Fixes #125. * src/kripke/kripkegraph.hh, src/ta/ta.cc, src/ta/ta.hh, src/ta/taexplicit.cc, src/ta/taexplicit.hh, src/ta/taproduct.cc, src/ta/taproduct.hh, src/ta/tgtaproduct.cc, src/ta/tgtaproduct.hh, src/taalgos/dot.cc, src/taalgos/emptinessta.cc, src/taalgos/emptinessta.hh, src/taalgos/minimize.cc, src/taalgos/reachiter.cc, src/taalgos/tgba2ta.cc, src/twa/twa.hh, src/twa/twagraph.hh, src/twa/twaproduct.cc, src/twa/twaproduct.hh, src/twaalgos/compsusp.cc, src/twaalgos/gtec/gtec.cc, src/twaalgos/ltl2tgba_fm.cc, src/twaalgos/reachiter.cc, src/twaalgos/stutter.cc: Adjust.
659 lines
19 KiB
C++
659 lines
19 KiB
C++
// -*- coding: utf-8 -*-
|
|
// Copyright (C) 2010, 2011, 2012, 2013, 2014, 2015 Laboratoire de
|
|
// Recherche et Développement de l'Epita (LRDE).
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
//#define TRACE
|
|
|
|
#include <iostream>
|
|
#ifdef TRACE
|
|
#define trace std::clog
|
|
#else
|
|
#define trace while (0) std::clog
|
|
#endif
|
|
|
|
#include "twa/formula2bdd.hh"
|
|
#include <cassert>
|
|
#include <iostream>
|
|
#include "twa/bddprint.hh"
|
|
#include <stack>
|
|
#include "tgba2ta.hh"
|
|
#include "taalgos/statessetbuilder.hh"
|
|
#include "ta/tgtaexplicit.hh"
|
|
|
|
using namespace std;
|
|
|
|
namespace spot
|
|
{
|
|
|
|
namespace
|
|
{
|
|
typedef std::pair<const spot::state*, twa_succ_iterator*> pair_state_iter;
|
|
|
|
static void
|
|
transform_to_single_pass_automaton
|
|
(const ta_explicit_ptr& testing_automata,
|
|
state_ta_explicit* artificial_livelock_acc_state = nullptr)
|
|
{
|
|
|
|
if (artificial_livelock_acc_state)
|
|
{
|
|
auto artificial_livelock_acc_state_added =
|
|
testing_automata->add_state(artificial_livelock_acc_state);
|
|
|
|
// unique artificial_livelock_acc_state
|
|
assert(artificial_livelock_acc_state_added
|
|
== artificial_livelock_acc_state);
|
|
(void)artificial_livelock_acc_state_added;
|
|
artificial_livelock_acc_state->set_livelock_accepting_state(true);
|
|
artificial_livelock_acc_state->free_transitions();
|
|
}
|
|
|
|
ta::states_set_t states_set = testing_automata->get_states_set();
|
|
ta::states_set_t::iterator it;
|
|
|
|
state_ta_explicit::transitions* transitions_to_livelock_states =
|
|
new state_ta_explicit::transitions;
|
|
|
|
for (it = states_set.begin(); it != states_set.end(); ++it)
|
|
{
|
|
auto source = const_cast<state_ta_explicit*>
|
|
(static_cast<const state_ta_explicit*>(*it));
|
|
|
|
transitions_to_livelock_states->clear();
|
|
|
|
state_ta_explicit::transitions* trans = source->get_transitions();
|
|
state_ta_explicit::transitions::iterator it_trans;
|
|
|
|
if (trans)
|
|
for (it_trans = trans->begin(); it_trans != trans->end();)
|
|
{
|
|
auto dest = const_cast<state_ta_explicit*>((*it_trans)->dest);
|
|
|
|
state_ta_explicit::transitions* dest_trans =
|
|
dest->get_transitions();
|
|
bool dest_trans_empty = !dest_trans || dest_trans->empty();
|
|
|
|
//select transitions where a destination is a livelock state
|
|
// which isn't a Buchi accepting state and has successors
|
|
if (dest->is_livelock_accepting_state()
|
|
&& (!dest->is_accepting_state()) && (!dest_trans_empty))
|
|
transitions_to_livelock_states->push_front(*it_trans);
|
|
|
|
// optimization to have, after minimization, an unique
|
|
// livelock state which has no successors
|
|
if (dest->is_livelock_accepting_state() && (dest_trans_empty))
|
|
dest->set_accepting_state(false);
|
|
|
|
++it_trans;
|
|
}
|
|
|
|
if (transitions_to_livelock_states)
|
|
{
|
|
state_ta_explicit::transitions::iterator it_trans;
|
|
|
|
for (it_trans = transitions_to_livelock_states->begin();
|
|
it_trans != transitions_to_livelock_states->end();
|
|
++it_trans)
|
|
{
|
|
if (artificial_livelock_acc_state)
|
|
{
|
|
testing_automata->create_transition
|
|
(source,
|
|
(*it_trans)->condition,
|
|
(*it_trans)->acceptance_conditions,
|
|
artificial_livelock_acc_state, true);
|
|
}
|
|
else
|
|
{
|
|
testing_automata->create_transition
|
|
(source,
|
|
(*it_trans)->condition,
|
|
(*it_trans)->acceptance_conditions,
|
|
((*it_trans)->dest)->stuttering_reachable_livelock,
|
|
true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
delete transitions_to_livelock_states;
|
|
|
|
for (it = states_set.begin(); it != states_set.end(); ++it)
|
|
{
|
|
state_ta_explicit* state = static_cast<state_ta_explicit*> (*it);
|
|
state_ta_explicit::transitions* state_trans =
|
|
(state)->get_transitions();
|
|
bool state_trans_empty = !state_trans || state_trans->empty();
|
|
|
|
if (state->is_livelock_accepting_state()
|
|
&& (!state->is_accepting_state()) && (!state_trans_empty))
|
|
state->set_livelock_accepting_state(false);
|
|
}
|
|
}
|
|
|
|
static void
|
|
compute_livelock_acceptance_states(const ta_explicit_ptr& testing_aut,
|
|
bool single_pass_emptiness_check,
|
|
state_ta_explicit*
|
|
artificial_livelock_acc_state)
|
|
{
|
|
// We use five main data in this algorithm:
|
|
// * sscc: a stack of strongly stuttering-connected components (SSCC)
|
|
scc_stack_ta sscc;
|
|
|
|
// * arc, a stack of acceptance conditions between each of these SCC,
|
|
std::stack<acc_cond::mark_t> arc;
|
|
|
|
// * h: a hash of all visited nodes, with their order,
|
|
// (it is called "Hash" in Couvreur's paper)
|
|
typedef std::unordered_map<const state*, int,
|
|
state_ptr_hash, state_ptr_equal> hash_type;
|
|
hash_type h; ///< Heap of visited states.
|
|
|
|
// * num: the number of visited nodes. Used to set the order of each
|
|
// visited node,
|
|
int num = 0;
|
|
|
|
// * todo: the depth-first search stack. This holds pairs of the
|
|
// form (STATE, ITERATOR) where ITERATOR is a twa_succ_iterator
|
|
// over the successors of STATE. In our use, ITERATOR should
|
|
// always be freed when TODO is popped, but STATE should not because
|
|
// it is also used as a key in H.
|
|
std::stack<pair_state_iter> todo;
|
|
|
|
// * init: the set of the depth-first search initial states
|
|
std::stack<const state*> init_set;
|
|
|
|
for (auto s: testing_aut->get_initial_states_set())
|
|
init_set.push(s);
|
|
|
|
while (!init_set.empty())
|
|
{
|
|
// Setup depth-first search from initial states.
|
|
|
|
{
|
|
auto init = down_cast<const state_ta_explicit*> (init_set.top());
|
|
init_set.pop();
|
|
|
|
if (!h.emplace(init, num + 1).second)
|
|
{
|
|
init->destroy();
|
|
continue;
|
|
}
|
|
|
|
sscc.push(++num);
|
|
arc.push(0U);
|
|
sscc.top().is_accepting
|
|
= testing_aut->is_accepting_state(init);
|
|
twa_succ_iterator* iter = testing_aut->succ_iter(init);
|
|
iter->first();
|
|
todo.emplace(init, iter);
|
|
}
|
|
|
|
while (!todo.empty())
|
|
{
|
|
auto curr = todo.top().first;
|
|
|
|
auto i = h.find(curr);
|
|
// If we have reached a dead component, ignore it.
|
|
if (i != h.end() && i->second == -1)
|
|
{
|
|
todo.pop();
|
|
continue;
|
|
}
|
|
|
|
// We are looking at the next successor in SUCC.
|
|
twa_succ_iterator* succ = todo.top().second;
|
|
|
|
// If there is no more successor, backtrack.
|
|
if (succ->done())
|
|
{
|
|
// We have explored all successors of state CURR.
|
|
|
|
// Backtrack TODO.
|
|
todo.pop();
|
|
|
|
// fill rem with any component removed,
|
|
assert(i != h.end());
|
|
sscc.rem().push_front(curr);
|
|
|
|
// When backtracking the root of an SSCC, we must also
|
|
// remove that SSCC from the ROOT stacks. We must
|
|
// discard from H all reachable states from this SSCC.
|
|
assert(!sscc.empty());
|
|
if (sscc.top().index == i->second)
|
|
{
|
|
// removing states
|
|
bool is_livelock_accepting_sscc = (sscc.rem().size() > 1)
|
|
&& ((sscc.top().is_accepting) ||
|
|
(testing_aut->acc().
|
|
accepting(sscc.top().condition)));
|
|
trace << "*** sscc.size() = ***" << sscc.size() << '\n';
|
|
for (auto j: sscc.rem())
|
|
{
|
|
h[j] = -1;
|
|
|
|
if (is_livelock_accepting_sscc)
|
|
{
|
|
// if it is an accepting sscc add the state to
|
|
// G (=the livelock-accepting states set)
|
|
trace << "*** sscc.size() > 1: states: ***"
|
|
<< testing_aut->format_state(j)
|
|
<< '\n';
|
|
auto livelock_accepting_state =
|
|
const_cast<state_ta_explicit*>
|
|
(down_cast<const state_ta_explicit*>(j));
|
|
|
|
livelock_accepting_state->
|
|
set_livelock_accepting_state(true);
|
|
|
|
if (single_pass_emptiness_check)
|
|
{
|
|
livelock_accepting_state
|
|
->set_accepting_state(true);
|
|
livelock_accepting_state
|
|
->stuttering_reachable_livelock
|
|
= livelock_accepting_state;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(!arc.empty());
|
|
sscc.pop();
|
|
arc.pop();
|
|
}
|
|
|
|
// automata reduction
|
|
testing_aut->delete_stuttering_and_hole_successors(curr);
|
|
|
|
delete succ;
|
|
// Do not delete CURR: it is a key in H.
|
|
continue;
|
|
}
|
|
|
|
// Fetch the values destination state we are interested in...
|
|
auto dest = succ->dst();
|
|
|
|
auto acc_cond = succ->acc();
|
|
// ... and point the iterator to the next successor, for
|
|
// the next iteration.
|
|
succ->next();
|
|
// We do not need SUCC from now on.
|
|
|
|
// Are we going to a new state through a stuttering transition?
|
|
bool is_stuttering_transition =
|
|
testing_aut->get_state_condition(curr)
|
|
== testing_aut->get_state_condition(dest);
|
|
auto id = h.find(dest);
|
|
|
|
// Is this a new state?
|
|
if (id == h.end())
|
|
{
|
|
if (!is_stuttering_transition)
|
|
{
|
|
init_set.push(dest);
|
|
dest->destroy();
|
|
continue;
|
|
}
|
|
|
|
// Number it, stack it, and register its successors
|
|
// for later processing.
|
|
h[dest] = ++num;
|
|
sscc.push(num);
|
|
arc.push(acc_cond);
|
|
sscc.top().is_accepting =
|
|
testing_aut->is_accepting_state(dest);
|
|
|
|
twa_succ_iterator* iter = testing_aut->succ_iter(dest);
|
|
iter->first();
|
|
todo.emplace(dest, iter);
|
|
continue;
|
|
}
|
|
dest->destroy();
|
|
|
|
// If we have reached a dead component, ignore it.
|
|
if (id->second == -1)
|
|
continue;
|
|
|
|
trace << "***compute_livelock_acceptance_states: CYCLE***\n";
|
|
|
|
if (!curr->compare(id->first))
|
|
{
|
|
auto self_loop_state = const_cast<state_ta_explicit*>
|
|
(down_cast<const state_ta_explicit*>(curr));
|
|
assert(self_loop_state);
|
|
|
|
if (testing_aut->is_accepting_state(self_loop_state)
|
|
|| (testing_aut->acc().accepting(acc_cond)))
|
|
{
|
|
self_loop_state->set_livelock_accepting_state(true);
|
|
if (single_pass_emptiness_check)
|
|
{
|
|
self_loop_state->set_accepting_state(true);
|
|
self_loop_state->stuttering_reachable_livelock
|
|
= self_loop_state;
|
|
}
|
|
}
|
|
|
|
trace
|
|
<< "***compute_livelock_acceptance_states: CYCLE: "
|
|
<< "self_loop_state***\n";
|
|
}
|
|
|
|
// Now this is the most interesting case. We have reached a
|
|
// state S1 which is already part of a non-dead SSCC. Any such
|
|
// non-dead SSCC has necessarily been crossed by our path to
|
|
// this state: there is a state S2 in our path which belongs
|
|
// to this SSCC too. We are going to merge all states between
|
|
// this S1 and S2 into this SSCC.
|
|
//
|
|
// This merge is easy to do because the order of the SSCC in
|
|
// ROOT is ascending: we just have to merge all SSCCs from the
|
|
// top of ROOT that have an index greater to the one of
|
|
// the SSCC of S2 (called the "threshold").
|
|
int threshold = id->second;
|
|
std::list<const state*> rem;
|
|
bool acc = false;
|
|
|
|
while (threshold < sscc.top().index)
|
|
{
|
|
assert(!sscc.empty());
|
|
assert(!arc.empty());
|
|
acc |= sscc.top().is_accepting;
|
|
acc_cond |= sscc.top().condition;
|
|
acc_cond |= arc.top();
|
|
rem.splice(rem.end(), sscc.rem());
|
|
sscc.pop();
|
|
arc.pop();
|
|
}
|
|
|
|
// Note that we do not always have
|
|
// threshold == sscc.top().index
|
|
// after this loop, the SSCC whose index is threshold might have
|
|
// been merged with a lower SSCC.
|
|
|
|
// Accumulate all acceptance conditions into the merged SSCC.
|
|
sscc.top().is_accepting |= acc;
|
|
sscc.top().condition |= acc_cond;
|
|
|
|
sscc.rem().splice(sscc.rem().end(), rem);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (artificial_livelock_acc_state || single_pass_emptiness_check)
|
|
transform_to_single_pass_automaton(testing_aut,
|
|
artificial_livelock_acc_state);
|
|
}
|
|
|
|
ta_explicit_ptr
|
|
build_ta(const ta_explicit_ptr& ta, bdd atomic_propositions_set_,
|
|
bool degeneralized,
|
|
bool single_pass_emptiness_check,
|
|
bool artificial_livelock_state_mode,
|
|
bool no_livelock)
|
|
{
|
|
|
|
std::stack<state_ta_explicit*> todo;
|
|
const_twa_ptr tgba_ = ta->get_tgba();
|
|
|
|
// build Initial states set:
|
|
auto tgba_init_state = tgba_->get_init_state();
|
|
|
|
bdd tgba_condition = tgba_->support_conditions(tgba_init_state);
|
|
|
|
bool is_acc = false;
|
|
if (degeneralized)
|
|
{
|
|
twa_succ_iterator* it = tgba_->succ_iter(tgba_init_state);
|
|
it->first();
|
|
if (!it->done())
|
|
is_acc = it->acc() != 0U;
|
|
delete it;
|
|
}
|
|
|
|
bdd satone_tgba_condition;
|
|
while ((satone_tgba_condition = bdd_satoneset(tgba_condition,
|
|
atomic_propositions_set_,
|
|
bddtrue)) != bddfalse)
|
|
{
|
|
tgba_condition -= satone_tgba_condition;
|
|
state_ta_explicit* init_state = new
|
|
state_ta_explicit(tgba_init_state->clone(),
|
|
satone_tgba_condition, true, is_acc);
|
|
state_ta_explicit* s = ta->add_state(init_state);
|
|
assert(s == init_state);
|
|
ta->add_to_initial_states_set(s);
|
|
|
|
todo.push(init_state);
|
|
}
|
|
tgba_init_state->destroy();
|
|
|
|
while (!todo.empty())
|
|
{
|
|
state_ta_explicit* source = todo.top();
|
|
todo.pop();
|
|
|
|
twa_succ_iterator* twa_succ_it =
|
|
tgba_->succ_iter(source->get_tgba_state());
|
|
for (twa_succ_it->first(); !twa_succ_it->done();
|
|
twa_succ_it->next())
|
|
{
|
|
const state* tgba_state = twa_succ_it->dst();
|
|
bdd tgba_condition = twa_succ_it->cond();
|
|
acc_cond::mark_t tgba_acceptance_conditions =
|
|
twa_succ_it->acc();
|
|
bdd satone_tgba_condition;
|
|
while ((satone_tgba_condition =
|
|
bdd_satoneset(tgba_condition,
|
|
atomic_propositions_set_, bddtrue))
|
|
!= bddfalse)
|
|
{
|
|
tgba_condition -= satone_tgba_condition;
|
|
|
|
bdd all_props = bddtrue;
|
|
bdd dest_condition;
|
|
|
|
bool is_acc = false;
|
|
if (degeneralized)
|
|
{
|
|
twa_succ_iterator* it = tgba_->succ_iter(tgba_state);
|
|
it->first();
|
|
if (!it->done())
|
|
is_acc = it->acc() != 0U;
|
|
delete it;
|
|
}
|
|
|
|
if (satone_tgba_condition == source->get_tgba_condition())
|
|
while ((dest_condition =
|
|
bdd_satoneset(all_props,
|
|
atomic_propositions_set_, bddtrue))
|
|
!= bddfalse)
|
|
{
|
|
all_props -= dest_condition;
|
|
state_ta_explicit* new_dest =
|
|
new state_ta_explicit(tgba_state->clone(),
|
|
dest_condition, false, is_acc);
|
|
state_ta_explicit* dest = ta->add_state(new_dest);
|
|
|
|
if (dest != new_dest)
|
|
{
|
|
// the state dest already exists in the automaton
|
|
new_dest->get_tgba_state()->destroy();
|
|
delete new_dest;
|
|
}
|
|
else
|
|
{
|
|
todo.push(dest);
|
|
}
|
|
|
|
bdd cs = bdd_setxor(source->get_tgba_condition(),
|
|
dest->get_tgba_condition());
|
|
ta->create_transition(source, cs,
|
|
tgba_acceptance_conditions, dest);
|
|
}
|
|
}
|
|
tgba_state->destroy();
|
|
}
|
|
delete twa_succ_it;
|
|
}
|
|
|
|
if (no_livelock)
|
|
return ta;
|
|
|
|
state_ta_explicit* artificial_livelock_acc_state = nullptr;
|
|
|
|
trace << "*** build_ta: artificial_livelock_acc_state_mode = ***"
|
|
<< artificial_livelock_state_mode << std::endl;
|
|
|
|
if (artificial_livelock_state_mode)
|
|
{
|
|
single_pass_emptiness_check = true;
|
|
artificial_livelock_acc_state =
|
|
new state_ta_explicit(ta->get_tgba()->get_init_state(), bddtrue,
|
|
false, false, true, nullptr);
|
|
trace
|
|
<< "*** build_ta: artificial_livelock_acc_state = ***"
|
|
<< artificial_livelock_acc_state << std::endl;
|
|
}
|
|
|
|
compute_livelock_acceptance_states(ta, single_pass_emptiness_check,
|
|
artificial_livelock_acc_state);
|
|
return ta;
|
|
}
|
|
}
|
|
|
|
ta_explicit_ptr
|
|
tgba_to_ta(const const_twa_ptr& tgba_, bdd atomic_propositions_set_,
|
|
bool degeneralized, bool artificial_initial_state_mode,
|
|
bool single_pass_emptiness_check,
|
|
bool artificial_livelock_state_mode,
|
|
bool no_livelock)
|
|
{
|
|
ta_explicit_ptr ta;
|
|
|
|
auto tgba_init_state = tgba_->get_init_state();
|
|
if (artificial_initial_state_mode)
|
|
{
|
|
state_ta_explicit* artificial_init_state =
|
|
new state_ta_explicit(tgba_init_state->clone(), bddfalse, true);
|
|
|
|
ta = make_ta_explicit(tgba_, tgba_->acc().num_sets(),
|
|
artificial_init_state);
|
|
}
|
|
else
|
|
{
|
|
ta = make_ta_explicit(tgba_, tgba_->acc().num_sets());
|
|
}
|
|
tgba_init_state->destroy();
|
|
|
|
// build ta automaton
|
|
build_ta(ta, atomic_propositions_set_, degeneralized,
|
|
single_pass_emptiness_check, artificial_livelock_state_mode,
|
|
no_livelock);
|
|
|
|
// (degeneralized=true) => TA
|
|
if (degeneralized)
|
|
return ta;
|
|
|
|
// (degeneralized=false) => GTA
|
|
// adapt a GTA to remove acceptance conditions from states
|
|
ta::states_set_t states_set = ta->get_states_set();
|
|
ta::states_set_t::iterator it;
|
|
for (it = states_set.begin(); it != states_set.end(); ++it)
|
|
{
|
|
state_ta_explicit* state = static_cast<state_ta_explicit*> (*it);
|
|
|
|
if (state->is_accepting_state())
|
|
{
|
|
state_ta_explicit::transitions* trans = state->get_transitions();
|
|
state_ta_explicit::transitions::iterator it_trans;
|
|
|
|
for (it_trans = trans->begin(); it_trans != trans->end();
|
|
++it_trans)
|
|
(*it_trans)->acceptance_conditions = ta->acc().all_sets();
|
|
|
|
state->set_accepting_state(false);
|
|
}
|
|
}
|
|
|
|
return ta;
|
|
}
|
|
|
|
tgta_explicit_ptr
|
|
tgba_to_tgta(const const_twa_ptr& tgba_, bdd atomic_propositions_set_)
|
|
{
|
|
auto tgba_init_state = tgba_->get_init_state();
|
|
auto artificial_init_state = new state_ta_explicit(tgba_init_state->clone(),
|
|
bddfalse, true);
|
|
tgba_init_state->destroy();
|
|
|
|
auto tgta = make_tgta_explicit(tgba_, tgba_->acc().num_sets(),
|
|
artificial_init_state);
|
|
|
|
// build a Generalized TA automaton involving a single_pass_emptiness_check
|
|
// (without an artificial livelock state):
|
|
auto ta = tgta->get_ta();
|
|
build_ta(ta, atomic_propositions_set_, false, true, false, false);
|
|
|
|
trace << "***tgba_to_tgbta: POST build_ta***" << std::endl;
|
|
|
|
// adapt a ta automata to build tgta automata :
|
|
ta::states_set_t states_set = ta->get_states_set();
|
|
ta::states_set_t::iterator it;
|
|
twa_succ_iterator* initial_states_iter =
|
|
ta->succ_iter(ta->get_artificial_initial_state());
|
|
initial_states_iter->first();
|
|
if (initial_states_iter->done())
|
|
{
|
|
delete initial_states_iter;
|
|
return tgta;
|
|
}
|
|
bdd first_state_condition = initial_states_iter->cond();
|
|
delete initial_states_iter;
|
|
|
|
bdd bdd_stutering_transition = bdd_setxor(first_state_condition,
|
|
first_state_condition);
|
|
|
|
for (it = states_set.begin(); it != states_set.end(); ++it)
|
|
{
|
|
state_ta_explicit* state = static_cast<state_ta_explicit*> (*it);
|
|
|
|
state_ta_explicit::transitions* trans = state->get_transitions();
|
|
if (state->is_livelock_accepting_state())
|
|
{
|
|
bool trans_empty = !trans || trans->empty();
|
|
if (trans_empty || state->is_accepting_state())
|
|
{
|
|
ta->create_transition(state, bdd_stutering_transition,
|
|
ta->acc().all_sets(), state);
|
|
}
|
|
}
|
|
|
|
if (state->compare(ta->get_artificial_initial_state()))
|
|
ta->create_transition(state, bdd_stutering_transition,
|
|
0U, state);
|
|
|
|
state->set_livelock_accepting_state(false);
|
|
state->set_accepting_state(false);
|
|
trace << "***tgba_to_tgbta: POST create_transition ***" << std::endl;
|
|
}
|
|
|
|
return tgta;
|
|
}
|
|
}
|