* src/ltlast/binop.cc, src/ltlast/binop.cc: Add support for these new operators. * src/ltlparse/ltlparse.yy, src/ltlparse/ltlscan.ll: Parse them. * src/ltltest/reduccmp.test: Add new tests for W and M. * src/ltlvisit/basicreduce.cc, src/ltlvisit/contain.cc, src/ltlvisit/lunabbrev.cc, src/ltlvisit/nenoform.cc, src/ltlvisit/randomltl.cc, src/ltlvisit/randomltl.hh, src/ltlvisit/reduce.cc, src/ltlvisite/simpfg.cc, src/ltlvisit/simpfg.hh, src/ltlvisit/syntimpl.cc, src/ltlvisit/tostring.cc, src/tgba/formula2bdd.cc, src/tgbaalgos/eltl2tgba_lacim.cc, src/tgbaalgos/ltl2taa.cc, src/tgbaalgos/ltl2tgba_fm.cc, src/tgbaalgos/ltl2tgba_lacim.cc: Add support for W and M. * src/tgbatest/ltl2neverclaim.test: Test never claim output using LBTT, this is more thorough. Also we cannot use -N any more in the spotlbtt.test. * src/tgbatests/ltl2tgba.cc: Define M and W for ELTL. * src/tgbatest/ltl2neverclaim.test: Test W and M, and use -DS instead of -N, because lbtt-translate does not want to translate these operators for tools that masquerade as Spin.
296 lines
7.6 KiB
C++
296 lines
7.6 KiB
C++
// Copyright (C) 2009, 2010 Laboratoire de Recherche et Développement
|
|
// de l'Epita (LRDE).
|
|
// Copyright (C) 2003, 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
|
|
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
|
|
// et Marie Curie.
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Spot; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
|
// 02111-1307, USA.
|
|
|
|
#include "ltlast/visitor.hh"
|
|
#include "ltlast/allnodes.hh"
|
|
#include "ltlvisit/lunabbrev.hh"
|
|
#include "ltlvisit/nenoform.hh"
|
|
#include "tgba/tgbabddconcretefactory.hh"
|
|
#include <cassert>
|
|
|
|
#include "ltl2tgba_lacim.hh"
|
|
|
|
namespace spot
|
|
{
|
|
namespace
|
|
{
|
|
using namespace ltl;
|
|
|
|
/// \brief Recursively translate a formula into a BDD.
|
|
///
|
|
/// The algorithm used here is adapted from Jean-Michel Couvreur's
|
|
/// Probataf tool.
|
|
class ltl_trad_visitor: public const_visitor
|
|
{
|
|
public:
|
|
ltl_trad_visitor(tgba_bdd_concrete_factory& fact, bool root = false)
|
|
: fact_(fact), root_(root)
|
|
{
|
|
}
|
|
|
|
virtual
|
|
~ltl_trad_visitor()
|
|
{
|
|
}
|
|
|
|
bdd
|
|
result()
|
|
{
|
|
return res_;
|
|
}
|
|
|
|
void
|
|
visit(const atomic_prop* node)
|
|
{
|
|
res_ = bdd_ithvar(fact_.create_atomic_prop(node));
|
|
}
|
|
|
|
void
|
|
visit(const constant* node)
|
|
{
|
|
switch (node->val())
|
|
{
|
|
case constant::True:
|
|
res_ = bddtrue;
|
|
return;
|
|
case constant::False:
|
|
res_ = bddfalse;
|
|
return;
|
|
}
|
|
/* Unreachable code. */
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(const unop* node)
|
|
{
|
|
switch (node->op())
|
|
{
|
|
case unop::F:
|
|
{
|
|
/*
|
|
Fx <=> x | XFx
|
|
In other words:
|
|
now <=> x | next
|
|
*/
|
|
int v = fact_.create_state(node);
|
|
bdd now = bdd_ithvar(v);
|
|
bdd next = bdd_ithvar(v + 1);
|
|
bdd x = recurse(node->child());
|
|
fact_.constrain_relation(bdd_apply(now, x | next, bddop_biimp));
|
|
/*
|
|
`x | next', doesn't actually encode the fact that x
|
|
should be fulfilled eventually. We ensure this by
|
|
creating a new generalized Büchi acceptance set, Acc[x],
|
|
and leave out of this set any transition going off NOW
|
|
without checking X. Such acceptance conditions are
|
|
checked for during the emptiness check.
|
|
*/
|
|
fact_.declare_acceptance_condition(x | !now, node->child());
|
|
res_ = now;
|
|
return;
|
|
}
|
|
case unop::G:
|
|
{
|
|
bdd child = recurse(node->child());
|
|
// If G occurs at the top of the formula we don't
|
|
// need Now/Next variables. We just constrain
|
|
// the relation so that the child always happens.
|
|
// This saves 2 BDD variables.
|
|
if (root_)
|
|
{
|
|
fact_.constrain_relation(child);
|
|
res_ = child;
|
|
return;
|
|
}
|
|
// Gx <=> x && XGx
|
|
int v = fact_.create_state(node);
|
|
bdd now = bdd_ithvar(v);
|
|
bdd next = bdd_ithvar(v + 1);
|
|
fact_.constrain_relation(bdd_apply(now, child & next,
|
|
bddop_biimp));
|
|
res_ = now;
|
|
return;
|
|
}
|
|
case unop::Not:
|
|
{
|
|
res_ = bdd_not(recurse(node->child()));
|
|
return;
|
|
}
|
|
case unop::X:
|
|
{
|
|
int v = fact_.create_state(node->child());
|
|
bdd now = bdd_ithvar(v);
|
|
bdd next = bdd_ithvar(v + 1);
|
|
fact_.constrain_relation(bdd_apply(now, recurse(node->child()),
|
|
bddop_biimp));
|
|
res_ = next;
|
|
return;
|
|
}
|
|
case unop::Finish:
|
|
assert(!"unsupported operator");
|
|
}
|
|
/* Unreachable code. */
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(const binop* node)
|
|
{
|
|
bdd f1 = recurse(node->first());
|
|
bdd f2 = recurse(node->second());
|
|
|
|
binop::type op = node->op();
|
|
switch (op)
|
|
{
|
|
case binop::Xor:
|
|
res_ = bdd_apply(f1, f2, bddop_xor);
|
|
return;
|
|
case binop::Implies:
|
|
res_ = bdd_apply(f1, f2, bddop_imp);
|
|
return;
|
|
case binop::Equiv:
|
|
res_ = bdd_apply(f1, f2, bddop_biimp);
|
|
return;
|
|
case binop::U:
|
|
case binop::W:
|
|
{
|
|
// f1 U f2 <=> f2 | (f1 & X(f1 U f2))
|
|
// In other words:
|
|
// now <=> f2 | (f1 & next)
|
|
int v = fact_.create_state(node);
|
|
bdd now = bdd_ithvar(v);
|
|
bdd next = bdd_ithvar(v + 1);
|
|
fact_.constrain_relation(bdd_apply(now, f2 | (f1 & next),
|
|
bddop_biimp));
|
|
if (op == binop::U)
|
|
{
|
|
// The rightmost conjunction, f1 & next, doesn't
|
|
// actually encode the fact that f2 should be
|
|
// fulfilled eventually. We declare an acceptance
|
|
// condition for this purpose (see the comment in
|
|
// the unop::F case).
|
|
fact_.declare_acceptance_condition(f2 | !now, node->second());
|
|
}
|
|
res_ = now;
|
|
return;
|
|
}
|
|
case binop::R:
|
|
case binop::M:
|
|
{
|
|
// f1 R f2 <=> f2 & (f1 | X(f1 R f2))
|
|
// In other words:
|
|
// now <=> f2 & (f1 | next)
|
|
int v = fact_.create_state(node);
|
|
bdd now = bdd_ithvar(v);
|
|
bdd next = bdd_ithvar(v + 1);
|
|
fact_.constrain_relation(bdd_apply(now, f2 & (f1 | next),
|
|
bddop_biimp));
|
|
if (op == binop::M)
|
|
{
|
|
// f2 & next, doesn't actually encode the fact that
|
|
// f1 should be fulfilled eventually. We declare an
|
|
// acceptance condition for this purpose (see the
|
|
// comment in the unop::F case).
|
|
fact_.declare_acceptance_condition(f1 | !now, node->second());
|
|
}
|
|
res_ = now;
|
|
return;
|
|
}
|
|
}
|
|
/* Unreachable code. */
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(const automatop*)
|
|
{
|
|
assert(!"unsupported operator");
|
|
}
|
|
|
|
void
|
|
visit(const multop* node)
|
|
{
|
|
int op = -1;
|
|
bool root = false;
|
|
switch (node->op())
|
|
{
|
|
case multop::And:
|
|
op = bddop_and;
|
|
res_ = bddtrue;
|
|
// When the root formula is a conjunction it's ok to
|
|
// consider all children as root formulae. This allows the
|
|
// root-G trick to save many more variable. (See the
|
|
// translation of G.)
|
|
root = root_;
|
|
break;
|
|
case multop::Or:
|
|
op = bddop_or;
|
|
res_ = bddfalse;
|
|
break;
|
|
}
|
|
assert(op != -1);
|
|
unsigned s = node->size();
|
|
for (unsigned n = 0; n < s; ++n)
|
|
{
|
|
res_ = bdd_apply(res_, recurse(node->nth(n), root), op);
|
|
}
|
|
}
|
|
|
|
bdd
|
|
recurse(const formula* f, bool root = false)
|
|
{
|
|
ltl_trad_visitor v(fact_, root);
|
|
f->accept(v);
|
|
return v.result();
|
|
}
|
|
|
|
private:
|
|
bdd res_;
|
|
tgba_bdd_concrete_factory& fact_;
|
|
bool root_;
|
|
};
|
|
} // anonymous
|
|
|
|
tgba_bdd_concrete*
|
|
ltl_to_tgba_lacim(const ltl::formula* f, bdd_dict* dict)
|
|
{
|
|
// Normalize the formula. We want all the negations on
|
|
// the atomic propositions. We also suppress logic
|
|
// abbreviations such as <=>, =>, or XOR, since they
|
|
// would involve negations at the BDD level.
|
|
const ltl::formula* f1 = ltl::unabbreviate_logic(f);
|
|
const ltl::formula* f2 = ltl::negative_normal_form(f1);
|
|
f1->destroy();
|
|
|
|
// Traverse the formula and draft the automaton in a factory.
|
|
tgba_bdd_concrete_factory fact(dict);
|
|
ltl_trad_visitor v(fact, true);
|
|
f2->accept(v);
|
|
f2->destroy();
|
|
fact.finish();
|
|
|
|
// Finally setup the resulting automaton.
|
|
return new tgba_bdd_concrete(fact, v.result());
|
|
}
|
|
}
|