bsh");
if (size)
return bit_state_hashing_magic_search(a, size, o);
return explicit_magic_search(a, o);
}
}