* src/tgbaalgos/dtbasat.cc, src/tgbaalgos/dtgbasat.cc: Compute the actual number of reachable states in the produced automaton to prepare the next iteration.
873 lines
21 KiB
C++
873 lines
21 KiB
C++
// -*- coding: utf-8 -*-
|
||
// Copyright (C) 2013, 2014 Laboratoire de Recherche et Développement
|
||
// de l'Epita.
|
||
//
|
||
// This file is part of Spot, a model checking library.
|
||
//
|
||
// Spot is free software; you can redistribute it and/or modify it
|
||
// under the terms of the GNU General Public License as published by
|
||
// the Free Software Foundation; either version 3 of the License, or
|
||
// (at your option) any later version.
|
||
//
|
||
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
// License for more details.
|
||
//
|
||
// You should have received a copy of the GNU General Public License
|
||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
||
#include <iostream>
|
||
#include <fstream>
|
||
#include <sstream>
|
||
#include "dtbasat.hh"
|
||
#include "reachiter.hh"
|
||
#include <map>
|
||
#include <utility>
|
||
#include "scc.hh"
|
||
#include "tgba/bddprint.hh"
|
||
#include "ltlast/constant.hh"
|
||
#include "stats.hh"
|
||
#include "misc/satsolver.hh"
|
||
|
||
// If you set the SPOT_TMPKEEP environment variable the temporary
|
||
// file used to communicate with the sat solver will be left in
|
||
// the current directory.
|
||
//
|
||
// Additionally, if the following DEBUG macro is set to 1, the CNF
|
||
// file will be output with a comment before each clause, and an
|
||
// additional output file (dtba-sat.dbg) will be created with a list
|
||
// of all positive variables in the result and their meaning.
|
||
|
||
#define DEBUG 0
|
||
#if DEBUG
|
||
#define dout out << "c "
|
||
#define trace std::cerr
|
||
#else
|
||
#define dout while (0) std::cout
|
||
#define trace dout
|
||
#endif
|
||
|
||
namespace spot
|
||
{
|
||
namespace
|
||
{
|
||
static bdd_dict* debug_dict = 0;
|
||
|
||
struct transition
|
||
{
|
||
int src;
|
||
bdd cond;
|
||
int dst;
|
||
|
||
transition(int src, bdd cond, int dst)
|
||
: src(src), cond(cond), dst(dst)
|
||
{
|
||
}
|
||
|
||
bool operator<(const transition& other) const
|
||
{
|
||
if (this->src < other.src)
|
||
return true;
|
||
if (this->src > other.src)
|
||
return false;
|
||
if (this->dst < other.dst)
|
||
return true;
|
||
if (this->dst > other.dst)
|
||
return false;
|
||
return this->cond.id() < other.cond.id();
|
||
}
|
||
|
||
bool operator==(const transition& other) const
|
||
{
|
||
return (this->src == other.src
|
||
&& this->dst == other.dst
|
||
&& this->cond.id() == other.cond.id());
|
||
}
|
||
};
|
||
|
||
struct src_cond
|
||
{
|
||
int src;
|
||
bdd cond;
|
||
|
||
src_cond(int src, bdd cond)
|
||
: src(src), cond(cond)
|
||
{
|
||
}
|
||
|
||
bool operator<(const src_cond& other) const
|
||
{
|
||
if (this->src < other.src)
|
||
return true;
|
||
if (this->src > other.src)
|
||
return false;
|
||
return this->cond.id() < other.cond.id();
|
||
}
|
||
|
||
bool operator==(const src_cond& other) const
|
||
{
|
||
return (this->src == other.src
|
||
&& this->cond.id() == other.cond.id());
|
||
}
|
||
};
|
||
|
||
struct state_pair
|
||
{
|
||
int a;
|
||
int b;
|
||
|
||
state_pair(int a, int b)
|
||
: a(a), b(b)
|
||
{
|
||
}
|
||
|
||
bool operator<(const state_pair& other) const
|
||
{
|
||
if (this->a < other.a)
|
||
return true;
|
||
if (this->a > other.a)
|
||
return false;
|
||
if (this->b < other.b)
|
||
return true;
|
||
if (this->b > other.b)
|
||
return false;
|
||
return false;
|
||
}
|
||
};
|
||
|
||
struct path
|
||
{
|
||
int src_cand;
|
||
int src_ref;
|
||
int dst_cand;
|
||
int dst_ref;
|
||
|
||
path(int src_cand, int src_ref,
|
||
int dst_cand, int dst_ref)
|
||
: src_cand(src_cand), src_ref(src_ref),
|
||
dst_cand(dst_cand), dst_ref(dst_ref)
|
||
{
|
||
}
|
||
|
||
bool operator<(const path& other) const
|
||
{
|
||
if (this->src_cand < other.src_cand)
|
||
return true;
|
||
if (this->src_cand > other.src_cand)
|
||
return false;
|
||
if (this->src_ref < other.src_ref)
|
||
return true;
|
||
if (this->src_ref > other.src_ref)
|
||
return false;
|
||
if (this->dst_cand < other.dst_cand)
|
||
return true;
|
||
if (this->dst_cand > other.dst_cand)
|
||
return false;
|
||
if (this->dst_ref < other.dst_ref)
|
||
return true;
|
||
if (this->dst_ref > other.dst_ref)
|
||
return false;
|
||
return false;
|
||
}
|
||
|
||
};
|
||
|
||
std::ostream& operator<<(std::ostream& os, const state_pair& p)
|
||
{
|
||
os << "<" << p.a << "," << p.b << ">";
|
||
return os;
|
||
}
|
||
|
||
std::ostream& operator<<(std::ostream& os, const transition& t)
|
||
{
|
||
os << "<" << t.src << ","
|
||
<< bdd_format_formula(debug_dict, t.cond)
|
||
<< "," << t.dst << ">";
|
||
return os;
|
||
}
|
||
|
||
std::ostream& operator<<(std::ostream& os, const path& p)
|
||
{
|
||
os << "<"
|
||
<< p.src_cand << ","
|
||
<< p.src_ref << ","
|
||
<< p.dst_cand << ","
|
||
<< p.dst_ref << ">";
|
||
return os;
|
||
}
|
||
|
||
struct dict
|
||
{
|
||
typedef std::map<transition, int> trans_map;
|
||
trans_map transid;
|
||
trans_map transacc;
|
||
typedef std::map<int, transition> rev_map;
|
||
rev_map revtransid;
|
||
rev_map revtransacc;
|
||
|
||
std::map<state_pair, int> prodid;
|
||
std::map<path, int> pathid_ref;
|
||
std::map<path, int> pathid_cand;
|
||
int nvars;
|
||
typedef Sgi::hash_map<const state*, int,
|
||
state_ptr_hash, state_ptr_equal> state_map;
|
||
typedef Sgi::hash_map<int, const state*> int_map;
|
||
state_map state_to_int;
|
||
int_map int_to_state;
|
||
int cand_size;
|
||
|
||
~dict()
|
||
{
|
||
state_map::const_iterator s = state_to_int.begin();
|
||
while (s != state_to_int.end())
|
||
// Always advance the iterator before deleting the key.
|
||
s++->first->destroy();
|
||
}
|
||
};
|
||
|
||
|
||
class filler_dfs: public tgba_reachable_iterator_depth_first
|
||
{
|
||
protected:
|
||
dict& d;
|
||
int size_;
|
||
bdd ap_;
|
||
bool state_based_;
|
||
scc_map& sm_;
|
||
public:
|
||
filler_dfs(const tgba* aut, dict& d, bdd ap, bool state_based,
|
||
scc_map& sm)
|
||
: tgba_reachable_iterator_depth_first(aut), d(d), ap_(ap),
|
||
state_based_(state_based), sm_(sm)
|
||
{
|
||
d.nvars = 0;
|
||
}
|
||
|
||
int size()
|
||
{
|
||
return size_;
|
||
}
|
||
|
||
void end()
|
||
{
|
||
size_ = seen.size();
|
||
|
||
if (d.cand_size == -1)
|
||
d.cand_size = size_ - 1;
|
||
|
||
// Reverse the "seen" map. States are labeled from 1 to size_.
|
||
for (dict::state_map::const_iterator i2 = seen.begin();
|
||
i2 != seen.end(); ++i2)
|
||
d.int_to_state[i2->second] = i2->first;
|
||
|
||
for (int i = 1; i <= size_; ++i)
|
||
{
|
||
unsigned i_scc = sm_.scc_of_state(d.int_to_state[i]);
|
||
|
||
bool is_trivial = sm_.trivial(i_scc);
|
||
|
||
for (int j = 1; j <= d.cand_size; ++j)
|
||
{
|
||
d.prodid[state_pair(j, i)] = ++d.nvars;
|
||
|
||
// skip trivial SCCs
|
||
if (is_trivial)
|
||
continue;
|
||
|
||
for (int k = 1; k <= size_; ++k)
|
||
{
|
||
if (sm_.scc_of_state(d.int_to_state[k]) != i_scc)
|
||
continue;
|
||
for (int l = 1; l <= d.cand_size; ++l)
|
||
{
|
||
if (i == k && j == l)
|
||
continue;
|
||
path p(j, i, l, k);
|
||
d.pathid_ref[p] = ++d.nvars;
|
||
d.pathid_cand[p] = ++d.nvars;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
std::swap(d.state_to_int, seen);
|
||
|
||
for (int i = 1; i <= d.cand_size; ++i)
|
||
{
|
||
int transacc = -1;
|
||
if (state_based_)
|
||
// All outgoing transitions use the same acceptance variable.
|
||
transacc = ++d.nvars;
|
||
|
||
for (int j = 1; j <= d.cand_size; ++j)
|
||
{
|
||
bdd all = bddtrue;
|
||
while (all != bddfalse)
|
||
{
|
||
bdd one = bdd_satoneset(all, ap_, bddfalse);
|
||
all -= one;
|
||
|
||
transition t(i, one, j);
|
||
d.transid[t] = ++d.nvars;
|
||
d.revtransid.insert(dict::rev_map::value_type(d.nvars, t));
|
||
int ta = d.transacc[t] =
|
||
state_based_ ? transacc : ++d.nvars;
|
||
d.revtransacc.insert(dict::rev_map::value_type(ta, t));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
};
|
||
|
||
static
|
||
void dtba_to_sat(std::ostream& out, const tgba* ref, dict& d,
|
||
bool state_based)
|
||
{
|
||
clause_counter nclauses;
|
||
int ref_size = 0;
|
||
|
||
scc_map sm(ref);
|
||
sm.build_map();
|
||
bdd ap = sm.aprec_set_of(sm.initial());
|
||
|
||
// Count the number of atomic propositions
|
||
int nap = 0;
|
||
{
|
||
bdd cur = ap;
|
||
while (cur != bddtrue)
|
||
{
|
||
++nap;
|
||
cur = bdd_high(cur);
|
||
}
|
||
nap = 1 << nap;
|
||
}
|
||
|
||
// Number all the SAT variable we may need.
|
||
{
|
||
filler_dfs f(ref, d, ap, state_based, sm);
|
||
f.run();
|
||
ref_size = f.size();
|
||
}
|
||
|
||
// empty automaton is impossible
|
||
if (d.cand_size == 0)
|
||
{
|
||
out << "p cnf 1 2\n-1 0\n1 0\n";
|
||
return;
|
||
}
|
||
|
||
// An empty line for the header
|
||
out << " \n";
|
||
|
||
#if DEBUG
|
||
debug_dict = ref->get_dict();
|
||
dout << "ref_size: " << ref_size << "\n";
|
||
dout << "cand_size: " << d.cand_size << "\n";
|
||
#endif
|
||
|
||
dout << "symmetry-breaking clauses\n";
|
||
int j = 0;
|
||
bdd all = bddtrue;
|
||
while (all != bddfalse)
|
||
{
|
||
bdd s = bdd_satoneset(all, ap, bddfalse);
|
||
all -= s;
|
||
for (int i = 1; i < d.cand_size; ++i)
|
||
for (int k = (i - 1) * nap + j + 3; k <= d.cand_size; ++k)
|
||
{
|
||
transition t(i, s, k);
|
||
int ti = d.transid[t];
|
||
dout << "¬" << t << "\n";
|
||
out << -ti << " 0\n";
|
||
++nclauses;
|
||
}
|
||
++j;
|
||
}
|
||
if (!nclauses.nb_clauses())
|
||
dout << "(none)\n";
|
||
|
||
dout << "(1) the candidate automaton is complete\n";
|
||
for (int q1 = 1; q1 <= d.cand_size; ++q1)
|
||
{
|
||
bdd all = bddtrue;
|
||
while (all != bddfalse)
|
||
{
|
||
bdd s = bdd_satoneset(all, ap, bddfalse);
|
||
all -= s;
|
||
|
||
#if DEBUG
|
||
dout;
|
||
for (int q2 = 1; q2 <= d.cand_size; q2++)
|
||
{
|
||
transition t(q1, s, q2);
|
||
out << t << "δ";
|
||
if (q2 != d.cand_size)
|
||
out << " ∨ ";
|
||
}
|
||
out << "\n";
|
||
#endif
|
||
|
||
for (int q2 = 1; q2 <= d.cand_size; q2++)
|
||
{
|
||
transition t(q1, s, q2);
|
||
int ti = d.transid[t];
|
||
|
||
out << ti << " ";
|
||
}
|
||
out << "0\n";
|
||
|
||
++nclauses;
|
||
}
|
||
}
|
||
|
||
dout << "(2) the initial state is reachable\n";
|
||
dout << state_pair(1, 1) << "\n";
|
||
out << d.prodid[state_pair(1, 1)] << " 0\n";
|
||
++nclauses;
|
||
|
||
for (std::map<state_pair, int>::const_iterator pit = d.prodid.begin();
|
||
pit != d.prodid.end(); ++pit)
|
||
{
|
||
int q1 = pit->first.a;
|
||
int q1p = pit->first.b;
|
||
|
||
dout << "(3) augmenting paths based on Cand[" << q1
|
||
<< "] and Ref[" << q1p << "]\n";
|
||
tgba_succ_iterator* it = ref->succ_iter(d.int_to_state[q1p]);
|
||
for (it->first(); !it->done(); it->next())
|
||
{
|
||
const state* dps = it->current_state();
|
||
int dp = d.state_to_int[dps];
|
||
dps->destroy();
|
||
|
||
bdd all = it->current_condition();
|
||
while (all != bddfalse)
|
||
{
|
||
bdd s = bdd_satoneset(all, ap, bddfalse);
|
||
all -= s;
|
||
|
||
for (int q2 = 1; q2 <= d.cand_size; q2++)
|
||
{
|
||
transition t(q1, s, q2);
|
||
int ti = d.transid[t];
|
||
|
||
state_pair p2(q2, dp);
|
||
int succ = d.prodid[p2];
|
||
|
||
if (pit->second == succ)
|
||
continue;
|
||
|
||
dout << pit->first << " ∧ " << t << "δ → " << p2 << "\n";
|
||
out << -pit->second << " " << -ti << " "
|
||
<< succ << " 0\n";
|
||
++nclauses;
|
||
}
|
||
}
|
||
}
|
||
delete it;
|
||
}
|
||
|
||
bdd all_acc = ref->all_acceptance_conditions();
|
||
|
||
// construction of contraints (4,5) : all loops in the product
|
||
// where no accepting run is detected in the ref. automaton,
|
||
// must also be marked as not accepting in the cand. automaton
|
||
for (int q1p = 1; q1p <= ref_size; ++q1p)
|
||
{
|
||
unsigned q1p_scc = sm.scc_of_state(d.int_to_state[q1p]);
|
||
if (sm.trivial(q1p_scc))
|
||
continue;
|
||
for (int q2p = 1; q2p <= ref_size; ++q2p)
|
||
{
|
||
// We are only interested in transition that can form a
|
||
// cycle, so they must belong to the same SCC.
|
||
if (sm.scc_of_state(d.int_to_state[q2p]) != q1p_scc)
|
||
continue;
|
||
for (int q1 = 1; q1 <= d.cand_size; ++q1)
|
||
for (int q2 = 1; q2 <= d.cand_size; ++q2)
|
||
{
|
||
path p1(q1, q1p, q2, q2p);
|
||
|
||
dout << "(4&5) matching paths from reference based on "
|
||
<< p1 << "\n";
|
||
|
||
int pid1;
|
||
if (q1 == q2 && q1p == q2p)
|
||
pid1 = d.prodid[state_pair(q1, q1p)];
|
||
else
|
||
pid1 = d.pathid_ref[p1];
|
||
|
||
tgba_succ_iterator* it =
|
||
ref->succ_iter(d.int_to_state[q2p]);
|
||
for (it->first(); !it->done(); it->next())
|
||
{
|
||
const state* dps = it->current_state();
|
||
// Skip destinations not in the SCC.
|
||
if (sm.scc_of_state(dps) != q1p_scc)
|
||
{
|
||
dps->destroy();
|
||
continue;
|
||
}
|
||
int dp = d.state_to_int[dps];
|
||
dps->destroy();
|
||
|
||
if (it->current_acceptance_conditions() == all_acc)
|
||
continue;
|
||
for (int q3 = 1; q3 <= d.cand_size; ++q3)
|
||
{
|
||
if (dp == q1p && q3 == q1) // (4) looping
|
||
{
|
||
bdd all = it->current_condition();
|
||
while (all != bddfalse)
|
||
{
|
||
bdd s = bdd_satoneset(all, ap, bddfalse);
|
||
all -= s;
|
||
|
||
transition t(q2, s, q1);
|
||
int ti = d.transid[t];
|
||
int ta = d.transacc[t];
|
||
|
||
dout << p1 << "R ∧ " << t << "δ → ¬" << t
|
||
<< "F\n";
|
||
out << -pid1 << " " << -ti << " "
|
||
<< -ta << " 0\n";
|
||
++nclauses;
|
||
}
|
||
|
||
|
||
}
|
||
else // (5) not looping
|
||
{
|
||
path p2 = path(q1, q1p, q3, dp);
|
||
int pid2 = d.pathid_ref[p2];
|
||
|
||
if (pid1 == pid2)
|
||
continue;
|
||
|
||
bdd all = it->current_condition();
|
||
while (all != bddfalse)
|
||
{
|
||
bdd s = bdd_satoneset(all, ap, bddfalse);
|
||
all -= s;
|
||
|
||
transition t(q2, s, q3);
|
||
int ti = d.transid[t];
|
||
|
||
dout << p1 << "R ∧ " << t << "δ → " << p2
|
||
<< "R\n";
|
||
out << -pid1 << " " << -ti << " "
|
||
<< pid2 << " 0\n";
|
||
++nclauses;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
delete it;
|
||
}
|
||
}
|
||
}
|
||
// construction of contraints (6,7): all loops in the product
|
||
// where accepting run is detected in the ref. automaton, must
|
||
// also be marked as accepting in the candidate.
|
||
for (int q1p = 1; q1p <= ref_size; ++q1p)
|
||
{
|
||
unsigned q1p_scc = sm.scc_of_state(d.int_to_state[q1p]);
|
||
if (sm.trivial(q1p_scc))
|
||
continue;
|
||
for (int q2p = 1; q2p <= ref_size; ++q2p)
|
||
{
|
||
// We are only interested in transition that can form a
|
||
// cycle, so they must belong to the same SCC.
|
||
if (sm.scc_of_state(d.int_to_state[q2p]) != q1p_scc)
|
||
continue;
|
||
for (int q1 = 1; q1 <= d.cand_size; ++q1)
|
||
for (int q2 = 1; q2 <= d.cand_size; ++q2)
|
||
{
|
||
path p1(q1, q1p, q2, q2p);
|
||
dout << "(6&7) matching paths from candidate based on "
|
||
<< p1 << "\n";
|
||
|
||
int pid1;
|
||
if (q1 == q2 && q1p == q2p)
|
||
pid1 = d.prodid[state_pair(q1, q1p)];
|
||
else
|
||
pid1 = d.pathid_cand[p1];
|
||
|
||
tgba_succ_iterator* it =
|
||
ref->succ_iter(d.int_to_state[q2p]);
|
||
for (it->first(); !it->done(); it->next())
|
||
{
|
||
const state* dps = it->current_state();
|
||
// Skip destinations not in the SCC.
|
||
if (sm.scc_of_state(dps) != q1p_scc)
|
||
{
|
||
dps->destroy();
|
||
continue;
|
||
}
|
||
int dp = d.state_to_int[dps];
|
||
dps->destroy();
|
||
for (int q3 = 1; q3 <= d.cand_size; q3++)
|
||
{
|
||
if (dp == q1p && q3 == q1) // (6) looping
|
||
{
|
||
// We only care about the looping case if
|
||
// it is accepting in the reference.
|
||
if (it->current_acceptance_conditions()
|
||
!= all_acc)
|
||
continue;
|
||
bdd all = it->current_condition();
|
||
while (all != bddfalse)
|
||
{
|
||
bdd s = bdd_satoneset(all, ap, bddfalse);
|
||
all -= s;
|
||
|
||
transition t(q2, s, q1);
|
||
int ti = d.transid[t];
|
||
int ta = d.transacc[t];
|
||
|
||
dout << p1 << "C ∧ " << t << "δ → " << t
|
||
<< "F\n";
|
||
out << -pid1 << " " << -ti << " " << ta
|
||
<< " 0\n";
|
||
++nclauses;
|
||
}
|
||
}
|
||
else // (7) no loop
|
||
{
|
||
path p2 = path(q1, q1p, q3, dp);
|
||
int pid2 = d.pathid_cand[p2];
|
||
|
||
if (pid1 == pid2)
|
||
continue;
|
||
|
||
bdd all = it->current_condition();
|
||
while (all != bddfalse)
|
||
{
|
||
bdd s = bdd_satoneset(all, ap, bddfalse);
|
||
all -= s;
|
||
|
||
transition t(q2, s, q3);
|
||
int ti = d.transid[t];
|
||
int ta = d.transacc[t];
|
||
|
||
dout << p1 << "C ∧ " << t << "δ ∧ ¬"
|
||
<< t << "F → " << p2 << "C\n";
|
||
|
||
out << -pid1 << " " << -ti << " "
|
||
<< ta << " " << pid2 << " 0\n";
|
||
++nclauses;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
delete it;
|
||
}
|
||
}
|
||
}
|
||
out.seekp(0);
|
||
out << "p cnf " << d.nvars << " " << nclauses.nb_clauses();
|
||
}
|
||
|
||
static tgba_explicit_number*
|
||
sat_build(const satsolver::solution& solution, dict& satdict,
|
||
const tgba* aut, bool state_based)
|
||
{
|
||
bdd_dict* autdict = aut->get_dict();
|
||
tgba_explicit_number* a = new tgba_explicit_number(autdict);
|
||
autdict->register_all_variables_of(aut, a);
|
||
|
||
const ltl::formula* t = ltl::constant::true_instance();
|
||
bdd acc = bdd_ithvar(autdict->register_acceptance_variable(t, a));
|
||
a->set_acceptance_conditions(acc);
|
||
|
||
for (int s = 1; s < satdict.cand_size; ++s)
|
||
a->add_state(s);
|
||
|
||
state_explicit_number::transition* last_aut_trans = 0;
|
||
const transition* last_sat_trans = 0;
|
||
|
||
#if DEBUG
|
||
std::fstream out("dtba-sat.dbg",
|
||
std::ios_base::trunc | std::ios_base::out);
|
||
out.exceptions(std::ifstream::failbit | std::ifstream::badbit);
|
||
std::set<int> positive;
|
||
#endif
|
||
|
||
dout << "--- transition variables ---\n";
|
||
std::set<int> acc_states;
|
||
std::set<src_cond> seen_trans;
|
||
for (satsolver::solution::const_iterator i = solution.begin();
|
||
i != solution.end(); ++i)
|
||
{
|
||
int v = *i;
|
||
|
||
if (v < 0) // FIXME: maybe we can have (v < NNN)?
|
||
continue;
|
||
|
||
#if DEBUG
|
||
positive.insert(v);
|
||
#endif
|
||
|
||
dict::rev_map::const_iterator t = satdict.revtransid.find(v);
|
||
|
||
if (t != satdict.revtransid.end())
|
||
{
|
||
// Skip (s,l,d2) if we have already seen some (s,l,d1).
|
||
if (seen_trans.insert(src_cond(t->second.src,
|
||
t->second.cond)).second)
|
||
{
|
||
last_aut_trans = a->create_transition(t->second.src,
|
||
t->second.dst);
|
||
last_aut_trans->condition = t->second.cond;
|
||
last_sat_trans = &t->second;
|
||
|
||
dout << v << "\t" << t->second << "δ\n";
|
||
|
||
// Mark the transition as accepting if the source is.
|
||
if (state_based
|
||
&& acc_states.find(t->second.src) != acc_states.end())
|
||
last_aut_trans->acceptance_conditions = acc;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
t = satdict.revtransacc.find(v);
|
||
if (t != satdict.revtransacc.end())
|
||
{
|
||
dout << v << "\t" << t->second << "F\n";
|
||
if (last_sat_trans && t->second == *last_sat_trans)
|
||
{
|
||
assert(!state_based);
|
||
// This assumes that the SAT solvers output
|
||
// variables in increasing order.
|
||
last_aut_trans->acceptance_conditions = acc;
|
||
}
|
||
else if (state_based)
|
||
{
|
||
// Accepting translations actually correspond to
|
||
// states and are announced before listing
|
||
// outgoing transitions. Again, this assumes
|
||
// that the SAT solvers output variables in
|
||
// increasing order.
|
||
acc_states.insert(t->second.src);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
#if DEBUG
|
||
dout << "--- state_pair variables ---\n";
|
||
for (std::map<state_pair, int>::const_iterator pit =
|
||
satdict.prodid.begin(); pit != satdict.prodid.end(); ++pit)
|
||
if (positive.find(pit->second) != positive.end())
|
||
dout << pit->second << "\t" << pit->first << "\n";
|
||
else
|
||
dout << -pit->second << "\t¬" << pit->first << "C\n";
|
||
|
||
dout << "--- pathid_cand variables ---\n";
|
||
for (std::map<path, int>::const_iterator pit =
|
||
satdict.pathid_cand.begin();
|
||
pit != satdict.pathid_cand.end(); ++pit)
|
||
if (positive.find(pit->second) != positive.end())
|
||
dout << pit->second << "\t" << pit->first << "C\n";
|
||
else
|
||
dout << -pit->second << "\t¬" << pit->first << "C\n";
|
||
|
||
|
||
dout << "--- pathid_ref variables ---\n";
|
||
for (std::map<path, int>::const_iterator pit =
|
||
satdict.pathid_ref.begin();
|
||
pit != satdict.pathid_ref.end(); ++pit)
|
||
if (positive.find(pit->second) != positive.end())
|
||
dout << pit->second << "\t" << pit->first << "R\n";
|
||
else
|
||
dout << -pit->second << "\t¬" << pit->first << "C\n";
|
||
|
||
dout << "--- pathcand variables ---\n";
|
||
for (std::map<state_pair, int>::const_iterator pit =
|
||
satdict.pathcand.begin();
|
||
pit != satdict.pathcand.end(); ++pit)
|
||
if (positive.find(pit->second) != positive.end())
|
||
dout << pit->second << "\t" << pit->first << "C\n";
|
||
else
|
||
dout << -pit->second << "\t¬" << pit->first << "C\n";
|
||
|
||
#endif
|
||
|
||
a->merge_transitions();
|
||
return a;
|
||
}
|
||
}
|
||
|
||
tgba_explicit_number*
|
||
dtba_sat_synthetize(const tgba* a, int target_state_number,
|
||
bool state_based)
|
||
{
|
||
if (target_state_number == 0)
|
||
return 0;
|
||
trace << "dtba_sat_synthetize(..., states = " << target_state_number
|
||
<< ", state_based = " << state_based << ")\n";
|
||
dict d;
|
||
d.cand_size = target_state_number;
|
||
|
||
satsolver solver;
|
||
satsolver::solution_pair solution;
|
||
|
||
dtba_to_sat(solver(), a, d, state_based);
|
||
solution = solver.get_solution();
|
||
|
||
tgba_explicit_number* res = 0;
|
||
if (!solution.second.empty())
|
||
res = sat_build(solution.second, d, a, state_based);
|
||
|
||
trace << "dtba_sat_synthetize(...) = " << res << "\n";
|
||
return res;
|
||
}
|
||
|
||
tgba_explicit_number*
|
||
dtba_sat_minimize(const tgba* a, bool state_based)
|
||
{
|
||
int n_states = stats_reachable(a).states;
|
||
|
||
tgba_explicit_number* prev = 0;
|
||
for (;;)
|
||
{
|
||
tgba_explicit_number* next =
|
||
dtba_sat_synthetize(prev ? prev : a, --n_states, state_based);
|
||
if (next == 0)
|
||
break;
|
||
else
|
||
n_states = stats_reachable(next).states;
|
||
|
||
delete prev;
|
||
prev = next;
|
||
}
|
||
return prev;
|
||
}
|
||
|
||
tgba_explicit_number*
|
||
dtba_sat_minimize_dichotomy(const tgba* a, bool state_based)
|
||
{
|
||
int max_states = stats_reachable(a).states - 1;
|
||
int min_states = 1;
|
||
|
||
tgba_explicit_number* prev = 0;
|
||
while (min_states <= max_states)
|
||
{
|
||
int target = (max_states + min_states) / 2;
|
||
tgba_explicit_number* next =
|
||
dtba_sat_synthetize(prev ? prev : a, target, state_based);
|
||
if (next == 0)
|
||
{
|
||
min_states = target + 1;
|
||
}
|
||
else
|
||
{
|
||
delete prev;
|
||
prev = next;
|
||
max_states = stats_reachable(next).states - 1;
|
||
}
|
||
}
|
||
return prev;
|
||
}
|
||
}
|