spot/src/tgbatest/reductgba.test
martinez 8be67c1976 * src/tgbatest/reduccmp.test: Bug.
* src/tgbatest/reductgba.test: More Test.

* src/tgbatest/ltl2tgba.cc: Adjust ...
* src/tgbaalgos/reductgba_sim_del.cc, src/tgbaalgos/reductgba_sim.hh,
src/tgbaalgos/reductgba_sim.cc: try to optimize.

* src/tgba/tgbareduc.hh, src/tgba/tgbareduc.cc: Scc reduction
and we remove some acceptance condition in scc which are not accepting.
* src/ltlvisit/syntimpl.cc : Some case wasn't detect.
* src/ltlvisit/basicreduce.cc: Case FGa || FGb = F(Ga | Gb) added.
* src/ltltest/syntimpl.test: More Test.
* src/ltltest/syntimpl.cc: Put the formula in negative normal form.
2004-06-28 15:53:20 +00:00

90 lines
2.5 KiB
Bash
Executable file

#!/bin/sh
# Copyright (C) 2003, 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
# département Systèmes Répartis Coopératifs (SRC), Université Pierre
# et Marie Curie.
#
# This file is part of Spot, a model checking library.
#
# Spot is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# Spot is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Spot; see the file COPYING. If not, write to the Free
# Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
# 02111-1307, USA.
. ./defs
set -e
check()
{
#run 0 ./reductgba "$1" "$2"
./reductgba "$1" "$2"
}
# We don't check the output, but just running these might be enough to
# trigger assertions.
check 0 a
check 0 'a U b'
check 0 'a U Fb'
check 0 'X a'
check 0 'a & b & c'
check 0 'a | b | (c U (d & (g U (h ^ i))))'
check 0 'Xa & (b U !a) & (b U !a)'
check 0 'Fa & Xb & GFc & Gd'
check 0 'Fa & Xa & GFc & Gc'
check 0 'Fc & X(a | Xb) & GF(a | Xb) & Gc'
check 0 'a R (b R c)'
check 0 '(a U b) U (c U d)'
check 0 '((Xp2)U(X(1)))*(p1 R(p2 R p0))'
check 0 '((p3 | Xp3 | Xp2) & (X!p3 | (!p3 & X!p2))) R F(0)'
check 1 a
check 1 'a U b'
check 1 'X a'
check 1 'a & b & c'
check 1 'a | b | (c U (d & (g U (h ^ i))))'
check 1 'Xa & (b U !a) & (b U !a)'
check 1 'Fa & Xb & GFc & Gd'
check 1 'Fa & Xa & GFc & Gc'
check 1 'Fc & X(a | Xb) & GF(a | Xb) & Gc'
check 1 'a R (b R c)'
check 1 '(a U b) U (c U d)'
check 1 '((Xp2)U(X(1)))*(p1 R(p2 R p0))'
check 2 a
check 2 'a U b'
check 2 'X a'
check 2 'a & b & c'
check 2 'a | b | (c U (d & (g U (h ^ i))))'
check 2 'Xa & (b U !a) & (b U !a)'
check 2 'Fa & Xb & GFc & Gd'
check 2 'Fa & Xa & GFc & Gc'
check 2 'Fc & X(a | Xb) & GF(a | Xb) & Gc'
check 2 'a R (b R c)'
check 2 '(a U b) U (c U d)'
check 2 '((Xp2)U(X(1)))*(p1 R(p2 R p0))'
check 3 a
check 3 'a U b'
check 3 'a U Fb'
check 3 'X a'
check 3 'a & b & c'
check 3 'a | b | (c U (d & (g U (h ^ i))))'
check 3 'Xa & (b U !a) & (b U !a)'
check 3 'Fa & Xb & GFc & Gd'
check 3 'Fa & Xa & GFc & Gc'
check 3 'Fc & X(a | Xb) & GF(a | Xb) & Gc'
check 3 'a R (b R c)'
check 3 '(a U b) U (c U d)'
check 3 '((Xp2)U(X(1)))*(p1 R(p2 R p0))'