sanity: Replace tabulars by spaces in *.cc *.hh *.hxx

* bin/autfilt.cc, bin/common_aoutput.cc, bin/common_aoutput.hh,
bin/common_finput.cc, bin/common_finput.hh, bin/common_hoaread.cc,
bin/common_output.cc, bin/common_output.hh, bin/common_post.cc,
bin/common_post.hh, bin/common_r.hh, bin/common_range.cc,
bin/common_range.hh, bin/common_setup.cc, bin/common_trans.cc,
bin/common_trans.hh, bin/dstar2tgba.cc, bin/genltl.cc,
bin/ltl2tgba.cc, bin/ltl2tgta.cc, bin/ltlcross.cc, bin/ltldo.cc,
bin/ltlfilt.cc, bin/ltlgrind.cc, bin/randaut.cc, bin/randltl.cc,
bin/spot-x.cc, spot/graph/graph.hh, spot/graph/ngraph.hh,
spot/kripke/kripkegraph.hh, spot/ltsmin/ltsmin.cc,
spot/ltsmin/ltsmin.hh, spot/misc/bareword.cc, spot/misc/bitvect.cc,
spot/misc/bitvect.hh, spot/misc/common.hh, spot/misc/escape.cc,
spot/misc/fixpool.hh, spot/misc/formater.cc, spot/misc/hash.hh,
spot/misc/intvcmp2.cc, spot/misc/intvcmp2.hh, spot/misc/intvcomp.cc,
spot/misc/intvcomp.hh, spot/misc/location.hh, spot/misc/minato.cc,
spot/misc/minato.hh, spot/misc/mspool.hh, spot/misc/optionmap.cc,
spot/misc/optionmap.hh, spot/misc/random.cc, spot/misc/random.hh,
spot/misc/satsolver.cc, spot/misc/satsolver.hh, spot/misc/timer.cc,
spot/misc/timer.hh, spot/misc/tmpfile.cc, spot/misc/trival.hh,
spot/parseaut/fmterror.cc, spot/parseaut/parsedecl.hh,
spot/parseaut/public.hh, spot/parsetl/fmterror.cc,
spot/parsetl/parsedecl.hh, spot/priv/accmap.hh, spot/priv/bddalloc.cc,
spot/priv/freelist.cc, spot/priv/trim.cc, spot/priv/weight.cc,
spot/priv/weight.hh, spot/ta/taexplicit.cc, spot/ta/taexplicit.hh,
spot/ta/taproduct.cc, spot/ta/taproduct.hh, spot/ta/tgtaexplicit.cc,
spot/ta/tgtaexplicit.hh, spot/ta/tgtaproduct.cc,
spot/ta/tgtaproduct.hh, spot/taalgos/dot.cc, spot/taalgos/dot.hh,
spot/taalgos/emptinessta.cc, spot/taalgos/emptinessta.hh,
spot/taalgos/minimize.cc, spot/taalgos/tgba2ta.cc,
spot/taalgos/tgba2ta.hh, spot/tl/apcollect.cc, spot/tl/contain.cc,
spot/tl/contain.hh, spot/tl/dot.cc, spot/tl/exclusive.cc,
spot/tl/exclusive.hh, spot/tl/formula.cc, spot/tl/formula.hh,
spot/tl/length.cc, spot/tl/mark.cc, spot/tl/mutation.cc,
spot/tl/mutation.hh, spot/tl/parse.hh, spot/tl/print.cc,
spot/tl/print.hh, spot/tl/randomltl.cc, spot/tl/randomltl.hh,
spot/tl/relabel.cc, spot/tl/relabel.hh, spot/tl/remove_x.cc,
spot/tl/simplify.cc, spot/tl/simplify.hh, spot/tl/snf.cc,
spot/tl/snf.hh, spot/tl/unabbrev.cc, spot/tl/unabbrev.hh,
spot/twa/acc.cc, spot/twa/acc.hh, spot/twa/bdddict.cc,
spot/twa/bdddict.hh, spot/twa/bddprint.cc, spot/twa/formula2bdd.cc,
spot/twa/formula2bdd.hh, spot/twa/taatgba.cc, spot/twa/taatgba.hh,
spot/twa/twa.cc, spot/twa/twa.hh, spot/twa/twagraph.cc,
spot/twa/twagraph.hh, spot/twa/twaproduct.cc, spot/twa/twaproduct.hh,
spot/twaalgos/are_isomorphic.cc, spot/twaalgos/are_isomorphic.hh,
spot/twaalgos/bfssteps.cc, spot/twaalgos/bfssteps.hh,
spot/twaalgos/cleanacc.cc, spot/twaalgos/complete.cc,
spot/twaalgos/compsusp.cc, spot/twaalgos/compsusp.hh,
spot/twaalgos/copy.cc, spot/twaalgos/cycles.cc,
spot/twaalgos/cycles.hh, spot/twaalgos/degen.cc,
spot/twaalgos/degen.hh, spot/twaalgos/determinize.cc,
spot/twaalgos/determinize.hh, spot/twaalgos/dot.cc,
spot/twaalgos/dot.hh, spot/twaalgos/dtbasat.cc,
spot/twaalgos/dtbasat.hh, spot/twaalgos/dtwasat.cc,
spot/twaalgos/dtwasat.hh, spot/twaalgos/emptiness.cc,
spot/twaalgos/emptiness.hh, spot/twaalgos/emptiness_stats.hh,
spot/twaalgos/gtec/ce.cc, spot/twaalgos/gtec/ce.hh,
spot/twaalgos/gtec/gtec.cc, spot/twaalgos/gtec/gtec.hh,
spot/twaalgos/gtec/sccstack.cc, spot/twaalgos/gtec/status.cc,
spot/twaalgos/gv04.cc, spot/twaalgos/hoa.cc, spot/twaalgos/hoa.hh,
spot/twaalgos/isdet.cc, spot/twaalgos/isunamb.cc,
spot/twaalgos/isweakscc.cc, spot/twaalgos/lbtt.cc,
spot/twaalgos/lbtt.hh, spot/twaalgos/ltl2taa.cc,
spot/twaalgos/ltl2taa.hh, spot/twaalgos/ltl2tgba_fm.cc,
spot/twaalgos/ltl2tgba_fm.hh, spot/twaalgos/magic.cc,
spot/twaalgos/magic.hh, spot/twaalgos/mask.cc, spot/twaalgos/mask.hh,
spot/twaalgos/minimize.cc, spot/twaalgos/minimize.hh,
spot/twaalgos/ndfs_result.hxx, spot/twaalgos/neverclaim.cc,
spot/twaalgos/neverclaim.hh, spot/twaalgos/postproc.cc,
spot/twaalgos/postproc.hh, spot/twaalgos/powerset.cc,
spot/twaalgos/powerset.hh, spot/twaalgos/product.cc,
spot/twaalgos/product.hh, spot/twaalgos/projrun.cc,
spot/twaalgos/projrun.hh, spot/twaalgos/randomgraph.cc,
spot/twaalgos/randomgraph.hh, spot/twaalgos/randomize.cc,
spot/twaalgos/randomize.hh, spot/twaalgos/reachiter.cc,
spot/twaalgos/reachiter.hh, spot/twaalgos/relabel.cc,
spot/twaalgos/relabel.hh, spot/twaalgos/remfin.cc,
spot/twaalgos/remprop.cc, spot/twaalgos/sbacc.cc,
spot/twaalgos/sccfilter.cc, spot/twaalgos/sccfilter.hh,
spot/twaalgos/sccinfo.cc, spot/twaalgos/sccinfo.hh,
spot/twaalgos/se05.cc, spot/twaalgos/se05.hh,
spot/twaalgos/sepsets.cc, spot/twaalgos/simulation.cc,
spot/twaalgos/simulation.hh, spot/twaalgos/stats.cc,
spot/twaalgos/stats.hh, spot/twaalgos/strength.cc,
spot/twaalgos/strength.hh, spot/twaalgos/stripacc.cc,
spot/twaalgos/stutter.cc, spot/twaalgos/stutter.hh,
spot/twaalgos/tau03.cc, spot/twaalgos/tau03opt.cc,
spot/twaalgos/tau03opt.hh, spot/twaalgos/totgba.cc,
spot/twaalgos/translate.cc, spot/twaalgos/word.cc, tests/core/acc.cc,
tests/core/bitvect.cc, tests/core/checkpsl.cc, tests/core/checkta.cc,
tests/core/consterm.cc, tests/core/emptchk.cc, tests/core/equalsf.cc,
tests/core/graph.cc, tests/core/ikwiad.cc, tests/core/intvcmp2.cc,
tests/core/intvcomp.cc, tests/core/kind.cc, tests/core/kripkecat.cc,
tests/core/ltlrel.cc, tests/core/ngraph.cc, tests/core/randtgba.cc,
tests/core/readltl.cc, tests/core/reduc.cc, tests/core/safra.cc,
tests/core/syntimpl.cc, tests/ltsmin/modelcheck.cc: Replace tabulars by
8 spaces.
* tests/sanity/style.test: Add checks for no tabulars in *.cc *.hh *.hxx
This commit is contained in:
Laurent XU 2016-03-09 00:23:20 +01:00 committed by Alexandre Duret-Lutz
parent 1eee12b8b4
commit f7e7b4f14e
239 changed files with 25359 additions and 25355 deletions

View file

@ -35,109 +35,109 @@ namespace spot
void
parse_opts(const char* options)
{
const char* orig = options;
while (char c = *options++)
switch (c)
{
case '.':
{
// Copy the value in a string, so future calls to
// parse_opts do not fail if the environment has
// changed. (This matters particularly in an ipython
// notebook, where it is tempting to redefine
// SPOT_DOTDEFAULT.)
static std::string def = []()
{
auto s = getenv("SPOT_DOTDEFAULT");
return s ? s : "";
}();
// Prevent infinite recursions...
if (orig == def.c_str())
throw std::runtime_error
(std::string("SPOT_DOTDEFAULT should not contain '.'"));
if (!def.empty())
parse_opts(def.c_str());
break;
}
case 'A':
opt_hide_sets_ = true;
break;
case 'c':
opt_circles_ = true;
break;
case 'C':
if (*options != '(')
throw std::runtime_error
("invalid node color specification for print_dot()");
{
auto* end = strchr(++options, ')');
if (!end)
throw std::runtime_error
("invalid node color specification for print_dot()");
opt_node_color_ = std::string(options, end - options);
options = end + 1;
}
break;
case 'h':
opt_horizontal_ = true;
break;
case 'f':
if (*options != '(')
throw std::runtime_error
(std::string("invalid font specification for dotty()"));
{
auto* end = strchr(++options, ')');
if (!end)
throw std::runtime_error
(std::string("invalid font specification for dotty()"));
opt_font_ = std::string(options, end - options);
options = end + 1;
}
break;
case 'v':
opt_horizontal_ = false;
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
case 'a':
case 'b':
case 'B':
case 'e':
case 'n':
case 'N':
case 'o':
case 'r':
case 'R':
case 's':
case 't':
case '+':
case '<':
case '#':
// All these options are implemented by dotty() on TGBA,
// but are not implemented here. We simply ignore them,
// because raising an exception if they are in
// SPOT_DEFAULT would be annoying.
break;
default:
throw std::runtime_error
(std::string("unknown option for dotty(): ") + c);
}
const char* orig = options;
while (char c = *options++)
switch (c)
{
case '.':
{
// Copy the value in a string, so future calls to
// parse_opts do not fail if the environment has
// changed. (This matters particularly in an ipython
// notebook, where it is tempting to redefine
// SPOT_DOTDEFAULT.)
static std::string def = []()
{
auto s = getenv("SPOT_DOTDEFAULT");
return s ? s : "";
}();
// Prevent infinite recursions...
if (orig == def.c_str())
throw std::runtime_error
(std::string("SPOT_DOTDEFAULT should not contain '.'"));
if (!def.empty())
parse_opts(def.c_str());
break;
}
case 'A':
opt_hide_sets_ = true;
break;
case 'c':
opt_circles_ = true;
break;
case 'C':
if (*options != '(')
throw std::runtime_error
("invalid node color specification for print_dot()");
{
auto* end = strchr(++options, ')');
if (!end)
throw std::runtime_error
("invalid node color specification for print_dot()");
opt_node_color_ = std::string(options, end - options);
options = end + 1;
}
break;
case 'h':
opt_horizontal_ = true;
break;
case 'f':
if (*options != '(')
throw std::runtime_error
(std::string("invalid font specification for dotty()"));
{
auto* end = strchr(++options, ')');
if (!end)
throw std::runtime_error
(std::string("invalid font specification for dotty()"));
opt_font_ = std::string(options, end - options);
options = end + 1;
}
break;
case 'v':
opt_horizontal_ = false;
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
case 'a':
case 'b':
case 'B':
case 'e':
case 'n':
case 'N':
case 'o':
case 'r':
case 'R':
case 's':
case 't':
case '+':
case '<':
case '#':
// All these options are implemented by dotty() on TGBA,
// but are not implemented here. We simply ignore them,
// because raising an exception if they are in
// SPOT_DEFAULT would be annoying.
break;
default:
throw std::runtime_error
(std::string("unknown option for dotty(): ") + c);
}
}
public:
dotty_bfs(std::ostream& os, const const_ta_ptr& a,
const char* opt) :
const char* opt) :
ta_reachable_iterator_breadth_first(a), os_(os)
{
parse_opts(opt ? opt : ".");
parse_opts(opt ? opt : ".");
}
void
@ -145,56 +145,56 @@ namespace spot
{
os_ << "digraph G {\n";
if (opt_horizontal_)
os_ << " rankdir=LR\n";
if (opt_circles_)
os_ << " node [shape=\"circle\"]\n";
if (!opt_node_color_.empty())
os_ << " node [style=\"filled\", fillcolor=\""
<< opt_node_color_ << "\"]\n";
if (!opt_font_.empty())
os_ << " fontname=\"" << opt_font_
<< "\"\n node [fontname=\"" << opt_font_
<< "\"]\n edge [fontname=\"" << opt_font_
<< "\"]\n";
if (opt_horizontal_)
os_ << " rankdir=LR\n";
if (opt_circles_)
os_ << " node [shape=\"circle\"]\n";
if (!opt_node_color_.empty())
os_ << " node [style=\"filled\", fillcolor=\""
<< opt_node_color_ << "\"]\n";
if (!opt_font_.empty())
os_ << " fontname=\"" << opt_font_
<< "\"\n node [fontname=\"" << opt_font_
<< "\"]\n edge [fontname=\"" << opt_font_
<< "\"]\n";
// Always copy the environment variable into a static string,
// so that we (1) look it up once, but (2) won't crash if the
// environment is changed.
static std::string extra = []()
{
auto s = getenv("SPOT_DOTEXTRA");
return s ? s : "";
}();
// Any extra text passed in the SPOT_DOTEXTRA environment
// variable should be output at the end of the "header", so
// that our setup can be overridden.
if (!extra.empty())
os_ << " " << extra << '\n';
// Always copy the environment variable into a static string,
// so that we (1) look it up once, but (2) won't crash if the
// environment is changed.
static std::string extra = []()
{
auto s = getenv("SPOT_DOTEXTRA");
return s ? s : "";
}();
// Any extra text passed in the SPOT_DOTEXTRA environment
// variable should be output at the end of the "header", so
// that our setup can be overridden.
if (!extra.empty())
os_ << " " << extra << '\n';
artificial_initial_state_ = t_automata_->get_artificial_initial_state();
ta::const_states_set_t init_states_set;
if (artificial_initial_state_)
{
init_states_set.insert(artificial_initial_state_);
os_ << " 0 [label=\"\", style=invis, height=0]\n 0 -> 1\n";
}
{
init_states_set.insert(artificial_initial_state_);
os_ << " 0 [label=\"\", style=invis, height=0]\n 0 -> 1\n";
}
else
{
int n = 0;
init_states_set = t_automata_->get_initial_states_set();
for (auto s: init_states_set)
{
bdd init_condition = t_automata_->get_state_condition(s);
std::string label = bdd_format_formula(t_automata_->get_dict(),
init_condition);
++n;
os_ << " " << -n << " [label=\"\", style=invis, height=0]\n "
<< -n << " -> " << n << " [label=\"" << label << "\"]\n";
}
}
{
int n = 0;
init_states_set = t_automata_->get_initial_states_set();
for (auto s: init_states_set)
{
bdd init_condition = t_automata_->get_state_condition(s);
std::string label = bdd_format_formula(t_automata_->get_dict(),
init_condition);
++n;
os_ << " " << -n << " [label=\"\", style=invis, height=0]\n "
<< -n << " -> " << n << " [label=\"" << label << "\"]\n";
}
}
}
void
@ -209,41 +209,41 @@ namespace spot
std::string style;
if (t_automata_->is_accepting_state(s))
style = ",peripheries=2";
style = ",peripheries=2";
if (t_automata_->is_livelock_accepting_state(s))
style += ",shape=box";
if (t_automata_->is_livelock_accepting_state(s))
style += ",shape=box";
os_ << " " << n << " [label=";
if (s == artificial_initial_state_)
os_ << "init";
else
os_ << quote_unless_bare_word(t_automata_->format_state(s));
os_ << style << "]\n";
os_ << " " << n << " [label=";
if (s == artificial_initial_state_)
os_ << "init";
else
os_ << quote_unless_bare_word(t_automata_->format_state(s));
os_ << style << "]\n";
}
void
process_link(int in, int out, const ta_succ_iterator* si)
{
bdd_dict_ptr d = t_automata_->get_dict();
std::string label =
((in == 1 && artificial_initial_state_)
? bdd_format_formula(d, si->cond())
: bdd_format_accset(d, si->cond()));
bdd_dict_ptr d = t_automata_->get_dict();
std::string label =
((in == 1 && artificial_initial_state_)
? bdd_format_formula(d, si->cond())
: bdd_format_accset(d, si->cond()));
if (label.empty())
label = "{}";
if (label.empty())
label = "{}";
if (!opt_hide_sets_)
{
label += "\n";
label += t_automata_->acc().
format(si->acc());
}
if (!opt_hide_sets_)
{
label += "\n";
label += t_automata_->acc().
format(si->acc());
}
os_ << " " << in << " -> " << out << " [label=\"";
escape_str(os_, label);
os_ << "\"]\n";
escape_str(os_, label);
os_ << "\"]\n";
}
private:

View file

@ -26,5 +26,5 @@ namespace spot
{
SPOT_API std::ostream&
print_dot(std::ostream& os, const const_ta_ptr& a,
const char* opt = nullptr);
const char* opt = nullptr);
}

View file

@ -102,10 +102,10 @@ namespace spot
(ta_init_it_->dst()), kripke_init_state->clone());
if (!h.emplace(init, num + 1).second)
{
init->destroy();
continue;
}
{
init->destroy();
continue;
}
scc.push(++num);
arc.push(0U);
@ -146,7 +146,7 @@ namespace spot
}
// fill rem with any component removed,
auto i = h.find(curr);
auto i = h.find(curr);
assert(i != h.end());
scc.rem().push_front(curr);
@ -168,7 +168,7 @@ namespace spot
{
// removing states
for (auto j: scc.rem())
h[j] = -1;
h[j] = -1;
dec_depth(scc.rem().size());
scc.pop();
assert(!arc.empty());
@ -209,7 +209,7 @@ namespace spot
// We do not need SUCC from now on.
// Are we going to a new state?
auto p = h.emplace(dest, num + 1);
auto p = h.emplace(dest, num + 1);
if (p.second)
{
// Number it, stack it, and register its successors
@ -277,23 +277,23 @@ namespace spot
scc.rem().splice(scc.rem().end(), rem);
bool is_accepting_sscc = scc.top().is_accepting
|| a_->acc().accepting(scc.top().condition);
|| a_->acc().accepting(scc.top().condition);
if (is_accepting_sscc)
{
trace
<< "PASS 1: SUCCESS: a_->is_livelock_accepting_state(curr): "
<< a_->is_livelock_accepting_state(curr) << '\n';
<< "PASS 1: SUCCESS: a_->is_livelock_accepting_state(curr): "
<< a_->is_livelock_accepting_state(curr) << '\n';
trace
<< "PASS 1: scc.top().condition : "
<< scc.top().condition << '\n';
<< scc.top().condition << '\n';
trace
<< "PASS 1: a_->acc().all_sets() : "
<< (a_->acc().all_sets()) << '\n';
<< (a_->acc().all_sets()) << '\n';
trace
<< ("PASS 1 CYCLE and accepting? ")
<< a_->acc().accepting(scc.top().condition)
<< std::endl;
<< ("PASS 1 CYCLE and accepting? ")
<< a_->acc().accepting(scc.top().condition)
<< std::endl;
clear(h, todo, ta_init_it_);
return true;
}
@ -315,19 +315,19 @@ namespace spot
h_livelock_root = h[livelock_roots.top()];
if (heuristic_livelock_detection(dest, h, h_livelock_root,
liveset_curr))
liveset_curr))
{
clear(h, todo, ta_init_it_);
return true;
}
for (const state* succ: liveset_dest)
if (heuristic_livelock_detection(succ, h, h_livelock_root,
liveset_curr))
{
clear(h, todo, ta_init_it_);
return true;
}
if (heuristic_livelock_detection(succ, h, h_livelock_root,
liveset_curr))
{
clear(h, todo, ta_init_it_);
return true;
}
}
}
@ -403,11 +403,11 @@ namespace spot
auto init = ta_init_it_.front();
ta_init_it_.pop();
if (!h.emplace(init, num + 1).second)
{
init->destroy();
continue;
}
if (!h.emplace(init, num + 1).second)
{
init->destroy();
continue;
}
sscc.push(num);
sscc.top().is_accepting = t->is_livelock_accepting_state(init);
@ -435,7 +435,7 @@ namespace spot
trace << "PASS 2 : backtrack\n";
// fill rem with any component removed,
auto i = h.find(curr);
auto i = h.find(curr);
assert(i != h.end());
sscc.rem().push_front(curr);
@ -449,7 +449,7 @@ namespace spot
{
// removing states
for (auto j: sscc.rem())
h[j] = -1;
h[j] = -1;
dec_depth(sscc.rem().size());
sscc.pop();
}
@ -498,10 +498,10 @@ namespace spot
inc_depth();
continue;
}
else
{
dest->destroy();
}
else
{
dest->destroy();
}
// If we have reached a dead component, ignore it.
if (i->second == -1)
@ -509,12 +509,12 @@ namespace spot
//self loop state
if (!curr->compare(i->first))
if (t->is_livelock_accepting_state(curr))
{
clear(h, todo, ta_init_it_);
trace << "PASS 2: SUCCESS\n";
return true;
}
if (t->is_livelock_accepting_state(curr))
{
clear(h, todo, ta_init_it_);
trace << "PASS 2: SUCCESS\n";
return true;
}
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SSCC. Any such

View file

@ -34,7 +34,7 @@ namespace spot
namespace
{
typedef std::pair<const spot::state*,
ta_succ_iterator_product*> pair_state_iter;
ta_succ_iterator_product*> pair_state_iter;
}
/// \addtogroup ta_emptiness_check Emptiness-checks
@ -111,7 +111,7 @@ namespace spot
/// this heuristic is described in the paper cited above
bool
check(bool disable_second_pass = false,
bool disable_heuristic_for_livelock_detection = false);
bool disable_heuristic_for_livelock_detection = false);
/// \brief Check whether the product automaton contains
/// a livelock-accepting run

View file

@ -47,8 +47,8 @@ namespace spot
{
static std::ostream&
dump_hash_set(const hash_set* hs,
const const_ta_ptr& aut,
std::ostream& out)
const const_ta_ptr& aut,
std::ostream& out)
{
out << '{';
const char* sep = "";
@ -73,7 +73,7 @@ namespace spot
// automaton
static void
build_result(const const_ta_ptr& a, std::list<hash_set*>& sets,
twa_graph_ptr result_tgba, const ta_explicit_ptr& result)
twa_graph_ptr result_tgba, const ta_explicit_ptr& result)
{
// For each set, create a state in the tgbaulting automaton.
// For a state s, state_num[s] is the number of the state in the minimal
@ -82,103 +82,103 @@ namespace spot
std::list<hash_set*>::iterator sit;
unsigned num = 0;
for (sit = sets.begin(); sit != sets.end(); ++sit)
{
hash_set::iterator hit;
hash_set* h = *sit;
for (hit = h->begin(); hit != h->end(); ++hit)
state_num[*hit] = num;
result_tgba->new_state();
++num;
}
{
hash_set::iterator hit;
hash_set* h = *sit;
for (hit = h->begin(); hit != h->end(); ++hit)
state_num[*hit] = num;
result_tgba->new_state();
++num;
}
// For each transition in the initial automaton, add the corresponding
// transition in ta.
for (sit = sets.begin(); sit != sets.end(); ++sit)
{
hash_set::iterator hit;
hash_set* h = *sit;
hit = h->begin();
const state* src = *hit;
unsigned src_num = state_num[src];
{
hash_set::iterator hit;
hash_set* h = *sit;
hit = h->begin();
const state* src = *hit;
unsigned src_num = state_num[src];
bdd tgba_condition = bddtrue;
bool is_initial_state = a->is_initial_state(src);
if (!a->get_artificial_initial_state() && is_initial_state)
tgba_condition = a->get_state_condition(src);
bool is_accepting_state = a->is_accepting_state(src);
bool is_livelock_accepting_state =
a->is_livelock_accepting_state(src);
bdd tgba_condition = bddtrue;
bool is_initial_state = a->is_initial_state(src);
if (!a->get_artificial_initial_state() && is_initial_state)
tgba_condition = a->get_state_condition(src);
bool is_accepting_state = a->is_accepting_state(src);
bool is_livelock_accepting_state =
a->is_livelock_accepting_state(src);
state_ta_explicit* new_src =
new state_ta_explicit(result_tgba->state_from_number(src_num),
tgba_condition, is_initial_state,
is_accepting_state,
is_livelock_accepting_state);
state_ta_explicit* new_src =
new state_ta_explicit(result_tgba->state_from_number(src_num),
tgba_condition, is_initial_state,
is_accepting_state,
is_livelock_accepting_state);
state_ta_explicit* ta_src = result->add_state(new_src);
state_ta_explicit* ta_src = result->add_state(new_src);
if (ta_src != new_src)
{
delete new_src;
}
else if (a->get_artificial_initial_state())
{
if (a->get_artificial_initial_state() == src)
result->set_artificial_initial_state(new_src);
}
else if (is_initial_state)
{
result->add_to_initial_states_set(new_src);
}
if (ta_src != new_src)
{
delete new_src;
}
else if (a->get_artificial_initial_state())
{
if (a->get_artificial_initial_state() == src)
result->set_artificial_initial_state(new_src);
}
else if (is_initial_state)
{
result->add_to_initial_states_set(new_src);
}
ta_succ_iterator* succit = a->succ_iter(src);
ta_succ_iterator* succit = a->succ_iter(src);
for (succit->first(); !succit->done(); succit->next())
{
const state* dst = succit->dst();
hash_map::const_iterator i = state_num.find(dst);
for (succit->first(); !succit->done(); succit->next())
{
const state* dst = succit->dst();
hash_map::const_iterator i = state_num.find(dst);
if (i == state_num.end()) // Ignore useless destinations.
continue;
if (i == state_num.end()) // Ignore useless destinations.
continue;
bdd tgba_condition = bddtrue;
is_initial_state = a->is_initial_state(dst);
if (!a->get_artificial_initial_state() && is_initial_state)
tgba_condition = a->get_state_condition(dst);
bool is_accepting_state = a->is_accepting_state(dst);
bool is_livelock_accepting_state =
a->is_livelock_accepting_state(dst);
bdd tgba_condition = bddtrue;
is_initial_state = a->is_initial_state(dst);
if (!a->get_artificial_initial_state() && is_initial_state)
tgba_condition = a->get_state_condition(dst);
bool is_accepting_state = a->is_accepting_state(dst);
bool is_livelock_accepting_state =
a->is_livelock_accepting_state(dst);
state_ta_explicit* new_dst =
new state_ta_explicit
(result_tgba->state_from_number(i->second),
tgba_condition, is_initial_state,
is_accepting_state,
is_livelock_accepting_state);
state_ta_explicit* new_dst =
new state_ta_explicit
(result_tgba->state_from_number(i->second),
tgba_condition, is_initial_state,
is_accepting_state,
is_livelock_accepting_state);
state_ta_explicit* ta_dst = result->add_state(new_dst);
state_ta_explicit* ta_dst = result->add_state(new_dst);
if (ta_dst != new_dst)
{
delete new_dst;
}
else if (a->get_artificial_initial_state())
{
if (a->get_artificial_initial_state() == dst)
result->set_artificial_initial_state(new_dst);
}
if (ta_dst != new_dst)
{
delete new_dst;
}
else if (a->get_artificial_initial_state())
{
if (a->get_artificial_initial_state() == dst)
result->set_artificial_initial_state(new_dst);
}
else if (is_initial_state)
result->add_to_initial_states_set(new_dst);
else if (is_initial_state)
result->add_to_initial_states_set(new_dst);
result->create_transition
(ta_src, succit->cond(),
succit->acc(),
ta_dst);
}
delete succit;
}
result->create_transition
(ta_src, succit->cond(),
succit->acc(),
ta_dst);
}
delete succit;
}
}
static partition_t
@ -187,22 +187,22 @@ namespace spot
unsigned num_sets = ta_->acc().num_sets();
std::map<acc_cond::mark_t, bdd> m2b;
int acc_vars = ta_->get_dict()->register_anonymous_variables(num_sets,
&m2b);
&m2b);
auto mark_to_bdd = [&](acc_cond::mark_t m) -> bdd
{
auto i = m2b.find(m);
if (i != m2b.end())
return i->second;
{
auto i = m2b.find(m);
if (i != m2b.end())
return i->second;
bdd res = bddtrue;
for (unsigned n = 0; n < num_sets; ++n)
if (m.has(n))
res &= bdd_ithvar(acc_vars + n);
else
res &= bdd_nithvar(acc_vars + n);
m2b.emplace_hint(i, m, res);
return res;
};
bdd res = bddtrue;
for (unsigned n = 0; n < num_sets; ++n)
if (m.has(n))
res &= bdd_ithvar(acc_vars + n);
else
res &= bdd_nithvar(acc_vars + n);
m2b.emplace_hint(i, m, res);
return res;
};
partition_t cur_run;
partition_t next_run;
@ -231,22 +231,22 @@ namespace spot
auto artificial_initial_state = ta_->get_artificial_initial_state();
for (it = states_set.begin(); it != states_set.end(); ++it)
{
const state* s = *it;
if (s == artificial_initial_state)
I->insert(s);
else if (!artificial_initial_state && ta_->is_initial_state(s))
I->insert(s);
else if (ta_->is_livelock_accepting_state(s)
&& ta_->is_accepting_state(s))
G_F->insert(s);
else if (ta_->is_accepting_state(s))
F->insert(s);
else if (ta_->is_livelock_accepting_state(s))
G->insert(s);
else
S->insert(s);
}
{
const state* s = *it;
if (s == artificial_initial_state)
I->insert(s);
else if (!artificial_initial_state && ta_->is_initial_state(s))
I->insert(s);
else if (ta_->is_livelock_accepting_state(s)
&& ta_->is_accepting_state(s))
G_F->insert(s);
else if (ta_->is_accepting_state(s))
F->insert(s);
else if (ta_->is_livelock_accepting_state(s))
G->insert(s);
else
S->insert(s);
}
hash_map state_set_map;
@ -255,103 +255,103 @@ namespace spot
// Use bdd variables to number sets. set_num is the first variable
// available.
unsigned set_num =
ta_->get_dict()->register_anonymous_variables(size, &m2b);
ta_->get_dict()->register_anonymous_variables(size, &m2b);
std::set<int> free_var;
for (unsigned i = set_num; i < set_num + size; ++i)
free_var.insert(i);
free_var.insert(i);
std::map<int, int> used_var;
for (hash_set::const_iterator i = I->begin(); i != I->end(); ++i)
{
hash_set* cI = new hash_set;
cI->insert(*i);
done.push_back(cI);
{
hash_set* cI = new hash_set;
cI->insert(*i);
done.push_back(cI);
used_var[set_num] = 1;
free_var.erase(set_num);
state_set_map[*i] = set_num;
++set_num;
used_var[set_num] = 1;
free_var.erase(set_num);
state_set_map[*i] = set_num;
++set_num;
}
}
delete I;
if (!G->empty())
{
unsigned s = G->size();
unsigned num = set_num;
++set_num;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(G);
else
done.push_back(G);
for (hash_set::const_iterator i = G->begin(); i != G->end(); ++i)
state_set_map[*i] = num;
{
unsigned s = G->size();
unsigned num = set_num;
++set_num;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(G);
else
done.push_back(G);
for (hash_set::const_iterator i = G->begin(); i != G->end(); ++i)
state_set_map[*i] = num;
}
}
else
{
delete G;
}
{
delete G;
}
if (!F->empty())
{
unsigned s = F->size();
unsigned num = set_num;
++set_num;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(F);
else
done.push_back(F);
for (hash_set::const_iterator i = F->begin(); i != F->end(); ++i)
state_set_map[*i] = num;
}
{
unsigned s = F->size();
unsigned num = set_num;
++set_num;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(F);
else
done.push_back(F);
for (hash_set::const_iterator i = F->begin(); i != F->end(); ++i)
state_set_map[*i] = num;
}
else
{
delete F;
}
{
delete F;
}
if (!G_F->empty())
{
unsigned s = G_F->size();
unsigned num = set_num;
++set_num;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(G_F);
else
done.push_back(G_F);
for (hash_set::const_iterator i = G_F->begin(); i != G_F->end(); ++i)
state_set_map[*i] = num;
}
{
unsigned s = G_F->size();
unsigned num = set_num;
++set_num;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(G_F);
else
done.push_back(G_F);
for (hash_set::const_iterator i = G_F->begin(); i != G_F->end(); ++i)
state_set_map[*i] = num;
}
else
{
delete G_F;
}
{
delete G_F;
}
if (!S->empty())
{
unsigned s = S->size();
unsigned num = set_num;
++set_num;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(S);
else
done.push_back(S);
for (hash_set::const_iterator i = S->begin(); i != S->end(); ++i)
state_set_map[*i] = num;
}
{
unsigned s = S->size();
unsigned num = set_num;
++set_num;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(S);
else
done.push_back(S);
for (hash_set::const_iterator i = S->begin(); i != S->end(); ++i)
state_set_map[*i] = num;
}
else
{
delete S;
}
{
delete S;
}
// A bdd_states_map is a list of formulae (in a BDD form)
@ -366,132 +366,132 @@ namespace spot
bdd bdd_false_acceptance_condition = bdd_ithvar(num);
while (did_split)
{
did_split = false;
while (!cur_run.empty())
{
// Get a set to process.
hash_set* cur = cur_run.front();
cur_run.pop_front();
{
did_split = false;
while (!cur_run.empty())
{
// Get a set to process.
hash_set* cur = cur_run.front();
cur_run.pop_front();
trace
<< "processing " << format_hash_set(cur, ta_) << std::endl;
trace
<< "processing " << format_hash_set(cur, ta_) << std::endl;
hash_set::iterator hi;
bdd_states_map bdd_map;
for (hi = cur->begin(); hi != cur->end(); ++hi)
{
const state* src = *hi;
bdd f = bddfalse;
ta_succ_iterator* si = ta_->succ_iter(src);
trace << "+src: " << src << std::endl;
for (si->first(); !si->done(); si->next())
{
const state* dst = si->dst();
hash_map::const_iterator i = state_set_map.find(dst);
hash_set::iterator hi;
bdd_states_map bdd_map;
for (hi = cur->begin(); hi != cur->end(); ++hi)
{
const state* src = *hi;
bdd f = bddfalse;
ta_succ_iterator* si = ta_->succ_iter(src);
trace << "+src: " << src << std::endl;
for (si->first(); !si->done(); si->next())
{
const state* dst = si->dst();
hash_map::const_iterator i = state_set_map.find(dst);
assert(i != state_set_map.end());
auto curacc =
mark_to_bdd(si->acc());
f |= (bdd_ithvar(i->second)
& si->cond() & curacc);
trace
<< "+f: " << bdd_format_accset(ta_->get_dict(), f)
<< "\n -bdd_ithvar(i->second): "
<< bdd_format_accset(ta_->get_dict(),
bdd_ithvar(i->second))
<< "\n -si->cond(): "
<< bdd_format_accset(ta_->get_dict(),
si->cond())
<< "\n -current_acceptance_conditions: "
<< si->acc()
<< std::endl;
}
delete si;
assert(i != state_set_map.end());
auto curacc =
mark_to_bdd(si->acc());
f |= (bdd_ithvar(i->second)
& si->cond() & curacc);
trace
<< "+f: " << bdd_format_accset(ta_->get_dict(), f)
<< "\n -bdd_ithvar(i->second): "
<< bdd_format_accset(ta_->get_dict(),
bdd_ithvar(i->second))
<< "\n -si->cond(): "
<< bdd_format_accset(ta_->get_dict(),
si->cond())
<< "\n -current_acceptance_conditions: "
<< si->acc()
<< std::endl;
}
delete si;
// Have we already seen this formula ?
bdd_states_map::iterator bsi = bdd_map.find(f);
if (bsi == bdd_map.end())
{
// No, create a new set.
hash_set* new_set = new hash_set;
new_set->insert(src);
bdd_map[f] = new_set;
}
else
{
// Yes, add the current state to the set.
bsi->second->insert(src);
}
}
// Have we already seen this formula ?
bdd_states_map::iterator bsi = bdd_map.find(f);
if (bsi == bdd_map.end())
{
// No, create a new set.
hash_set* new_set = new hash_set;
new_set->insert(src);
bdd_map[f] = new_set;
}
else
{
// Yes, add the current state to the set.
bsi->second->insert(src);
}
}
bdd_states_map::iterator bsi = bdd_map.begin();
if (bdd_map.size() == 1)
{
// The set was not split.
trace
<< "set " << format_hash_set(bsi->second, ta_)
<< " was not split" << std::endl;
next_run.push_back(bsi->second);
}
else
{
did_split = true;
for (; bsi != bdd_map.end(); ++bsi)
{
hash_set* set = bsi->second;
// Free the number associated to these states.
unsigned num = state_set_map[*set->begin()];
assert(used_var.find(num) != used_var.end());
unsigned left = (used_var[num] -= set->size());
// Make sure LEFT does not become negative
// (hence bigger than SIZE when read as unsigned)
assert(left < size);
if (left == 0)
{
used_var.erase(num);
free_var.insert(num);
}
// Pick a free number
assert(!free_var.empty());
num = *free_var.begin();
free_var.erase(free_var.begin());
used_var[num] = set->size();
for (hash_set::iterator hit = set->begin();
hit != set->end(); ++hit)
state_set_map[*hit] = num;
// Trivial sets can't be splitted any further.
if (set->size() == 1)
{
trace
<< "set " << format_hash_set(set, ta_)
<< " is minimal" << std::endl;
done.push_back(set);
}
else
{
trace
<< "set " << format_hash_set(set, ta_)
<< " should be processed further" << std::endl;
next_run.push_back(set);
}
}
}
delete cur;
}
if (did_split)
trace
<< "splitting did occur during this pass." << std::endl;
bdd_states_map::iterator bsi = bdd_map.begin();
if (bdd_map.size() == 1)
{
// The set was not split.
trace
<< "set " << format_hash_set(bsi->second, ta_)
<< " was not split" << std::endl;
next_run.push_back(bsi->second);
}
else
{
did_split = true;
for (; bsi != bdd_map.end(); ++bsi)
{
hash_set* set = bsi->second;
// Free the number associated to these states.
unsigned num = state_set_map[*set->begin()];
assert(used_var.find(num) != used_var.end());
unsigned left = (used_var[num] -= set->size());
// Make sure LEFT does not become negative
// (hence bigger than SIZE when read as unsigned)
assert(left < size);
if (left == 0)
{
used_var.erase(num);
free_var.insert(num);
}
// Pick a free number
assert(!free_var.empty());
num = *free_var.begin();
free_var.erase(free_var.begin());
used_var[num] = set->size();
for (hash_set::iterator hit = set->begin();
hit != set->end(); ++hit)
state_set_map[*hit] = num;
// Trivial sets can't be splitted any further.
if (set->size() == 1)
{
trace
<< "set " << format_hash_set(set, ta_)
<< " is minimal" << std::endl;
done.push_back(set);
}
else
{
trace
<< "set " << format_hash_set(set, ta_)
<< " should be processed further" << std::endl;
next_run.push_back(set);
}
}
}
delete cur;
}
if (did_split)
trace
<< "splitting did occur during this pass." << std::endl;
std::swap(cur_run, next_run);
}
std::swap(cur_run, next_run);
}
done.splice(done.end(), cur_run);
#ifdef TRACE
trace << "Final partition: ";
for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i)
trace << format_hash_set(*i, ta_) << ' ';
trace << format_hash_set(*i, ta_) << ' ';
trace << std::endl;
#endif

View file

@ -51,17 +51,17 @@ namespace spot
{
if (artificial_livelock_acc_state)
{
auto artificial_livelock_acc_state_added =
{
auto artificial_livelock_acc_state_added =
testing_automata->add_state(artificial_livelock_acc_state);
// unique artificial_livelock_acc_state
assert(artificial_livelock_acc_state_added
== artificial_livelock_acc_state);
(void)artificial_livelock_acc_state_added;
artificial_livelock_acc_state->set_livelock_accepting_state(true);
artificial_livelock_acc_state->free_transitions();
}
// unique artificial_livelock_acc_state
assert(artificial_livelock_acc_state_added
== artificial_livelock_acc_state);
(void)artificial_livelock_acc_state_added;
artificial_livelock_acc_state->set_livelock_accepting_state(true);
artificial_livelock_acc_state->free_transitions();
}
ta::states_set_t states_set = testing_automata->get_states_set();
ta::states_set_t::iterator it;
@ -70,86 +70,86 @@ namespace spot
new state_ta_explicit::transitions;
for (it = states_set.begin(); it != states_set.end(); ++it)
{
auto source = const_cast<state_ta_explicit*>
(static_cast<const state_ta_explicit*>(*it));
{
auto source = const_cast<state_ta_explicit*>
(static_cast<const state_ta_explicit*>(*it));
transitions_to_livelock_states->clear();
transitions_to_livelock_states->clear();
state_ta_explicit::transitions* trans = source->get_transitions();
state_ta_explicit::transitions::iterator it_trans;
state_ta_explicit::transitions* trans = source->get_transitions();
state_ta_explicit::transitions::iterator it_trans;
if (trans)
for (it_trans = trans->begin(); it_trans != trans->end();)
{
auto dest = const_cast<state_ta_explicit*>((*it_trans)->dest);
if (trans)
for (it_trans = trans->begin(); it_trans != trans->end();)
{
auto dest = const_cast<state_ta_explicit*>((*it_trans)->dest);
state_ta_explicit::transitions* dest_trans =
dest->get_transitions();
bool dest_trans_empty = !dest_trans || dest_trans->empty();
state_ta_explicit::transitions* dest_trans =
dest->get_transitions();
bool dest_trans_empty = !dest_trans || dest_trans->empty();
//select transitions where a destination is a livelock state
// which isn't a Buchi accepting state and has successors
if (dest->is_livelock_accepting_state()
&& (!dest->is_accepting_state()) && (!dest_trans_empty))
transitions_to_livelock_states->push_front(*it_trans);
//select transitions where a destination is a livelock state
// which isn't a Buchi accepting state and has successors
if (dest->is_livelock_accepting_state()
&& (!dest->is_accepting_state()) && (!dest_trans_empty))
transitions_to_livelock_states->push_front(*it_trans);
// optimization to have, after minimization, an unique
// livelock state which has no successors
if (dest->is_livelock_accepting_state() && (dest_trans_empty))
dest->set_accepting_state(false);
// optimization to have, after minimization, an unique
// livelock state which has no successors
if (dest->is_livelock_accepting_state() && (dest_trans_empty))
dest->set_accepting_state(false);
++it_trans;
}
++it_trans;
}
if (transitions_to_livelock_states)
{
state_ta_explicit::transitions::iterator it_trans;
if (transitions_to_livelock_states)
{
state_ta_explicit::transitions::iterator it_trans;
for (it_trans = transitions_to_livelock_states->begin();
it_trans != transitions_to_livelock_states->end();
++it_trans)
{
if (artificial_livelock_acc_state)
{
testing_automata->create_transition
(source,
(*it_trans)->condition,
(*it_trans)->acceptance_conditions,
artificial_livelock_acc_state, true);
}
else
{
testing_automata->create_transition
(source,
(*it_trans)->condition,
(*it_trans)->acceptance_conditions,
((*it_trans)->dest)->stuttering_reachable_livelock,
true);
}
}
}
}
for (it_trans = transitions_to_livelock_states->begin();
it_trans != transitions_to_livelock_states->end();
++it_trans)
{
if (artificial_livelock_acc_state)
{
testing_automata->create_transition
(source,
(*it_trans)->condition,
(*it_trans)->acceptance_conditions,
artificial_livelock_acc_state, true);
}
else
{
testing_automata->create_transition
(source,
(*it_trans)->condition,
(*it_trans)->acceptance_conditions,
((*it_trans)->dest)->stuttering_reachable_livelock,
true);
}
}
}
}
delete transitions_to_livelock_states;
for (it = states_set.begin(); it != states_set.end(); ++it)
{
state_ta_explicit* state = static_cast<state_ta_explicit*> (*it);
state_ta_explicit::transitions* state_trans =
{
state_ta_explicit* state = static_cast<state_ta_explicit*> (*it);
state_ta_explicit::transitions* state_trans =
(state)->get_transitions();
bool state_trans_empty = !state_trans || state_trans->empty();
bool state_trans_empty = !state_trans || state_trans->empty();
if (state->is_livelock_accepting_state()
&& (!state->is_accepting_state()) && (!state_trans_empty))
state->set_livelock_accepting_state(false);
}
if (state->is_livelock_accepting_state()
&& (!state->is_accepting_state()) && (!state_trans_empty))
state->set_livelock_accepting_state(false);
}
}
static void
compute_livelock_acceptance_states(const ta_explicit_ptr& testing_aut,
bool single_pass_emptiness_check,
state_ta_explicit*
artificial_livelock_acc_state)
bool single_pass_emptiness_check,
state_ta_explicit*
artificial_livelock_acc_state)
{
// We use five main data in this algorithm:
// * sscc: a stack of strongly stuttering-connected components (SSCC)
@ -177,234 +177,234 @@ namespace spot
std::stack<const state*> init_set;
for (auto s: testing_aut->get_initial_states_set())
init_set.push(s);
init_set.push(s);
while (!init_set.empty())
{
// Setup depth-first search from initial states.
{
// Setup depth-first search from initial states.
{
auto init = down_cast<const state_ta_explicit*> (init_set.top());
init_set.pop();
{
auto init = down_cast<const state_ta_explicit*> (init_set.top());
init_set.pop();
if (!h.emplace(init, num + 1).second)
{
init->destroy();
continue;
}
if (!h.emplace(init, num + 1).second)
{
init->destroy();
continue;
}
sscc.push(++num);
arc.push(0U);
sscc.top().is_accepting
sscc.push(++num);
arc.push(0U);
sscc.top().is_accepting
= testing_aut->is_accepting_state(init);
twa_succ_iterator* iter = testing_aut->succ_iter(init);
iter->first();
todo.emplace(init, iter);
}
twa_succ_iterator* iter = testing_aut->succ_iter(init);
iter->first();
todo.emplace(init, iter);
}
while (!todo.empty())
{
auto curr = todo.top().first;
while (!todo.empty())
{
auto curr = todo.top().first;
auto i = h.find(curr);
// If we have reached a dead component, ignore it.
if (i != h.end() && i->second == -1)
{
todo.pop();
continue;
}
auto i = h.find(curr);
// If we have reached a dead component, ignore it.
if (i != h.end() && i->second == -1)
{
todo.pop();
continue;
}
// We are looking at the next successor in SUCC.
twa_succ_iterator* succ = todo.top().second;
// We are looking at the next successor in SUCC.
twa_succ_iterator* succ = todo.top().second;
// If there is no more successor, backtrack.
if (succ->done())
{
// We have explored all successors of state CURR.
// If there is no more successor, backtrack.
if (succ->done())
{
// We have explored all successors of state CURR.
// Backtrack TODO.
todo.pop();
// Backtrack TODO.
todo.pop();
// fill rem with any component removed,
assert(i != h.end());
sscc.rem().push_front(curr);
// fill rem with any component removed,
assert(i != h.end());
sscc.rem().push_front(curr);
// When backtracking the root of an SSCC, we must also
// remove that SSCC from the ROOT stacks. We must
// discard from H all reachable states from this SSCC.
assert(!sscc.empty());
if (sscc.top().index == i->second)
{
// removing states
bool is_livelock_accepting_sscc = (sscc.rem().size() > 1)
&& ((sscc.top().is_accepting) ||
(testing_aut->acc().
accepting(sscc.top().condition)));
trace << "*** sscc.size() = ***" << sscc.size() << '\n';
for (auto j: sscc.rem())
{
h[j] = -1;
// When backtracking the root of an SSCC, we must also
// remove that SSCC from the ROOT stacks. We must
// discard from H all reachable states from this SSCC.
assert(!sscc.empty());
if (sscc.top().index == i->second)
{
// removing states
bool is_livelock_accepting_sscc = (sscc.rem().size() > 1)
&& ((sscc.top().is_accepting) ||
(testing_aut->acc().
accepting(sscc.top().condition)));
trace << "*** sscc.size() = ***" << sscc.size() << '\n';
for (auto j: sscc.rem())
{
h[j] = -1;
if (is_livelock_accepting_sscc)
{
// if it is an accepting sscc add the state to
// G (=the livelock-accepting states set)
trace << "*** sscc.size() > 1: states: ***"
<< testing_aut->format_state(j)
<< '\n';
auto livelock_accepting_state =
const_cast<state_ta_explicit*>
(down_cast<const state_ta_explicit*>(j));
if (is_livelock_accepting_sscc)
{
// if it is an accepting sscc add the state to
// G (=the livelock-accepting states set)
trace << "*** sscc.size() > 1: states: ***"
<< testing_aut->format_state(j)
<< '\n';
auto livelock_accepting_state =
const_cast<state_ta_explicit*>
(down_cast<const state_ta_explicit*>(j));
livelock_accepting_state->
set_livelock_accepting_state(true);
livelock_accepting_state->
set_livelock_accepting_state(true);
if (single_pass_emptiness_check)
{
livelock_accepting_state
->set_accepting_state(true);
livelock_accepting_state
->stuttering_reachable_livelock
= livelock_accepting_state;
}
}
}
if (single_pass_emptiness_check)
{
livelock_accepting_state
->set_accepting_state(true);
livelock_accepting_state
->stuttering_reachable_livelock
= livelock_accepting_state;
}
}
}
assert(!arc.empty());
sscc.pop();
arc.pop();
}
assert(!arc.empty());
sscc.pop();
arc.pop();
}
// automata reduction
testing_aut->delete_stuttering_and_hole_successors(curr);
// automata reduction
testing_aut->delete_stuttering_and_hole_successors(curr);
delete succ;
// Do not delete CURR: it is a key in H.
continue;
}
delete succ;
// Do not delete CURR: it is a key in H.
continue;
}
// Fetch the values destination state we are interested in...
auto dest = succ->dst();
// Fetch the values destination state we are interested in...
auto dest = succ->dst();
auto acc_cond = succ->acc();
// ... and point the iterator to the next successor, for
// the next iteration.
succ->next();
// We do not need SUCC from now on.
auto acc_cond = succ->acc();
// ... and point the iterator to the next successor, for
// the next iteration.
succ->next();
// We do not need SUCC from now on.
// Are we going to a new state through a stuttering transition?
bool is_stuttering_transition =
testing_aut->get_state_condition(curr)
== testing_aut->get_state_condition(dest);
auto id = h.find(dest);
// Are we going to a new state through a stuttering transition?
bool is_stuttering_transition =
testing_aut->get_state_condition(curr)
== testing_aut->get_state_condition(dest);
auto id = h.find(dest);
// Is this a new state?
if (id == h.end())
{
if (!is_stuttering_transition)
{
init_set.push(dest);
dest->destroy();
continue;
}
// Is this a new state?
if (id == h.end())
{
if (!is_stuttering_transition)
{
init_set.push(dest);
dest->destroy();
continue;
}
// Number it, stack it, and register its successors
// for later processing.
h[dest] = ++num;
sscc.push(num);
arc.push(acc_cond);
sscc.top().is_accepting =
testing_aut->is_accepting_state(dest);
// Number it, stack it, and register its successors
// for later processing.
h[dest] = ++num;
sscc.push(num);
arc.push(acc_cond);
sscc.top().is_accepting =
testing_aut->is_accepting_state(dest);
twa_succ_iterator* iter = testing_aut->succ_iter(dest);
iter->first();
todo.emplace(dest, iter);
continue;
}
dest->destroy();
twa_succ_iterator* iter = testing_aut->succ_iter(dest);
iter->first();
todo.emplace(dest, iter);
continue;
}
dest->destroy();
// If we have reached a dead component, ignore it.
if (id->second == -1)
continue;
// If we have reached a dead component, ignore it.
if (id->second == -1)
continue;
trace << "***compute_livelock_acceptance_states: CYCLE***\n";
trace << "***compute_livelock_acceptance_states: CYCLE***\n";
if (!curr->compare(id->first))
{
auto self_loop_state = const_cast<state_ta_explicit*>
(down_cast<const state_ta_explicit*>(curr));
assert(self_loop_state);
if (!curr->compare(id->first))
{
auto self_loop_state = const_cast<state_ta_explicit*>
(down_cast<const state_ta_explicit*>(curr));
assert(self_loop_state);
if (testing_aut->is_accepting_state(self_loop_state)
|| (testing_aut->acc().accepting(acc_cond)))
{
self_loop_state->set_livelock_accepting_state(true);
if (single_pass_emptiness_check)
{
self_loop_state->set_accepting_state(true);
self_loop_state->stuttering_reachable_livelock
= self_loop_state;
}
}
if (testing_aut->is_accepting_state(self_loop_state)
|| (testing_aut->acc().accepting(acc_cond)))
{
self_loop_state->set_livelock_accepting_state(true);
if (single_pass_emptiness_check)
{
self_loop_state->set_accepting_state(true);
self_loop_state->stuttering_reachable_livelock
= self_loop_state;
}
}
trace
<< "***compute_livelock_acceptance_states: CYCLE: "
<< "self_loop_state***\n";
}
trace
<< "***compute_livelock_acceptance_states: CYCLE: "
<< "self_loop_state***\n";
}
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SSCC. Any such
// non-dead SSCC has necessarily been crossed by our path to
// this state: there is a state S2 in our path which belongs
// to this SSCC too. We are going to merge all states between
// this S1 and S2 into this SSCC.
//
// This merge is easy to do because the order of the SSCC in
// ROOT is ascending: we just have to merge all SSCCs from the
// top of ROOT that have an index greater to the one of
// the SSCC of S2 (called the "threshold").
int threshold = id->second;
std::list<const state*> rem;
bool acc = false;
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SSCC. Any such
// non-dead SSCC has necessarily been crossed by our path to
// this state: there is a state S2 in our path which belongs
// to this SSCC too. We are going to merge all states between
// this S1 and S2 into this SSCC.
//
// This merge is easy to do because the order of the SSCC in
// ROOT is ascending: we just have to merge all SSCCs from the
// top of ROOT that have an index greater to the one of
// the SSCC of S2 (called the "threshold").
int threshold = id->second;
std::list<const state*> rem;
bool acc = false;
while (threshold < sscc.top().index)
{
assert(!sscc.empty());
assert(!arc.empty());
acc |= sscc.top().is_accepting;
acc_cond |= sscc.top().condition;
acc_cond |= arc.top();
rem.splice(rem.end(), sscc.rem());
sscc.pop();
arc.pop();
}
while (threshold < sscc.top().index)
{
assert(!sscc.empty());
assert(!arc.empty());
acc |= sscc.top().is_accepting;
acc_cond |= sscc.top().condition;
acc_cond |= arc.top();
rem.splice(rem.end(), sscc.rem());
sscc.pop();
arc.pop();
}
// Note that we do not always have
// threshold == sscc.top().index
// after this loop, the SSCC whose index is threshold might have
// been merged with a lower SSCC.
// Note that we do not always have
// threshold == sscc.top().index
// after this loop, the SSCC whose index is threshold might have
// been merged with a lower SSCC.
// Accumulate all acceptance conditions into the merged SSCC.
sscc.top().is_accepting |= acc;
sscc.top().condition |= acc_cond;
// Accumulate all acceptance conditions into the merged SSCC.
sscc.top().is_accepting |= acc;
sscc.top().condition |= acc_cond;
sscc.rem().splice(sscc.rem().end(), rem);
sscc.rem().splice(sscc.rem().end(), rem);
}
}
}
}
if (artificial_livelock_acc_state || single_pass_emptiness_check)
transform_to_single_pass_automaton(testing_aut,
artificial_livelock_acc_state);
transform_to_single_pass_automaton(testing_aut,
artificial_livelock_acc_state);
}
ta_explicit_ptr
build_ta(const ta_explicit_ptr& ta, bdd atomic_propositions_set_,
bool degeneralized,
bool single_pass_emptiness_check,
bool artificial_livelock_state_mode,
bool no_livelock)
bool degeneralized,
bool single_pass_emptiness_check,
bool artificial_livelock_state_mode,
bool no_livelock)
{
std::stack<state_ta_explicit*> todo;
@ -414,140 +414,140 @@ namespace spot
auto tgba_init_state = tgba_->get_init_state();
bdd tgba_condition = [&]()
{
bdd cond = bddfalse;
for (auto i: tgba_->succ(tgba_init_state))
cond |= i->cond();
return cond;
}();
{
bdd cond = bddfalse;
for (auto i: tgba_->succ(tgba_init_state))
cond |= i->cond();
return cond;
}();
bool is_acc = false;
if (degeneralized)
{
twa_succ_iterator* it = tgba_->succ_iter(tgba_init_state);
it->first();
if (!it->done())
is_acc = it->acc() != 0U;
delete it;
}
{
twa_succ_iterator* it = tgba_->succ_iter(tgba_init_state);
it->first();
if (!it->done())
is_acc = it->acc() != 0U;
delete it;
}
bdd satone_tgba_condition;
while ((satone_tgba_condition = bdd_satoneset(tgba_condition,
atomic_propositions_set_,
bddtrue)) != bddfalse)
{
tgba_condition -= satone_tgba_condition;
state_ta_explicit* init_state = new
state_ta_explicit(tgba_init_state->clone(),
satone_tgba_condition, true, is_acc);
state_ta_explicit* s = ta->add_state(init_state);
assert(s == init_state);
ta->add_to_initial_states_set(s);
atomic_propositions_set_,
bddtrue)) != bddfalse)
{
tgba_condition -= satone_tgba_condition;
state_ta_explicit* init_state = new
state_ta_explicit(tgba_init_state->clone(),
satone_tgba_condition, true, is_acc);
state_ta_explicit* s = ta->add_state(init_state);
assert(s == init_state);
ta->add_to_initial_states_set(s);
todo.push(init_state);
}
todo.push(init_state);
}
tgba_init_state->destroy();
while (!todo.empty())
{
state_ta_explicit* source = todo.top();
todo.pop();
{
state_ta_explicit* source = todo.top();
todo.pop();
twa_succ_iterator* twa_succ_it =
tgba_->succ_iter(source->get_tgba_state());
for (twa_succ_it->first(); !twa_succ_it->done();
twa_succ_it->next())
{
const state* tgba_state = twa_succ_it->dst();
bdd tgba_condition = twa_succ_it->cond();
acc_cond::mark_t tgba_acceptance_conditions =
twa_succ_iterator* twa_succ_it =
tgba_->succ_iter(source->get_tgba_state());
for (twa_succ_it->first(); !twa_succ_it->done();
twa_succ_it->next())
{
const state* tgba_state = twa_succ_it->dst();
bdd tgba_condition = twa_succ_it->cond();
acc_cond::mark_t tgba_acceptance_conditions =
twa_succ_it->acc();
bdd satone_tgba_condition;
while ((satone_tgba_condition =
bdd_satoneset(tgba_condition,
atomic_propositions_set_, bddtrue))
!= bddfalse)
{
tgba_condition -= satone_tgba_condition;
bdd satone_tgba_condition;
while ((satone_tgba_condition =
bdd_satoneset(tgba_condition,
atomic_propositions_set_, bddtrue))
!= bddfalse)
{
tgba_condition -= satone_tgba_condition;
bdd all_props = bddtrue;
bdd dest_condition;
bdd all_props = bddtrue;
bdd dest_condition;
bool is_acc = false;
if (degeneralized)
{
twa_succ_iterator* it = tgba_->succ_iter(tgba_state);
it->first();
if (!it->done())
is_acc = it->acc() != 0U;
delete it;
}
bool is_acc = false;
if (degeneralized)
{
twa_succ_iterator* it = tgba_->succ_iter(tgba_state);
it->first();
if (!it->done())
is_acc = it->acc() != 0U;
delete it;
}
if (satone_tgba_condition == source->get_tgba_condition())
while ((dest_condition =
bdd_satoneset(all_props,
atomic_propositions_set_, bddtrue))
!= bddfalse)
{
all_props -= dest_condition;
state_ta_explicit* new_dest =
new state_ta_explicit(tgba_state->clone(),
dest_condition, false, is_acc);
state_ta_explicit* dest = ta->add_state(new_dest);
if (satone_tgba_condition == source->get_tgba_condition())
while ((dest_condition =
bdd_satoneset(all_props,
atomic_propositions_set_, bddtrue))
!= bddfalse)
{
all_props -= dest_condition;
state_ta_explicit* new_dest =
new state_ta_explicit(tgba_state->clone(),
dest_condition, false, is_acc);
state_ta_explicit* dest = ta->add_state(new_dest);
if (dest != new_dest)
{
// the state dest already exists in the automaton
new_dest->get_tgba_state()->destroy();
delete new_dest;
}
else
{
todo.push(dest);
}
if (dest != new_dest)
{
// the state dest already exists in the automaton
new_dest->get_tgba_state()->destroy();
delete new_dest;
}
else
{
todo.push(dest);
}
bdd cs = bdd_setxor(source->get_tgba_condition(),
dest->get_tgba_condition());
ta->create_transition(source, cs,
tgba_acceptance_conditions, dest);
}
}
tgba_state->destroy();
}
delete twa_succ_it;
}
bdd cs = bdd_setxor(source->get_tgba_condition(),
dest->get_tgba_condition());
ta->create_transition(source, cs,
tgba_acceptance_conditions, dest);
}
}
tgba_state->destroy();
}
delete twa_succ_it;
}
if (no_livelock)
return ta;
return ta;
state_ta_explicit* artificial_livelock_acc_state = nullptr;
trace << "*** build_ta: artificial_livelock_acc_state_mode = ***"
<< artificial_livelock_state_mode << std::endl;
<< artificial_livelock_state_mode << std::endl;
if (artificial_livelock_state_mode)
{
single_pass_emptiness_check = true;
artificial_livelock_acc_state =
new state_ta_explicit(ta->get_tgba()->get_init_state(), bddtrue,
false, false, true, nullptr);
trace
<< "*** build_ta: artificial_livelock_acc_state = ***"
<< artificial_livelock_acc_state << std::endl;
}
{
single_pass_emptiness_check = true;
artificial_livelock_acc_state =
new state_ta_explicit(ta->get_tgba()->get_init_state(), bddtrue,
false, false, true, nullptr);
trace
<< "*** build_ta: artificial_livelock_acc_state = ***"
<< artificial_livelock_acc_state << std::endl;
}
compute_livelock_acceptance_states(ta, single_pass_emptiness_check,
artificial_livelock_acc_state);
artificial_livelock_acc_state);
return ta;
}
}
ta_explicit_ptr
tgba_to_ta(const const_twa_ptr& tgba_, bdd atomic_propositions_set_,
bool degeneralized, bool artificial_initial_state_mode,
bool single_pass_emptiness_check,
bool artificial_livelock_state_mode,
bool no_livelock)
bool degeneralized, bool artificial_initial_state_mode,
bool single_pass_emptiness_check,
bool artificial_livelock_state_mode,
bool no_livelock)
{
ta_explicit_ptr ta;
@ -555,10 +555,10 @@ namespace spot
if (artificial_initial_state_mode)
{
state_ta_explicit* artificial_init_state =
new state_ta_explicit(tgba_init_state->clone(), bddfalse, true);
new state_ta_explicit(tgba_init_state->clone(), bddfalse, true);
ta = make_ta_explicit(tgba_, tgba_->acc().num_sets(),
artificial_init_state);
artificial_init_state);
}
else
{
@ -568,8 +568,8 @@ namespace spot
// build ta automaton
build_ta(ta, atomic_propositions_set_, degeneralized,
single_pass_emptiness_check, artificial_livelock_state_mode,
no_livelock);
single_pass_emptiness_check, artificial_livelock_state_mode,
no_livelock);
// (degeneralized=true) => TA
if (degeneralized)
@ -589,8 +589,8 @@ namespace spot
state_ta_explicit::transitions::iterator it_trans;
for (it_trans = trans->begin(); it_trans != trans->end();
++it_trans)
(*it_trans)->acceptance_conditions = ta->acc().all_sets();
++it_trans)
(*it_trans)->acceptance_conditions = ta->acc().all_sets();
state->set_accepting_state(false);
}
@ -604,11 +604,11 @@ namespace spot
{
auto tgba_init_state = tgba_->get_init_state();
auto artificial_init_state = new state_ta_explicit(tgba_init_state->clone(),
bddfalse, true);
bddfalse, true);
tgba_init_state->destroy();
auto tgta = make_tgta_explicit(tgba_, tgba_->acc().num_sets(),
artificial_init_state);
artificial_init_state);
// build a Generalized TA automaton involving a single_pass_emptiness_check
// (without an artificial livelock state):
@ -625,14 +625,14 @@ namespace spot
initial_states_iter->first();
if (initial_states_iter->done())
{
delete initial_states_iter;
return tgta;
delete initial_states_iter;
return tgta;
}
bdd first_state_condition = initial_states_iter->cond();
delete initial_states_iter;
bdd bdd_stutering_transition = bdd_setxor(first_state_condition,
first_state_condition);
first_state_condition);
for (it = states_set.begin(); it != states_set.end(); ++it)
{
@ -645,13 +645,13 @@ namespace spot
if (trans_empty || state->is_accepting_state())
{
ta->create_transition(state, bdd_stutering_transition,
ta->acc().all_sets(), state);
ta->acc().all_sets(), state);
}
}
if (state->compare(ta->get_artificial_initial_state()))
ta->create_transition(state, bdd_stutering_transition,
0U, state);
0U, state);
state->set_livelock_accepting_state(false);
state->set_accepting_state(false);

View file

@ -83,11 +83,11 @@ namespace spot
/// TGBA \a tgba_to_convert.
SPOT_API ta_explicit_ptr
tgba_to_ta(const const_twa_ptr& tgba_to_convert, bdd atomic_propositions_set,
bool degeneralized = true,
bool artificial_initial_state_mode = true,
bool single_pass_emptiness_check = false,
bool artificial_livelock_state_mode = false,
bool no_livelock = false);
bool degeneralized = true,
bool artificial_initial_state_mode = true,
bool single_pass_emptiness_check = false,
bool artificial_livelock_state_mode = false,
bool no_livelock = false);
/// \ingroup tgba_ta
/// \brief Build a spot::tgta_explicit* (TGTA) from an LTL formula.
@ -100,5 +100,5 @@ namespace spot
/// language as the TGBA \a tgba_to_convert.
SPOT_API tgta_explicit_ptr
tgba_to_tgta(const const_twa_ptr& tgba_to_convert,
bdd atomic_propositions_set);
bdd atomic_propositions_set);
}