introduce realizability_simplifier to share more of ltlsynt's code

* spot/tl/apcollect.hh,
spot/tl/apcollect.cc (realizability_simplifier): New class, built from
code existing in ltlsynt, so that other tools may use this too.
* bin/ltlsynt.cc: Use realizability_simplifier.
* spot/twaalgos/aiger.cc, spot/twaalgos/aiger.hh: Adjust to use
realizability_simplifier instead of relabeling_map.
* NEWS: Mention the new class.
This commit is contained in:
Alexandre Duret-Lutz 2023-10-09 17:53:12 +02:00
parent 9e40a32fd1
commit f2d034130a
6 changed files with 386 additions and 330 deletions

4
NEWS
View file

@ -100,6 +100,10 @@ New in spot 2.11.6.dev (not yet released)
- spot::scc_info has a new option PROCESS_UNREACHABLE_STATES that
causes it to enumerated even unreachable SCCs.
- spot::realizability_simplifier is a new class that performs the
removal of superfluous APs that is now performed by ltlsynt
(search for --polarity and --global-equivalence above).
Bugs fixed:
- tgba_determinize()'s use_simulation option would cause it to

View file

@ -286,47 +286,15 @@ namespace
static void
dispatch_print_hoa(spot::twa_graph_ptr& game,
const std::vector<std::string>* input_aps = nullptr,
const spot::relabeling_map* rm = nullptr)
const spot::realizability_simplifier* rs = nullptr)
{
// Add any AP we removed. This is a game, so player moves are
// separated. Consequently at this point we cannot deal with
// removed signals such as "o1 <-> i2": if the game has to be
// printed, we can only optimize for signals such as o1 <-> o2.
if (rm && !rm->empty())
{
assert(input_aps);
auto& sp = spot::get_state_players(game);
if (rs)
rs->patch_game(game);
bdd add = bddtrue;
for (auto [k, v]: *rm)
{
int i = game->register_ap(k);
// skip inputs
if (std::find(input_aps->begin(), input_aps->end(),
k.ap_name()) != input_aps->end())
continue;
if (v.is_tt())
add &= bdd_ithvar(i);
else if (v.is_ff())
add &= bdd_nithvar(i);
else
{
bdd bv;
if (v.is(spot::op::ap))
bv = bdd_ithvar(game->register_ap(v.ap_name()));
else // Not Ap
bv = bdd_nithvar(game->register_ap(v[0].ap_name()));
add &= bdd_biimp(bdd_ithvar(i), bv);
}
}
for (auto& e: game->edges())
if (sp[e.src])
e.cond &= add;
set_synthesis_outputs(game,
get_synthesis_outputs(game)
& bdd_support(add));
}
if (opt_dot)
spot::print_dot(std::cout, game, opt_print_hoa_args);
else if (opt_print_pg)
@ -429,168 +397,26 @@ namespace
gi->bv->total_time = sw.stop();
};
// Check if some output propositions are always in positive form,
// or always in negative form.
// In syntcomp, this occurs more frequently for input variables than
// output variable. See issue #529 for some examples.
spot::relabeling_map rm;
bool first_dap = true;
auto display_ap = [&rm, &first_dap](spot::formula p)
{
if (SPOT_LIKELY(!gi->verbose_stream))
return;
if (first_dap)
{
*gi->verbose_stream
<< "the following signals can be temporarily removed:\n";
first_dap = false;
}
*gi->verbose_stream << " " << p << " := " << rm[p] <<'\n';
};
spot::formula oldf;
// Attempt to remove superfluous atomic propositions
spot::realizability_simplifier* rs = nullptr;
if (opt_polarity || opt_gequiv)
{
robin_hood::unordered_set<spot::formula> ap_inputs;
for (const std::string& ap: input_aps)
ap_inputs.insert(spot::formula::ap(ap));
do
unsigned opt = 0;
if (opt_polarity)
opt |= spot::realizability_simplifier::polarity;
if (opt_gequiv)
{
bool rm_has_new_terms = false;
oldf = f;
if (opt_polarity)
{
std::set<spot::formula> lits = spot::collect_literals(f);
for (const std::string& ap: output_aps)
{
spot::formula pos = spot::formula::ap(ap);
spot::formula neg = spot::formula::Not(pos);
bool has_pos = lits.find(pos) != lits.end();
bool has_neg = lits.find(neg) != lits.end();
if (has_pos ^ has_neg)
{
rm[pos] =
has_pos ? spot::formula::tt() : spot::formula::ff();
rm_has_new_terms = true;
display_ap(pos);
}
}
for (const std::string& ap: input_aps)
{
spot::formula pos = spot::formula::ap(ap);
spot::formula neg = spot::formula::Not(pos);
bool has_pos = lits.find(pos) != lits.end();
bool has_neg = lits.find(neg) != lits.end();
if (has_pos ^ has_neg)
{
rm[pos] =
has_neg ? spot::formula::tt() : spot::formula::ff();
rm_has_new_terms = true;
display_ap(pos);
}
}
if (rm_has_new_terms)
{
f = spot::relabel_apply(f, &rm);
if (gi->verbose_stream)
*gi->verbose_stream << "new formula: " << f << '\n';
rm_has_new_terms = false;
}
}
if (opt_gequiv)
{
// check for equivalent terms
spot::formula_ptr_less_than_bool_first cmp;
for (std::vector<spot::formula>& equiv:
spot::collect_equivalent_literals(f))
{
// For each set of equivalent literals, we want to
// pick a representative. That representative
// should be an input if one of the literal is an
// input. (If we have two inputs or more, the
// formula is not realizable.)
spot::formula repr = nullptr;
bool repr_is_input = false;
spot::formula input_seen = nullptr;
for (spot::formula lit: equiv)
{
spot::formula ap = lit;
if (ap.is(spot::op::Not))
ap = ap[0];
if (ap_inputs.find(ap) != ap_inputs.end())
{
if (input_seen)
{
// ouch! we have two equivalent inputs.
// This means the formula is simply
// unrealizable. Make it false for the
// rest of the algorithm.
f = spot::formula::ff();
goto done;
}
input_seen = lit;
// Normally, we want the input to be the
// representative. However as a special
// case, we ignore the input literal from
// the set if we are asked to print a
// game. Fixing the game to add a i<->o
// equivalence would require more code
// than I care to write.
//
// So if the set was {i,o1,o2}, instead
// of the desirable
// o1 := i
// o2 := i
// we only do
// o2 := o1
// when printing games.
if (!want_game())
{
repr_is_input = true;
repr = lit;
}
}
else if (!repr_is_input && (!repr || cmp(ap, repr)))
repr = lit;
}
// now map equivalent each atomic proposition to the
// representative
spot::formula not_repr = spot::formula::Not(repr);
for (spot::formula lit: equiv)
{
// input or representative are not removed
// (we have repr != input_seen either when input_seen
// is nullptr, or if want_game is true)
if (lit == repr || lit == input_seen)
continue;
if (lit.is(spot::op::Not))
{
spot::formula ap = lit[0];
rm[ap] = not_repr;
display_ap(ap);
}
else
{
rm[lit] = repr;
display_ap(lit);
}
rm_has_new_terms = true;
}
}
if (rm_has_new_terms)
{
f = spot::relabel_apply(f, &rm);
if (gi->verbose_stream)
*gi->verbose_stream << "new formula: " << f << '\n';
rm_has_new_terms = false;
}
}
if (want_game())
opt |= spot::realizability_simplifier::global_equiv_output_only;
else
opt |= spot::realizability_simplifier::global_equiv;
}
while (oldf != f);
done:
/* can't have a label followed by closing brace */;
rs =
new spot::realizability_simplifier(original_f,
input_aps,
opt,
gi ? gi->verbose_stream : nullptr);
f = rs->simplified_formula();
}
std::vector<spot::formula> sub_form;
@ -617,11 +443,18 @@ namespace
{
sub_form = { f };
sub_outs.resize(1);
for (const std::string& apstr: output_aps)
if (rs)
{
spot::formula ap = spot::formula::ap(apstr);
if (rm.find(ap) == rm.end())
sub_outs[0].insert(ap);
robin_hood::unordered_set<spot::formula> removed_outputs;
for (auto [from, from_is_input, to] : rs->get_mapping())
if (!from_is_input)
removed_outputs.insert(from);
for (const std::string& apstr: output_aps)
{
spot::formula ap = spot::formula::ap(apstr);
if (removed_outputs.find(ap) == removed_outputs.end())
sub_outs[0].insert(ap);
}
}
}
std::vector<std::vector<std::string>> sub_outs_str;
@ -683,7 +516,7 @@ namespace
}
if (want_game())
{
dispatch_print_hoa(arena, &input_aps, &rm);
dispatch_print_hoa(arena, rs);
continue;
}
if (!spot::solve_game(arena, *gi))
@ -772,7 +605,7 @@ namespace
sw2.start();
saig = spot::mealy_machines_to_aig(mealy_machines, opt_print_aiger,
input_aps,
sub_outs_str, &rm);
sub_outs_str, rs);
if (gi->bv)
{
gi->bv->aig_time = sw2.stop();
@ -804,52 +637,8 @@ namespace
for (size_t i = 1; i < mealy_machines.size(); ++i)
tot_strat = spot::mealy_product(tot_strat,
mealy_machines[i].mealy_like);
if (!rm.empty()) // Add any AP we removed
{
bdd add = bddtrue;
bdd additional_outputs = bddtrue;
for (auto [k, v]: rm)
{
int i = tot_strat->register_ap(k);
// skip inputs (they are don't care)
if (std::find(input_aps.begin(), input_aps.end(), k.ap_name())
!= input_aps.end())
continue;
if (v.is_tt())
{
bdd bv = bdd_ithvar(i);
additional_outputs &= bv;
add &= bv;
}
else if (v.is_ff())
{
additional_outputs &= bdd_ithvar(i);
add &= bdd_nithvar(i);
}
else
{
bdd left = bdd_ithvar(i); // this is necessarily an output
additional_outputs &= left;
bool pos = v.is(spot::op::ap);
const std::string apname =
pos ? v.ap_name() : v[0].ap_name();
bdd right = bdd_ithvar(tot_strat->register_ap(apname));
// right might be an input
if (std::find(input_aps.begin(), input_aps.end(), apname)
== input_aps.end())
additional_outputs &= right;
if (pos)
add &= bdd_biimp(left, right);
else
add &= bdd_xor(left, right);
}
}
for (auto& e: tot_strat->edges())
e.cond &= add;
set_synthesis_outputs(tot_strat,
get_synthesis_outputs(tot_strat)
& additional_outputs);
}
if (rs) // Add any AP we removed
rs->patch_mealy(tot_strat);
printer.print(tot_strat, timer_printer_dummy);
}

View file

@ -28,6 +28,9 @@
#include <spot/twa/bdddict.hh>
#include <spot/twaalgos/hoa.hh>
#include <spot/twaalgos/sccinfo.hh>
#include <spot/twaalgos/synthesis.hh>
#include <spot/tl/relabel.hh>
#include <spot/priv/robin_hood.hh>
namespace spot
{
@ -281,4 +284,232 @@ namespace spot
return scc;
}
realizability_simplifier::realizability_simplifier
(formula f, const std::vector<std::string>& inputs,
unsigned options, std::ostream* verbose)
{
bool first_mapping = true;
relabeling_map rm;
auto add_to_mapping = [&](formula from, bool from_is_input, formula to)
{
mapping_.emplace_back(from, from_is_input, to);
rm[from] = to;
if (SPOT_LIKELY(!verbose))
return;
if (first_mapping)
{
*verbose << "the following signals can be temporarily removed:\n";
first_mapping = false;
}
*verbose << " " << from << " := " << to <<'\n';
};
global_equiv_output_only_ =
(options & global_equiv_output_only) == global_equiv_output_only;
robin_hood::unordered_set<spot::formula> ap_inputs;
for (const std::string& ap: inputs)
ap_inputs.insert(spot::formula::ap(ap));
formula oldf;
f_ = f;
do
{
bool rm_has_new_terms = false;
oldf = f_;
if (options & polarity)
{
// Check if some output propositions are always in
// positive form, or always in negative form. In
// syntcomp, this occurs more frequently for input
// variables than output variable. See issue #529 for
// some examples.
std::set<spot::formula> lits = spot::collect_literals(f_);
for (const formula& lit: lits)
if (lits.find(spot::formula::Not(lit)) == lits.end())
{
formula ap = lit;
bool neg = false;
if (lit.is(op::Not))
{
ap = lit[0];
neg = true;
}
bool is_input = ap_inputs.find(ap) != ap_inputs.end();
formula to = (is_input == neg)
? spot::formula::tt() : spot::formula::ff();
add_to_mapping(ap, is_input, to);
rm_has_new_terms = true;
}
if (rm_has_new_terms)
{
f_ = spot::relabel_apply(f_, &rm);
if (verbose)
*verbose << "new formula: " << f_ << '\n';
rm_has_new_terms = false;
}
}
if (options & global_equiv)
{
// check for equivalent terms
spot::formula_ptr_less_than_bool_first cmp;
for (std::vector<spot::formula>& equiv:
spot::collect_equivalent_literals(f_))
{
// For each set of equivalent literals, we want to
// pick a representative. That representative
// should be an input if one of the literal is an
// input. (If we have two inputs or more, the
// formula is not realizable.)
spot::formula repr = nullptr;
bool repr_is_input = false;
spot::formula input_seen = nullptr;
for (spot::formula lit: equiv)
{
spot::formula ap = lit;
if (ap.is(spot::op::Not))
ap = ap[0];
if (ap_inputs.find(ap) != ap_inputs.end())
{
if (input_seen)
{
// ouch! we have two equivalent inputs.
// This means the formula is simply
// unrealizable. Make it false for the
// rest of the algorithm.
f = spot::formula::ff();
return;
}
input_seen = lit;
// Normally, we want the input to be the
// representative. However as a special
// case, we ignore the input literal from
// the set if we are asked to print a
// game. Fixing the game to add a i<->o
// equivalence would require more code
// than I care to write.
//
// So if the set was {i,o1,o2}, instead
// of the desirable
// o1 := i
// o2 := i
// we only do
// o2 := o1
// when printing games.
if (!global_equiv_output_only_)
{
repr_is_input = true;
repr = lit;
}
}
else if (!repr_is_input && (!repr || cmp(ap, repr)))
repr = lit;
}
// now map equivalent each atomic proposition to the
// representative
spot::formula not_repr = spot::formula::Not(repr);
for (spot::formula lit: equiv)
{
// input or representative are not removed
// (we have repr != input_seen either when input_seen
// is nullptr, or if want_game is true)
if (lit == repr || lit == input_seen)
continue;
SPOT_ASSUME(lit != nullptr);
if (lit.is(spot::op::Not))
add_to_mapping(lit[0], repr_is_input, not_repr);
else
add_to_mapping(lit, repr_is_input, repr);
rm_has_new_terms = true;
}
}
if (rm_has_new_terms)
{
f_ = spot::relabel_apply(f_, &rm);
if (verbose)
*verbose << "new formula: " << f_ << '\n';
rm_has_new_terms = false;
}
}
}
while (oldf != f_);
}
void realizability_simplifier::patch_mealy(twa_graph_ptr mealy) const
{
bdd add = bddtrue;
bdd additional_outputs = bddtrue;
for (auto [k, k_is_input, v]: mapping_)
{
int i = mealy->register_ap(k);
// skip inputs (they are don't care)
if (k_is_input)
continue;
if (v.is_tt())
{
bdd bv = bdd_ithvar(i);
additional_outputs &= bv;
add &= bv;
}
else if (v.is_ff())
{
additional_outputs &= bdd_ithvar(i);
add &= bdd_nithvar(i);
}
else
{
bdd left = bdd_ithvar(i); // this is necessarily an output
additional_outputs &= left;
bool pos = v.is(spot::op::ap);
const std::string apname =
pos ? v.ap_name() : v[0].ap_name();
bdd right = bdd_ithvar(mealy->register_ap(apname));
if (pos)
add &= bdd_biimp(left, right);
else
add &= bdd_xor(left, right);
}
}
for (auto& e: mealy->edges())
e.cond &= add;
set_synthesis_outputs(mealy,
get_synthesis_outputs(mealy)
& additional_outputs);
}
void realizability_simplifier::patch_game(twa_graph_ptr game) const
{
if (SPOT_UNLIKELY(!global_equiv_output_only_))
throw std::runtime_error("realizability_simplifier::path_game() requires "
"option global_equiv_output_only");
auto& sp = spot::get_state_players(game);
bdd add = bddtrue;
for (auto [k, k_is_input, v]: mapping_)
{
int i = game->register_ap(k);
if (k_is_input)
continue;
if (v.is_tt())
add &= bdd_ithvar(i);
else if (v.is_ff())
add &= bdd_nithvar(i);
else
{
bdd bv;
if (v.is(spot::op::ap))
bv = bdd_ithvar(game->register_ap(v.ap_name()));
else // Not Ap
bv = bdd_nithvar(game->register_ap(v[0].ap_name()));
add &= bdd_biimp(bdd_ithvar(i), bv);
}
}
for (auto& e: game->edges())
if (sp[e.src])
e.cond &= add;
set_synthesis_outputs(game,
get_synthesis_outputs(game)
& bdd_support(add));
}
}

View file

@ -78,5 +78,51 @@ namespace spot
SPOT_API
std::vector<std::vector<spot::formula>>
collect_equivalent_literals(formula f);
/// \brief Simplify a reactive specification, preserving realizability
class SPOT_API realizability_simplifier final
{
public:
enum realizability_simplifier_option {
/// \brief remove APs with single polarity
polarity = 0b1,
/// \brief remove equivalent APs
global_equiv = 0b10,
/// \brief likewise, but don't consider equivalent input and output
global_equiv_output_only = 0b110,
};
realizability_simplifier(formula f,
const std::vector<std::string>& inputs,
unsigned options = polarity | global_equiv,
std::ostream* verbose = nullptr);
/// \brief Return the simplified formula.
formula simplified_formula() const
{
return f_;
}
/// \brief Returns a vector of (from,from_is_input,to)
const std::vector<std::tuple<formula, bool, formula>>& get_mapping() const
{
return mapping_;
}
/// \brief Patch a Mealy machine to add the missing APs.
void patch_mealy(twa_graph_ptr mealy) const;
/// \brief Patch a game to add the missing APs.
void patch_game(twa_graph_ptr mealy) const;
private:
void add_to_mapping(formula from, bool from_is_input, formula to);
std::vector<std::tuple<formula, bool, formula>> mapping_;
formula f_;
bool global_equiv_output_only_;
};
/// @}
}

View file

@ -1545,7 +1545,7 @@ namespace
const char* mode,
const std::vector<std::string>& unused_ins = {},
const std::vector<std::string>& unused_outs = {},
const relabeling_map* rm = nullptr)
const realizability_simplifier* rs = nullptr)
{
// The aiger circuit can currently noly encode separated mealy machines
@ -1620,19 +1620,19 @@ namespace
unused_outs.cbegin(),
unused_outs.cend());
if (rm)
if (rs)
// If we have removed some APs from the original formula, they
// might have dropped out of the output_names list (depending on
// how we split the formula), but they should not have dropped
// from the input_names list. So let's fix the output_names
// lists by adding anything that's not an input and not already
// there.
for (auto [k, v]: *rm)
for (auto [k, k_is_input, v]: rs->get_mapping())
{
if (k_is_input)
continue;
const std::string s = k.ap_name();
if (std::find(input_names_all.begin(), input_names_all.end(), s)
== input_names_all.end()
&& std::find(output_names_all.begin(), output_names_all.end(), s)
if (std::find(output_names_all.begin(), output_names_all.end(), s)
== output_names_all.end())
output_names_all.push_back(s);
}
@ -1985,93 +1985,79 @@ namespace
// Reset them
for (unsigned i = 0; i < n_outs; ++i)
circuit.set_output(i, bdd2var_min(out[i], out_dc[i]));
// Add the unused propositions
//
// RM contains assignments like
// Set unused signal to false by default
const unsigned n_outs_all = output_names_all.size();
for (unsigned i = n_outs; i < n_outs_all; ++i)
circuit.set_output(i, circuit.aig_false());
// RS may contains assignments for unused signals, such as
// out1 := 1
// out2 := 0
// out3 := in1
// out4 := !out3
// but it is possible that the rhs could refer to a variable
// that is not yet defined because of the ordering. For
// this reason, the first pass will store signals it could not
// complete in the POSTPONE vector.
//
// In that vector, (u,v,b) means that output u should be mapped to
// the same formula as output v, possibly negated (if b).
std::vector<std::tuple<int, int, bool>> postpone;
// But because the formula is simplified in a loop (forcing
// some of those values in the formula reveal more values to
// be forced), it is possible that the rhs refers to a variable
// that is forced later in the mapping. Therefore the mapping
// should be applied in reverse order.
if (rs)
{
auto mapping = rs->get_mapping();
for (auto it = mapping.rbegin(); it != mapping.rend(); ++it)
{
auto [from, from_is_input, to] = *it;
if (from_is_input)
continue;
const unsigned n_outs_all = output_names_all.size();
for (unsigned i = n_outs; i < n_outs_all; ++i)
if (rm)
{
if (auto to = rm->find(formula::ap(output_names_all[i]));
to != rm->end())
{
if (to->second.is_tt())
{
circuit.set_output(i, circuit.aig_true());
continue;
}
else if (to->second.is_ff())
{
circuit.set_output(i, circuit.aig_false());
continue;
}
else
{
formula repr = to->second;
bool neg_repr = false;
auto j = std::find(output_names_all.begin(),
output_names_all.end(),
from.ap_name());
assert(j != output_names_all.end());
int i = j - output_names_all.begin();
if (to.is_tt())
{
circuit.set_output(i, circuit.aig_true());
continue;
}
else if (to.is_ff())
{
circuit.set_output(i, circuit.aig_false());
continue;
}
else
{
formula repr = to;
bool neg_repr = false;
if (repr.is(op::Not))
{
neg_repr = true;
repr = repr[0];
}
// is repr an input?
if (auto it = std::find(input_names_all.begin(),
if (auto it2 = std::find(input_names_all.begin(),
input_names_all.end(),
repr.ap_name());
it != input_names_all.end())
it2 != input_names_all.end())
{
unsigned ivar =
circuit.input_var(it - input_names_all.begin(),
circuit.input_var(it2 - input_names_all.begin(),
neg_repr);
circuit.set_output(i, ivar);
}
// is repr an output?
else if (auto it = std::find(output_names_all.begin(),
output_names_all.end(),
repr.ap_name());
it != output_names_all.end())
else
{
unsigned outnum = it - output_names_all.begin();
assert(std::find(output_names_all.begin(),
output_names_all.end(),
repr.ap_name()) ==
output_names_all.end());
unsigned outnum = it2 - output_names_all.begin();
unsigned outvar = circuit.output(outnum);
if (outvar == -1u)
postpone.emplace_back(i, outnum, neg_repr);
else
circuit.set_output(i, outvar + neg_repr);
circuit.set_output(i, outvar + neg_repr);
}
}
}
}
else
circuit.set_output(i, circuit.aig_false());
unsigned postponed = postpone.size();
while (postponed)
{
unsigned postponed_again = 0;
for (auto [u, v, b]: postpone)
{
unsigned outvar = circuit.output(v);
if (outvar == -1u)
++postponed_again;
else
circuit.set_output(u, outvar + b);
}
}
if (postponed_again >= postponed)
throw std::runtime_error("aiger encoding bug: "
"postponed output shunts not decreasing");
postponed = postponed_again;
}
for (unsigned i = 0; i < n_latches; ++i)
circuit.set_next_latch(i, bdd2var_min(latch[i], bddfalse));
@ -2106,7 +2092,7 @@ namespace spot
mealy_machine_to_aig(const twa_graph_ptr &m, const char *mode,
const std::vector<std::string>& ins,
const std::vector<std::string>& outs,
const relabeling_map* rm)
const realizability_simplifier* rs)
{
if (!m)
throw std::runtime_error("mealy_machine_to_aig(): "
@ -2139,20 +2125,20 @@ namespace spot
}
// todo Some additional checks?
return auts_to_aiger({{m, get_synthesis_outputs(m)}}, mode,
unused_ins, unused_outs, rm);
unused_ins, unused_outs, rs);
}
aig_ptr
mealy_machine_to_aig(mealy_like& m, const char *mode,
const std::vector<std::string>& ins,
const std::vector<std::string>& outs,
const relabeling_map* rm)
const realizability_simplifier* rs)
{
if (m.success != mealy_like::realizability_code::REALIZABLE_REGULAR)
throw std::runtime_error("mealy_machine_to_aig(): "
"Can only handle regular mealy machine, yet.");
return mealy_machine_to_aig(m.mealy_like, mode, ins, outs, rm);
return mealy_machine_to_aig(m.mealy_like, mode, ins, outs, rs);
}
aig_ptr
@ -2212,7 +2198,7 @@ namespace spot
const char *mode,
const std::vector<std::string>& ins,
const std::vector<std::vector<std::string>>& outs,
const relabeling_map* rm)
const realizability_simplifier* rs)
{
if (m_vec.empty())
throw std::runtime_error("mealy_machines_to_aig(): No strategy given.");
@ -2269,7 +2255,7 @@ namespace spot
if (!used_aps.count(ai))
unused_ins.push_back(ai);
return auts_to_aiger(new_vec, mode, unused_ins, unused_outs, rm);
return auts_to_aiger(new_vec, mode, unused_ins, unused_outs, rs);
}
aig_ptr
@ -2277,7 +2263,7 @@ namespace spot
const char* mode,
const std::vector<std::string>& ins,
const std::vector<std::vector<std::string>>& outs,
const relabeling_map* rm)
const realizability_simplifier* rs)
{
// todo extend to TGBA and possibly others
const unsigned ns = strat_vec.size();
@ -2311,7 +2297,7 @@ namespace spot
"success identifier.");
}
}
return mealy_machines_to_aig(m_machines, mode, ins, outs_used, rm);
return mealy_machines_to_aig(m_machines, mode, ins, outs_used, rs);
}
std::ostream &

View file

@ -25,7 +25,7 @@
#include <spot/twa/fwd.hh>
#include <spot/twa/bdddict.hh>
#include <spot/tl/formula.hh>
#include <spot/tl/relabel.hh>
#include <spot/tl/apcollect.hh>
#include <unordered_map>
#include <vector>
@ -447,7 +447,7 @@ namespace spot
/// synthesis-output is ignored and all properties in \a ins and \a
/// outs are guaranteed to appear in the aiger circuit.
///
/// If \a rm is given and is not empty, it can be used to specify how
/// If \a rs is given and is not empty, it can be used to specify how
/// unused output should be encoded by mapping them to some constant.
///@{
SPOT_API aig_ptr
@ -456,7 +456,7 @@ namespace spot
mealy_machine_to_aig(const twa_graph_ptr& m, const char *mode,
const std::vector<std::string>& ins,
const std::vector<std::string>& outs,
const relabeling_map* rm = nullptr);
const realizability_simplifier* rs = nullptr);
SPOT_API aig_ptr
mealy_machine_to_aig(const mealy_like& m, const char* mode);
@ -464,7 +464,7 @@ namespace spot
mealy_machine_to_aig(mealy_like& m, const char *mode,
const std::vector<std::string>& ins,
const std::vector<std::string>& outs,
const relabeling_map* rm = nullptr);
const realizability_simplifier* rs = nullptr);
///@}
/// \ingroup synthesis
@ -481,7 +481,7 @@ namespace spot
/// If \a ins and \a outs are used, all properties they list are
/// guaranteed to appear in the aiger circuit.
///
/// If \a rm is given and is not empty, it can be used to specify how
/// If \a rs is given and is not empty, it can be used to specify how
/// unused output should be encoded by mapping them to some constant.
/// @{
SPOT_API aig_ptr
@ -495,13 +495,13 @@ namespace spot
const char* mode,
const std::vector<std::string>& ins,
const std::vector<std::vector<std::string>>& outs,
const relabeling_map* rm = nullptr);
const realizability_simplifier* rs = nullptr);
SPOT_API aig_ptr
mealy_machines_to_aig(const std::vector<mealy_like>& m_vec,
const char* mode,
const std::vector<std::string>& ins,
const std::vector<std::vector<std::string>>& outs,
const relabeling_map* rm = nullptr);
const realizability_simplifier* rs = nullptr);
/// @}
/// \ingroup twa_io