spot/spot/twaalgos/game.cc
Florian Renkin 96ff2225e3 Fix typos in doc, comments and messages
* bin/README, bin/common_conv.hh, bin/common_trans.cc,
    bin/ltlsynt.cc, bin/spot-x.cc, spot/gen/automata.hh,
    spot/graph/graph.hh, spot/ltsmin/ltsmin.hh,
    spot/ltsmin/spins_interface.hh, spot/ltsmin/spins_kripke.hh,
    spot/mc/bloemen.hh, spot/mc/bloemen_ec.hh, spot/mc/cndfs.hh,
    spot/mc/deadlock.hh, spot/mc/intersect.hh, spot/mc/lpar13.hh,
    spot/mc/mc_instanciator.hh, spot/misc/bareword.cc,
    spot/misc/fixpool.hh, spot/misc/formater.hh, spot/misc/minato.hh,
    spot/misc/satsolver.hh, spot/misc/timer.hh,
    spot/parseaut/public.hh, spot/priv/partitioned_relabel.cc,
    spot/priv/satcommon.hh, spot/ta/ta.hh, spot/ta/taexplicit.cc,
    spot/ta/taproduct.hh, spot/ta/tgta.hh, spot/taalgos/reachiter.hh,
    spot/taalgos/tgba2ta.hh, spot/tl/apcollect.cc,
    spot/tl/apcollect.hh, spot/tl/formula.cc, spot/tl/parse.hh,
    spot/tl/randomltl.hh, spot/tl/relabel.hh, spot/tl/simplify.cc,
    spot/twa/acc.hh, spot/twa/bddprint.hh, spot/twa/formula2bdd.cc,
    spot/twa/twa.hh, spot/twa/twagraph.cc, spot/twa/twagraph.hh,
    spot/twaalgos/aiger.cc, spot/twaalgos/aiger.hh,
    spot/twaalgos/alternation.hh,  spot/twaalgos/cleanacc.cc,
    spot/twaalgos/cobuchi.cc, spot/twaalgos/contains.cc,
    spot/twaalgos/couvreurnew.cc, spot/twaalgos/cycles.hh,
    spot/twaalgos/degen.cc, spot/twaalgos/degen.hh,
    spot/twaalgos/dot.hh, spot/twaalgos/dtbasat.cc,
    spot/twaalgos/dtwasat.cc, spot/twaalgos/dtwasat.hh,
    spot/twaalgos/dualize.cc, spot/twaalgos/emptiness.hh,
    spot/twaalgos/emptiness_stats.hh, spot/twaalgos/game.cc,
    spot/twaalgos/genem.hh, spot/twaalgos/hoa.hh,
    spot/twaalgos/langmap.hh, spot/twaalgos/ltl2tgba_fm.hh,
    spot/twaalgos/magic.cc, spot/twaalgos/magic.hh,
    spot/twaalgos/mask.hh, spot/twaalgos/mealy_machine.cc,
    spot/twaalgos/mealy_machine.hh,
    spot/twaalgos/minimize.hh, spot/twaalgos/parity.cc,
    spot/twaalgos/parity.hh, spot/twaalgos/postproc.cc,
    spot/twaalgos/product.hh, spot/twaalgos/reachiter.hh,
    spot/twaalgos/relabel.cc, spot/twaalgos/remfin.cc,
    spot/twaalgos/remfin.hh, spot/twaalgos/sccfilter.cc,
    spot/twaalgos/sccinfo.hh, spot/twaalgos/se05.cc,
    spot/twaalgos/se05.hh, spot/twaalgos/simulation.hh,
    spot/twaalgos/split.hh, spot/twaalgos/stats.hh,
    spot/twaalgos/synthesis.cc, spot/twaalgos/synthesis.hh,
    spot/twaalgos/tau03.hh, spot/twaalgos/tau03opt.hh,
    spot/twaalgos/toparity.hh, spot/twaalgos/totgba.hh,
    spot/twaalgos/translate.hh, spot/twaalgos/word.cc,
    spot/twaalgos/word.hh, spot/twaalgos/zlktree.cc,
    spot/twaalgos/zlktree.hh, spot/twacube/cube.hh,
    spot/twacube/twacube.hh, tests/core/cube.cc,
    tests/core/ltlsynt.test, tests/core/parity.cc,
    tests/core/safra.cc, tests/core/twagraph.cc: here
2024-04-16 17:01:31 +02:00

1362 lines
48 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) by the Spot authors, see the AUTHORS file for details.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "config.h"
#include <utility>
#include <spot/twaalgos/game.hh>
#include <spot/misc/escape.hh>
#include <spot/twaalgos/sccinfo.hh>
namespace spot
{
namespace
{
constexpr unsigned unseen_mark = std::numeric_limits<unsigned>::max();
using par_t = int;
constexpr par_t limit_par_even =
std::numeric_limits<par_t>::max() & 1
? std::numeric_limits<par_t>::max()-3
: std::numeric_limits<par_t>::max()-2;
using strat_t = long long;
constexpr strat_t no_strat_mark = std::numeric_limits<strat_t>::min();
static const std::vector<bool>*
ensure_game(const const_twa_graph_ptr& arena, const char* fnname)
{
auto owner = arena->get_named_prop<std::vector<bool>>("state-player");
if (!owner)
throw std::runtime_error
(std::string(fnname) + ": automaton should define \"state-player\"");
if (owner->size() != arena->num_states())
throw std::runtime_error
(std::string(fnname) + ": \"state-player\" should have "
"as many states as the automaton");
return owner;
}
static const std::vector<bool>*
ensure_parity_game(const const_twa_graph_ptr& arena, const char* fnname)
{
bool max, odd;
bool is_par = arena->acc().is_parity(max, odd, true);
if (!is_par)
throw std::runtime_error
(std::string(fnname) +
": arena must have one of the four parity acceptance conditions");
return ensure_game(arena, fnname);
}
// Internal structs
// winning regions for env and player
struct winner_t
{
std::vector<bool> has_winner_;
std::vector<bool> winner_;
inline bool operator()(unsigned v, bool p)
{
// returns true if player p wins v
// false otherwise
return has_winner_[v] ? winner_[v] == p : false;
}
inline void set(unsigned v, bool p)
{
has_winner_[v] = true;
winner_[v] = p;
}
inline void unset(unsigned v)
{
has_winner_[v] = false;
}
inline bool winner(unsigned v)
{
assert(has_winner_.at(v));
return winner_[v];
}
}; // winner_t
// Internal structs used by parity_game
// Struct to change recursive calls to stack
struct work_t
{
work_t(unsigned wstep_, unsigned rd_, par_t min_par_,
par_t max_par_) noexcept
: wstep(wstep_),
rd(rd_),
min_par(min_par_),
max_par(max_par_)
{
}
const unsigned wstep, rd;
const par_t min_par, max_par;
}; // work_t
// Collects information about an scc
// Used to detect special cases
struct subgame_info_t
{
typedef std::set<par_t, std::greater<par_t>> all_parities_t;
subgame_info_t() noexcept
{
}
subgame_info_t(bool empty, bool one_parity, bool one_player0,
bool one_player1, all_parities_t parities) noexcept
: is_empty(empty),
is_one_parity(one_parity),
is_one_player0(one_player0),
is_one_player1(one_player1),
all_parities(parities)
{};
bool is_empty; // empty subgame
bool is_one_parity; // only one parity appears in the subgame
// todo : Not used yet
bool is_one_player0; // one player subgame for player0 <-> p==false
bool is_one_player1; // one player subgame for player1 <-> p==true
all_parities_t all_parities;
}; // subgame_info_t
// A class to solve parity games
// The current implementation is inspired by
// by oink however without multicore and adapted to transition based
// acceptance
class parity_game
{
public:
bool solve(const twa_graph_ptr& arena, bool solve_globally)
{
// todo check if reordering states according to scc is worth it
set_up(arena);
// Start recursive zielonka in a bottom-up fashion on each scc
subgame_info_t subgame_info;
while (true)
{
// If we solve globally,
auto maybe_useful = [&](unsigned scc_idx){
if (info_->is_useful_scc(scc_idx))
return true;
if (!solve_globally)
return false;
// Check if we have an out-edge to a winning state
// in another scc
return std::any_of(
info_->states_of(scc_idx).begin(),
info_->states_of(scc_idx).end(),
[&](unsigned s){
return std::any_of(
arena->out(s).begin(),
arena->out(s).end(),
[&](const auto& e){
assert ((subgame_[e.dst] == unseen_mark)
|| (info_->scc_of(e.dst) != scc_idx));
return (info_->scc_of(e.dst) != scc_idx)
&& w_.winner(e.dst);
});
});
};
for (c_scc_idx_ = 0; c_scc_idx_ < info_->scc_count(); ++c_scc_idx_)
{
// Testing
// Make sure that every state that has a winner also
// belongs to a subgame
assert([&]()
{
for (unsigned i = 0; i < arena_->num_states(); ++i)
if (w_.has_winner_[i]
&& (subgame_[i] == unseen_mark))
return false;
return true;
}());
// Useless SCCs are winning for player 0.
if (!maybe_useful(c_scc_idx_))
{
// This scc also gets its own subgame
++rd_;
for (unsigned v: c_states())
{
subgame_[v] = rd_;
w_.set(v, false);
// The strategy for player 0 is to take the first
// available edge.
if ((*owner_ptr_)[v] == false)
for (const auto &e : arena_->out(v))
{
s_[v] = arena_->edge_number(e);
break;
}
}
continue;
}
// Convert transitions leaving edges to self-loops
// and check if trivially solvable
subgame_info = fix_scc();
// If empty, the scc was trivially solved
if (!subgame_info.is_empty)
{
// Check for special cases
if (subgame_info.is_one_parity)
one_par_subgame_solver(subgame_info, max_abs_par_);
else
{
// "Regular" solver
max_abs_par_ = *subgame_info.all_parities.begin();
w_stack_.emplace_back(0, 0,
min_par_graph_, max_abs_par_);
zielonka();
}
}
}
if (!solve_globally)
break;
// Update the scc_info and continue
unsigned new_init
= std::distance(subgame_.begin(),
std::find(subgame_.begin(), subgame_.end(),
unseen_mark));
if (new_init == arena->num_states())
break; // All states have been solved
// Compute new sccs
scc_info::edge_filter ef
= [](const twa_graph::edge_storage_t&,
unsigned dst, void* subgame){
const auto& sg = *static_cast<std::vector<unsigned>*>(subgame);
return sg[dst] == unseen_mark ?
scc_info::edge_filter_choice::keep :
scc_info::edge_filter_choice::ignore;
};
info_ = std::make_unique<scc_info>(arena, new_init, ef, &subgame_);
}
// Every state needs a winner (solve_globally)
// Or only those reachable
assert((solve_globally
&& std::all_of(w_.has_winner_.cbegin(), w_.has_winner_.cend(),
[](bool b) { return b; }))
|| (!solve_globally
&& [&](){
for (unsigned s = 0; s < arena->num_states(); ++s)
{
if ((info_->scc_of(s) != -1u)
&& !w_.has_winner_.at(s))
return false;
}
return true;
}()));
// Only the states owned by the winner need a strategy
assert([&]()
{
std::unordered_set<unsigned> valid_strat;
for (const auto& e : arena_->edges())
valid_strat.insert(arena_->edge_number(e));
for (unsigned v = 0; v < arena_->num_states(); ++v)
{
if (!solve_globally && (info_->scc_of(v) == -1u))
continue;
if (((*owner_ptr_)[v] == w_.winner(v))
&& (valid_strat.count(s_.at(v)) == 0))
return false;
}
return true;
}());
// Put the solution as named property
region_t &w = *arena->get_or_set_named_prop<region_t>("state-winner");
strategy_t &s = *arena->get_or_set_named_prop<strategy_t>("strategy");
w.swap(w_.winner_);
s.clear();
s.reserve(s_.size());
for (auto as : s_)
s.push_back(as == no_strat_mark ? 0 : (unsigned) as);
clean_up();
return w[arena->get_init_state_number()];
}
private:
// Returns the vector of states currently considered
// i.e. the states of the current scc
// c_scc_idx_ is set in the 'main' loop
inline const std::vector<unsigned> &c_states()
{
assert(info_);
return info_->states_of(c_scc_idx_);
}
void set_up(const twa_graph_ptr& arena)
{
owner_ptr_ = ensure_parity_game(arena, "solve_parity_game()");
arena_ = arena;
unsigned n_states = arena_->num_states();
// Resize data structures
subgame_.clear();
subgame_.resize(n_states, unseen_mark);
w_.has_winner_.clear();
w_.has_winner_.resize(n_states, 0);
w_.winner_.clear();
w_.winner_.resize(n_states, 0);
s_.clear();
s_.resize(n_states, no_strat_mark);
// Init
rd_ = 0;
info_ = std::make_unique<scc_info>(arena_);
// Create all the parities
// we want zielonka to work with any of the four parity types
// and we want it to work on partially colored arenas
// However the actually algorithm still supposes max odd.
// Therefore (and in order to avoid the manipulation of the mark
// at each step) we generate a vector directly storing the
// "equivalent" parity for each edge
bool max, odd;
arena_->acc().is_parity(max, odd, true);
max_abs_par_ = arena_->acc().all_sets().max_set()-1;
// Make it the next larger odd
par_t next_max_par = max_abs_par_ + 1;
all_edge_par_.resize(arena_->edge_vector().size(),
std::numeric_limits<par_t>::max());
// The parities are modified much like for colorize_parity
// however if the acceptance condition is "min", we negate all
// parities to get "max"
// The algorithm works on negative or positive parities alike
//| kind/style | n | empty tr. | other tr. | result | min par
//|------------+-----+---------------+------------+--------------|---------
//| max odd | any | set to {-1} | unchanged | max odd n | -1
//| max even | any | set to {0} | add 1 | max odd n+1 | 0
//| min odd | any | set to {-n} | negate | max odd 0 | -n
//| min even | any | set to {-n+1} | negate + 1 | max odd +1 | -n + 1
min_par_graph_ = -(!max*max_abs_par_) - (max*odd);
max_par_graph_ = max*(max_abs_par_ + !odd) + !max*!odd;
// Takes an edge and returns the "equivalent" max odd parity
auto equiv_par = [max, odd, next_max_par, inv = 2*max-1](const auto& e)
{
par_t e_par = e.acc.max_set() - 1; // -1 for empty
// If "min" and empty -> set to n
if (!max & (e_par == -1))
e_par = next_max_par;
// Negate if min
e_par *= inv;
// even -> odd
e_par += !odd;
return e_par;
};
for (const auto& e : arena_->edges())
{
unsigned e_idx = arena_->edge_number(e);
all_edge_par_[e_idx] = equiv_par(e);
}
}
// Checks if an scc is empty and reports the occurring parities
// or special cases
inline subgame_info_t
inspect_scc(par_t max_par)
{
subgame_info_t info;
info.is_empty = true;
info.is_one_player0 = true;
info.is_one_player1 = true;
for (unsigned v : c_states())
{
if (subgame_[v] != unseen_mark)
continue;
bool multi_edge = false;
for (const auto &e : arena_->out(v))
if (subgame_[e.dst] == unseen_mark)
{
info.is_empty = false;
par_t this_par = to_par(e);
if (this_par <= max_par)
{
info.all_parities.insert(this_par);
multi_edge = true;
}
}
if (multi_edge)
{
// This state has multiple edges, so it is not
// a one player subgame for !owner
if ((*owner_ptr_)[v])
info.is_one_player1 = false;
else
info.is_one_player0 = false;
}
} // v
assert(info.all_parities.size() || info.is_empty);
info.is_one_parity = info.all_parities.size() == 1;
// Done
return info;
}
// Computes the trivially solvable part of the scc
// That is the states that can be attracted to an
// outgoing transition
inline subgame_info_t
fix_scc()
{
// Note that the winner of the transitions
// leaving the scc are already determined
// attr(...) will only modify the
// states within the current scc
// but we have to "trick" it into
// not disregarding the transitions leaving the scc
// dummy needed to pass asserts
max_abs_par_ = limit_par_even+2;
// The attractors should define their own subgame
// but as we want to compute the attractors of the
// leaving transitions, we need to make
// sure that
// a) no transition is excluded due to its parity
// b) no transition is considered accepting/winning
// due to its parity
// Final note: Attractors cannot intersect by definition
// therefore the order in which they are computed
// is irrelevant
unsigned dummy_rd = 0;
// Attractor of outgoing transitions winning for env
attr(dummy_rd, false, limit_par_even, true, limit_par_even, false);
// Attractor of outgoing transitions winning for player
attr(dummy_rd, true, limit_par_even+1, true, limit_par_even+1, false);
// No strategy fix need
// assert if all winning states of the current scc have a valid strategy
assert([&]()
{
for (unsigned v : c_states())
{
if (!w_.has_winner_[v])
continue;
// We only need a strategy if the winner
// of the state is also the owner
if (w_.winner(v) != (*owner_ptr_)[v])
continue;
if (s_[v] <= 0)
{
std::cerr << "state " << v << " has a winner "
<< w_.winner(v) << " and owner "
<< (*owner_ptr_)[v]
<< " but no strategy "
<< s_[v] << '\n';
return false;
}
const auto& e = arena_->edge_storage(s_[v]);
if (!w_.has_winner_[e.dst]
|| (w_.winner(e.src) != w_.winner(e.dst)))
{
std::cerr << "state " << v << " has a winner "
<< w_.winner(v)
<< " but no valid strategy\n";
return false;
}
}
return true;
}());
auto ins = inspect_scc(limit_par_even);
return ins;
} // fix_scc
inline bool
attr(unsigned &rd, bool p, par_t max_par,
bool acc_par, par_t min_win_par, bool respect_sg=true)
{
// In fix_scc, the attr computation is
// abused so we can not check certain things
// Computes the attractor of the winning set of player p within a
// subgame given as rd.
// If acc_par is true, max_par transitions are also accepting and
// the subgame count will be increased
// The attracted vertices are directly added to the set
// Increase rd meaning we create a new subgame
if (acc_par)
rd = ++rd_;
// todo replace with a variant of topo sort ?
// As proposed in Oink! / PGSolver
// Needs the transposed graph however
assert((!acc_par) || (acc_par && to_player(max_par) == p));
assert(!acc_par || (min_par_graph_ <= min_win_par));
assert((min_win_par <= max_par) && (max_par <= max_abs_par_));
bool grown = false;
// We could also directly mark states as owned,
// instead of adding them to to_add first,
// possibly reducing the number of iterations.
// However by making the algorithm complete a loop
// before adding it is like a backward bfs and (generally) reduces
// the size of the strategy
static std::vector<unsigned> to_add;
assert(to_add.empty());
do
{
grown |= !to_add.empty();
for (unsigned v : to_add)
{
// v is winning
w_.set(v, p);
// Mark if demanded
if (acc_par)
{
assert(subgame_[v] == unseen_mark);
subgame_[v] = rd;
}
}
to_add.clear();
for (unsigned v : c_states())
{
if ((subgame_[v] < rd) || (w_(v, p)))
// Not in subgame or winning for p
continue;
bool is_owned = (*owner_ptr_)[v] == p;
bool wins = !is_owned;
// Loop over out-going
// Optim: If given the choice,
// we seek to go to the "oldest" subgame
// That is the subgame with the lowest rd value
unsigned min_subgame_idx = unseen_mark;
for (const auto &e: arena_->out(v))
{
par_t this_par = to_par(e);
if ((!respect_sg || (subgame_[e.dst] >= rd))
&& (this_par <= max_par))
{
// Check if winning
if (w_(e.dst, p)
|| (acc_par && (min_win_par <= this_par)))
{
assert(!acc_par || (this_par < min_win_par) ||
(acc_par && (min_win_par <= this_par) &&
(to_player(this_par) == p)));
if (is_owned)
{
wins = true;
if (acc_par)
{
s_[v] = arena_->edge_number(e);
if (min_win_par <= this_par)
// max par edge
// change sign -> mark as needs
// to be possibly fixed
s_[v] = -s_[v];
break;
}
else
{
//snapping
if (subgame_[e.dst] < min_subgame_idx)
{
s_[v] = arena_->edge_number(e);
min_subgame_idx = subgame_[e.dst];
if (!p)
// No optim for env
break;
}
}
}// owned
}
else
{
if (!is_owned)
{
wins = false;
break;
}
} // winning
} // subgame
}// for edges
if (wins)
to_add.push_back(v);
} // for v
} while (!to_add.empty());
// done
assert(to_add.empty());
return grown;
}
// We need to check if transitions that are accepted due
// to their parity remain in the winning region of p
inline bool
fix_strat_acc(unsigned rd, bool p, par_t min_win_par, par_t max_par)
{
for (unsigned v : c_states())
{
// Only current attractor and owned
// and winning vertices are concerned
if ((subgame_[v] != rd) || !w_(v, p)
|| ((*owner_ptr_)[v] != p) || (s_[v] > 0))
continue;
// owned winning vertex of attractor
// Get the strategy edge
s_[v] = -s_[v];
const auto &e_s = arena_->edge_storage(s_[v]);
// Optimization only for player
if (!p && w_(e_s.dst, p))
// If current strat is admissible ->
// nothing to do for env
continue;
// This is an accepting edge that is no longer admissible
// or we seek a more desirable edge (for player)
assert(min_win_par <= to_par(e_s));
assert(to_par(e_s) <= max_par);
// Strategy heuristic : go to the oldest subgame
unsigned min_subgame_idx = unseen_mark;
s_[v] = no_strat_mark;
for (const auto &e_fix : arena_->out(v))
{
if (subgame_[e_fix.dst] >= rd)
{
par_t this_par = to_par(e_fix);
// This edge must have less than max_par,
// otherwise it would have already been attracted
assert((this_par <= max_par)
|| (to_player(this_par) != (max_par&1)));
// if it is accepting and leads to the winning region
// -> valid fix
if ((min_win_par <= this_par)
&& (this_par <= max_par)
&& w_(e_fix.dst, p)
&& (subgame_[e_fix.dst] < min_subgame_idx))
{
// Max par edge to older subgame found
s_[v] = arena_->edge_number(e_fix);
min_subgame_idx = subgame_[e_fix.dst];
}
}
}
if (s_[v] == no_strat_mark)
// NO fix found
// This state is NOT won by p due to any accepting edges
return true; // true -> grown
}
// Nothing to fix or all fixed
return false; // false -> not grown == all good
}
inline void zielonka()
{
while (!w_stack_.empty())
{
auto this_work = w_stack_.back();
w_stack_.pop_back();
switch (this_work.wstep)
{
case (0):
{
assert(this_work.rd == 0);
assert(this_work.min_par == min_par_graph_);
unsigned rd;
assert(this_work.max_par <= max_abs_par_);
// Check if empty and get parities
subgame_info_t subgame_info =
inspect_scc(this_work.max_par);
if (subgame_info.is_empty)
// Nothing to do
break;
if (subgame_info.is_one_parity)
{
// Can be trivially solved
one_par_subgame_solver(subgame_info, this_work.max_par);
break;
}
// Compute the winning parity boundaries
// -> Priority compression
// Optional, improves performance
// Highest actually occurring
// Attention in partially colored graphs
// the parity -1 and 0 appear
par_t max_par = *subgame_info.all_parities.begin();
par_t min_win_par = max_par;
while ((min_win_par >= (min_par_graph_+2)) &&
(!subgame_info.all_parities.count(min_win_par - 1)))
min_win_par -= 2;
assert(min_win_par >= min_par_graph_);
assert(max_par >= min_win_par);
assert((max_par&1) == (min_win_par&1));
assert(!subgame_info.all_parities.empty());
// Get the player
bool p = to_player(min_win_par);
// Attraction to highest par
// This increases rd_ and passes it to rd
attr(rd, p, max_par, true, min_win_par);
// All those attracted get subgame_[v] <- rd
// Continuation
w_stack_.emplace_back(1, rd, min_win_par, max_par);
// Recursion
w_stack_.emplace_back(0, 0, min_par_graph_, min_win_par - 1);
// Others attracted will have higher counts in subgame
break;
}
case (1):
{
unsigned rd = this_work.rd;
par_t min_win_par = this_work.min_par;
par_t max_par = this_work.max_par;
assert(to_player(min_win_par) == to_player(max_par));
bool p = to_player(min_win_par);
// Check if the attractor of w_[!p] is equal to w_[!p]
// if so, player wins if there remain accepting transitions
// for max_par (see fix_strat_acc)
// This does not increase but reuse rd
bool grown = attr(rd, !p, max_par, false, min_win_par);
// todo investigate: A is an attractor, so the only way that
// attr(w[!p]) != w[!p] is if the max par "exit" edges lead
// to a trap for player/ exit the winning region of the
// player so we can do a fast check instead of the
// generic attr computation which only needs to be done
// if the fast check is positive
// Check if strategy needs to be fixed / is fixable
if (!grown)
// this only concerns parity accepting edges
grown = fix_strat_acc(rd, p, min_win_par, max_par);
// If !grown we are done, and the partitions are valid
if (grown)
{
// Reset current game without !p attractor
for (unsigned v : c_states())
if (!w_(v, !p) && (subgame_[v] >= rd))
{
// delete ownership
w_.unset(v);
// Mark as unseen
subgame_[v] = unseen_mark;
// Unset strat for testing
s_[v] = no_strat_mark;
}
w_stack_.emplace_back(0, 0, min_par_graph_, max_par);
// No need to do anything else
// the attractor of !p of this level is not changed
}
break;
}
default:
throw std::runtime_error("No valid workstep");
} // switch
} // while
} // zielonka
// Empty all internal variables
inline void clean_up()
{
info_ = nullptr;
subgame_.clear();
w_.has_winner_.clear();
w_.winner_.clear();
s_.clear();
rd_ = 0;
max_abs_par_ = 0;
}
// Dedicated solver for special cases
inline void one_par_subgame_solver(const subgame_info_t &info,
par_t max_par)
{
assert(info.all_parities.size() == 1);
// The entire subgame is won by the player of the only parity
// Any edge will do
// todo optim for smaller circuit
// This subgame gets its own counter
++rd_;
unsigned rd = rd_;
par_t one_par = *info.all_parities.begin();
bool winner = to_player(one_par);
assert(one_par <= max_par);
for (unsigned v : c_states())
{
if (subgame_[v] != unseen_mark)
continue;
// State of the subgame
subgame_[v] = rd;
w_.set(v, winner);
// Get the strategy
assert(s_[v] == no_strat_mark);
for (const auto &e : arena_->out(v))
{
par_t this_par = to_par(e);
if ((subgame_[e.dst] >= rd) && (this_par <= max_par))
{
assert(this_par == one_par);
// Ok for strat
s_[v] = arena_->edge_number(e);
break;
}
}
assert((0 < s_[v]) && (s_[v] < unseen_mark));
}
// Done
}
template <class EDGE>
inline par_t
to_par(const EDGE& e)
{
return all_edge_par_[arena_->edge_number(e)];
}
inline bool
to_player(par_t par)
{
return par & 1;
}
twa_graph_ptr arena_;
const std::vector<bool> *owner_ptr_;
unsigned rd_;
winner_t w_;
// Subgame array similar to the one from oink!
std::vector<unsigned> subgame_;
// strategies for env and player; For synthesis only player is needed
// We need a signed value here in order to "fix" the strategy
// during construction
std::vector<strat_t> s_;
// Informations about sccs and the current scc
std::unique_ptr<scc_info> info_;
par_t max_abs_par_; // Max parity occurring in the current scc
// Minimal and maximal parity occurring in the entire graph
par_t min_par_graph_, max_par_graph_;
// Info on the current scc
unsigned c_scc_idx_;
// Change recursive calls to stack
std::vector<work_t> w_stack_;
// Directly store a vector of parities
// This vector will be created such
// that it takes care of the actual parity condition
// and after that zielonka can be called as if max odd
std::vector<par_t> all_edge_par_;
};
} // anonymous
bool solve_parity_game(const twa_graph_ptr& arena, bool solve_globally)
{
parity_game pg;
return pg.solve(arena, solve_globally);
}
bool solve_game(const twa_graph_ptr& arena)
{
bool dummy1, dummy2;
auto& acc = arena->acc();
if (acc.is_t())
return solve_safety_game(arena);
if (!arena->acc().is_parity(dummy1, dummy2, true))
throw std::runtime_error
("solve_game(): unsupported acceptance condition.");
return solve_parity_game(arena);
}
// backward compatibility
void pg_print(std::ostream& os, const const_twa_graph_ptr& arena)
{
print_pg(os, arena);
}
std::ostream& print_pg(std::ostream& os, const const_twa_graph_ptr& arena)
{
bool is_par, max, odd;
is_par = arena->acc().is_parity(max, odd, true);
if (!is_par)
throw std::runtime_error("print_pg: arena must have a parity acceptance");
const region_t& owner = *ensure_game(arena, "print_pg");
bool max_odd_colored =
max && odd && std::all_of(arena->edges().begin(),
arena->edges().end(),
[](const auto& e)
{
return (bool) e.acc;
});
const_twa_graph_ptr towork = arena;
if (!max_odd_colored)
{
twa_graph_ptr tmp =
change_parity(arena, parity_kind_max, parity_style_odd);
colorize_parity_here(tmp, true);
towork = tmp;
}
auto sn = arena->get_named_prop<std::vector<std::string>>("state-names");
unsigned ns = towork->num_states();
unsigned init = towork->get_init_state_number();
os << "parity " << ns - 1 << ";\n";
std::vector<bool> seen(ns, false);
std::vector<unsigned> todo({init});
while (!todo.empty())
{
unsigned src = todo.back();
todo.pop_back();
if (seen[src])
continue;
seen[src] = true;
os << src << ' ';
os << towork->out(src).begin()->acc.max_set() - 1 << ' ';
os << owner[src] << ' ';
bool first = true;
for (auto& e: arena->out(src))
{
if (!first)
os << ',';
first = false;
os << e.dst;
if (!seen[e.dst])
todo.push_back(e.dst);
}
if (sn && sn->size() > src && !(*sn)[src].empty())
{
os << " \"";
escape_str(os, (*sn)[src]);
os << '"';
}
os << ";\n";
}
return os;
}
void alternate_players(spot::twa_graph_ptr& arena,
bool first_player, bool complete0)
{
auto um = arena->acc().unsat_mark();
if (!um.first && complete0)
throw std::runtime_error
("alternate_players(): Cannot complete monitor.");
unsigned sink_env = 0;
unsigned sink_con = 0;
std::vector<bool> seen(arena->num_states(), false);
unsigned init = arena->get_init_state_number();
std::vector<unsigned> todo({init});
auto owner = new std::vector<bool>(arena->num_states(), false);
(*owner)[init] = first_player;
while (!todo.empty())
{
unsigned src = todo.back();
todo.pop_back();
seen[src] = true;
bdd missing = bddtrue;
for (auto& e: arena->out(src))
{
bool osrc = (*owner)[src];
if (complete0 && !osrc)
missing -= e.cond;
if (!seen[e.dst])
{
(*owner)[e.dst] = !osrc;
todo.push_back(e.dst);
}
else if (e.src == e.dst)
{
if (e.cond == bddtrue)
{
// Fix trivial self-loop
// No need to add it to seen
auto inter = arena->new_state();
owner->push_back(!osrc);
e.dst = inter;
arena->new_edge(inter, src, bddtrue, e.acc);
}
else
throw std::runtime_error("alternate_players(): "
"Nontrivial selfloop");
}
else if ((*owner)[e.dst] == osrc)
{
delete owner;
throw std::runtime_error
("alternate_players(): Odd cycle detected.");
}
}
if (complete0 && !(*owner)[src] && missing != bddfalse)
{
if (sink_env == 0)
{
sink_env = arena->new_state();
sink_con = arena->new_state();
owner->push_back(true);
owner->push_back(false);
arena->new_edge(sink_con, sink_env, bddtrue, um.second);
arena->new_edge(sink_env, sink_con, bddtrue, um.second);
}
arena->new_edge(src, sink_env, missing, um.second);
assert(owner->at(src) != owner->at(sink_env));
}
}
assert([&]()
{
for (const auto& e : arena->edges())
if (owner->at(e.src) == owner->at(e.dst))
return false;
return true;
}() && "Not alternating");
arena->set_named_prop("state-player", owner);
}
twa_graph_ptr
highlight_strategy(twa_graph_ptr& aut,
int player0_color,
int player1_color)
{
auto owner = ensure_game(aut, "highlight_strategy()");
region_t* w = aut->get_named_prop<region_t>("state-winner");
strategy_t* s = aut->get_named_prop<strategy_t>("strategy");
if (!w)
throw std::runtime_error
("highlight_strategy(): "
"winning region unavailable, solve the game first");
if (!s)
throw std::runtime_error
("highlight_strategy(): strategy unavailable, solve the game first");
unsigned ns = aut->num_states();
auto* hl_edges = aut->get_or_set_named_prop<std::map<unsigned, unsigned>>
("highlight-edges");
auto* hl_states = aut->get_or_set_named_prop<std::map<unsigned, unsigned>>
("highlight-states");
if (unsigned sz = std::min(w->size(), s->size()); sz < ns)
ns = sz;
for (unsigned n = 0; n < ns; ++n)
{
int color = (*w)[n] ? player1_color : player0_color;
if (color == -1)
continue;
(*hl_states)[n] = color;
if ((*w)[n] == (*owner)[n])
(*hl_edges)[(*s)[n]] = color;
}
return aut;
}
void set_state_players(twa_graph_ptr arena, const region_t& owners)
{
set_state_players(arena, region_t(owners));
}
void set_state_players(twa_graph_ptr arena, region_t&& owners)
{
if (owners.size() != arena->num_states())
throw std::runtime_error
("set_state_players(): There must be as many owners as states");
arena->set_named_prop<region_t>("state-player",
new region_t(std::move(owners)));
}
void set_state_player(twa_graph_ptr arena, unsigned state, bool owner)
{
if (state >= arena->num_states())
throw std::runtime_error("set_state_player(): invalid state number");
region_t *owners = arena->get_named_prop<region_t>("state-player");
if (!owners)
throw std::runtime_error("set_state_player(): Can only set the state of "
"an individual "
"state if \"state-player\" already exists.");
if (owners->size() != arena->num_states())
throw std::runtime_error("set_state_player(): The \"state-player\" "
"vector has a different "
"size compared to the automaton! "
"Called new_state in between?");
(*owners)[state] = owner;
}
const region_t& get_state_players(const const_twa_graph_ptr& arena)
{
region_t *owners = arena->get_named_prop<region_t>
("state-player");
if (!owners)
throw std::runtime_error
("get_state_players(): state-player property not defined, not a game?");
return *owners;
}
const region_t& get_state_players(twa_graph_ptr& arena)
{
region_t *owners = arena->get_named_prop<region_t>
("state-player");
if (!owners)
throw std::runtime_error
("get_state_players(): state-player property not defined, not a game?");
return *owners;
}
bool get_state_player(const_twa_graph_ptr arena, unsigned state)
{
if (state >= arena->num_states())
throw std::runtime_error("get_state_player(): invalid state number");
region_t* owners = arena->get_named_prop<region_t>("state-player");
if (!owners)
throw std::runtime_error
("get_state_player(): state-player property not defined, not a game?");
return (*owners)[state];
}
const strategy_t& get_strategy(const const_twa_graph_ptr& arena)
{
auto strat_ptr = arena->get_named_prop<strategy_t>("strategy");
if (!strat_ptr)
throw std::runtime_error("get_strategy(): Named prop "
"\"strategy\" not set."
"Arena not solved?");
return *strat_ptr;
}
void set_strategy(twa_graph_ptr arena, const strategy_t& strat)
{
set_strategy(arena, strategy_t(strat));
}
void set_strategy(twa_graph_ptr arena, strategy_t&& strat)
{
if (arena->num_states() != strat.size())
throw std::runtime_error("set_strategy(): strategies need to have "
"the same size as the automaton.");
arena->set_named_prop<strategy_t>("strategy",
new strategy_t(std::move(strat)));
}
void set_synthesis_outputs(const twa_graph_ptr& arena, const bdd& outs)
{
arena->set_named_prop<bdd>("synthesis-outputs", new bdd(outs));
}
bdd get_synthesis_outputs(const const_twa_graph_ptr& arena)
{
if (auto outptr = arena->get_named_prop<bdd>("synthesis-outputs"))
return *outptr;
else
throw std::runtime_error
("get_synthesis_outputs(): synthesis-outputs not defined");
}
std::vector<std::string>
get_synthesis_output_aps(const const_twa_graph_ptr& arena)
{
std::vector<std::string> out_names;
bdd outs = get_synthesis_outputs(arena);
auto dict = arena->get_dict();
auto to_bdd = [&](const auto& x)
{
return bdd_ithvar(dict->has_registered_proposition(x, arena.get()));
};
for (const auto& ap : arena->ap())
if (bdd_implies(outs, to_bdd(ap)))
out_names.push_back(ap.ap_name());
return out_names;
}
void set_state_winners(twa_graph_ptr arena, const region_t& winners)
{
set_state_winners(arena, region_t(winners));
}
void set_state_winners(twa_graph_ptr arena, region_t&& winners)
{
if (winners.size() != arena->num_states())
throw std::runtime_error
("set_state_winners(): There must be as many winners as states");
arena->set_named_prop<region_t>("state-winner",
new region_t(std::move(winners)));
}
void set_state_winner(twa_graph_ptr arena, unsigned state, bool winner)
{
if (state >= arena->num_states())
throw std::runtime_error("set_state_winner(): invalid state number");
region_t *winners = arena->get_named_prop<region_t>("state-winner");
if (!winners)
throw std::runtime_error("set_state_winner(): Can only set the state of "
"an individual "
"state if \"state-winner\" already exists.");
if (winners->size() != arena->num_states())
throw std::runtime_error("set_state_winner(): The \"state-winnerr\" "
"vector has a different "
"size compared to the automaton! "
"Called new_state in between?");
(*winners)[state] = winner;
}
const region_t& get_state_winners(const const_twa_graph_ptr& arena)
{
region_t *winners = arena->get_named_prop<region_t>("state-winner");
if (!winners)
throw std::runtime_error
("get_state_winners(): state-winner property not defined, not a game?");
return *winners;
}
bool get_state_winner(const_twa_graph_ptr arena, unsigned state)
{
if (state >= arena->num_states())
throw std::runtime_error("get_state_winner(): invalid state number");
region_t* winners = arena->get_named_prop<region_t>("state-winner");
if (!winners)
throw std::runtime_error
("get_state_winner(): state-winner property not defined, not a game?");
return (*winners)[state];
}
bool solve_safety_game(const twa_graph_ptr& game)
{
if (!game->acc().is_t())
throw std::runtime_error
("solve_safety_game(): arena should have true acceptance");
auto owners = get_state_players(game);
unsigned ns = game->num_states();
auto winners = new region_t(ns, true);
game->set_named_prop("state-winner", winners);
auto strategy = new strategy_t(ns, 0);
game->set_named_prop("strategy", strategy);
// transposed is a reversed copy of game to compute predecessors
// more easily. It also keep track of the original edge index.
struct edge_data {
unsigned edgeidx;
};
digraph<void, edge_data> transposed;
// Reverse the automaton, compute the out degree of
// each state, and save dead-states in queue.
transposed.new_states(ns);
std::vector<unsigned> out_degree;
out_degree.reserve(ns);
std::vector<unsigned> queue;
for (unsigned s = 0; s < ns; ++s)
{
unsigned deg = 0;
for (auto& e: game->out(s))
{
transposed.new_edge(e.dst, e.src, game->edge_number(e));
++deg;
}
out_degree.push_back(deg);
if (deg == 0)
{
(*winners)[s] = false;
queue.push_back(s);
}
}
// queue is initially filled with dead-states, which are winning
// for player 0. Any predecessor owned by player 0 is therefore
// winning as well (check 1), and any predecessor owned by player
// 1 that has all its successors winning for player 0 (check 2) is
// also winning. Use queue to propagate everything.
// For the second check, we decrease out_degree by each edge leading
// to a state winning for player 0, so if out_degree reaches 0,
// we have ensured that all outgoing transitions are winning for 0.
//
// We use queue as a stack, to propagate bad states in DFS.
// However it would be ok to replace the vector by a std::deque
// to implement a BFS and build shorter strategies for player 0.
// Right no we are assuming that strategies for player 0 have
// limited uses, so we just avoid the overhead of std::deque in
// favor of the simpler std::vector.
while (!queue.empty())
{
unsigned s = queue.back();
queue.pop_back();
for (auto& e: transposed.out(s))
{
unsigned pred = e.dst;
if (!(*winners)[pred])
continue;
// check 1 || check 2
bool check1 = owners[pred] == false;
if (check1 || --out_degree[pred] == 0)
{
(*winners)[pred] = false;
queue.push_back(pred);
if (check1)
(*strategy)[pred] = e.edgeidx;
}
}
}
// Let's fill in the strategy for Player 1.
for (unsigned s = 0; s < ns; ++s)
if (owners[s] && (*winners)[s])
for (auto& e: game->out(s))
if ((*winners)[e.dst])
{
(*strategy)[s] = game->edge_number(e);
break;
}
return (*winners)[game->get_init_state_number()];
}
}