* src/tgbaalgos/ltl2tgba_lacim.cc, src/tgbaalgos/ltl2tgba_lacim.hh: ... this, and rename ltl_to_tgba() as ltl_to_tgba_lacim as well. * iface/gspn/ltlgspn.cc, src/tgbatest/explprod.cc, src/tgbatest/ltl2tgba.cc, src/tgbatest/ltlmagic.cc, src/tgbatest/ltlprod.cc, src/tgbatest/mixprod.cc, src/tgbatest/tripprod.cc, wrap/python/spot.i, wrap/python/cgi/ltl2tgba.in, wrap/python/tests/interdep.py, wrap/python/tests/ltl2tgba.py: Adjust.
254 lines
5.9 KiB
C++
254 lines
5.9 KiB
C++
#include "ltlast/visitor.hh"
|
|
#include "ltlast/allnodes.hh"
|
|
#include "ltlvisit/lunabbrev.hh"
|
|
#include "ltlvisit/nenoform.hh"
|
|
#include "ltlvisit/destroy.hh"
|
|
#include "tgba/tgbabddconcretefactory.hh"
|
|
#include <cassert>
|
|
|
|
#include "ltl2tgba_lacim.hh"
|
|
|
|
namespace spot
|
|
{
|
|
using namespace ltl;
|
|
|
|
/// \brief Recursively translate a formula into a BDD.
|
|
///
|
|
/// The algorithm used here is adapted from Jean-Michel Couvreur's
|
|
/// Probataf tool.
|
|
class ltl_trad_visitor: public const_visitor
|
|
{
|
|
public:
|
|
ltl_trad_visitor(tgba_bdd_concrete_factory& fact, bool root = false)
|
|
: fact_(fact), root_(root)
|
|
{
|
|
}
|
|
|
|
virtual
|
|
~ltl_trad_visitor()
|
|
{
|
|
}
|
|
|
|
bdd
|
|
result()
|
|
{
|
|
return res_;
|
|
}
|
|
|
|
void
|
|
visit(const atomic_prop* node)
|
|
{
|
|
res_ = bdd_ithvar(fact_.create_atomic_prop(node));
|
|
}
|
|
|
|
void
|
|
visit(const constant* node)
|
|
{
|
|
switch (node->val())
|
|
{
|
|
case constant::True:
|
|
res_ = bddtrue;
|
|
return;
|
|
case constant::False:
|
|
res_ = bddfalse;
|
|
return;
|
|
}
|
|
/* Unreachable code. */
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(const unop* node)
|
|
{
|
|
switch (node->op())
|
|
{
|
|
case unop::F:
|
|
{
|
|
/*
|
|
Fx <=> x | XFx
|
|
In other words:
|
|
now <=> x | next
|
|
*/
|
|
int v = fact_.create_state(node);
|
|
bdd now = bdd_ithvar(v);
|
|
bdd next = bdd_ithvar(v + 1);
|
|
bdd x = recurse(node->child());
|
|
fact_.constrain_relation(bdd_apply(now, x | next, bddop_biimp));
|
|
/*
|
|
`x | next', doesn't actually encode the fact that x
|
|
should be fulfilled eventually. We ensure this by
|
|
creating a new generalized Büchi accepting set, Acc[x],
|
|
and leave out of this set any transition going off NOW
|
|
without checking X. Such accepting conditions are
|
|
checked for during the emptiness check.
|
|
*/
|
|
fact_.declare_accepting_condition(x | !now, node->child());
|
|
res_ = now;
|
|
return;
|
|
}
|
|
case unop::G:
|
|
{
|
|
bdd child = recurse(node->child());
|
|
// If G occurs at the top of the formula we don't
|
|
// need Now/Next variables. We just constrain
|
|
// the relation so that the child always happens.
|
|
// This saves 2 BDD variables.
|
|
if (root_)
|
|
{
|
|
fact_.constrain_relation(child);
|
|
res_ = child;
|
|
return;
|
|
}
|
|
// Gx <=> x && XGx
|
|
int v = fact_.create_state(node);
|
|
bdd now = bdd_ithvar(v);
|
|
bdd next = bdd_ithvar(v + 1);
|
|
fact_.constrain_relation(bdd_apply(now, child & next,
|
|
bddop_biimp));
|
|
res_ = now;
|
|
return;
|
|
}
|
|
case unop::Not:
|
|
{
|
|
res_ = bdd_not(recurse(node->child()));
|
|
return;
|
|
}
|
|
case unop::X:
|
|
{
|
|
int v = fact_.create_state(node->child());
|
|
bdd now = bdd_ithvar(v);
|
|
bdd next = bdd_ithvar(v + 1);
|
|
fact_.constrain_relation(bdd_apply(now, recurse(node->child()),
|
|
bddop_biimp));
|
|
res_ = next;
|
|
return;
|
|
}
|
|
}
|
|
/* Unreachable code. */
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(const binop* node)
|
|
{
|
|
bdd f1 = recurse(node->first());
|
|
bdd f2 = recurse(node->second());
|
|
|
|
switch (node->op())
|
|
{
|
|
case binop::Xor:
|
|
res_ = bdd_apply(f1, f2, bddop_xor);
|
|
return;
|
|
case binop::Implies:
|
|
res_ = bdd_apply(f1, f2, bddop_imp);
|
|
return;
|
|
case binop::Equiv:
|
|
res_ = bdd_apply(f1, f2, bddop_biimp);
|
|
return;
|
|
case binop::U:
|
|
{
|
|
/*
|
|
f1 U f2 <=> f2 | (f1 & X(f1 U f2))
|
|
In other words:
|
|
now <=> f2 | (f1 & next)
|
|
*/
|
|
int v = fact_.create_state(node);
|
|
bdd now = bdd_ithvar(v);
|
|
bdd next = bdd_ithvar(v + 1);
|
|
fact_.constrain_relation(bdd_apply(now, f2 | (f1 & next),
|
|
bddop_biimp));
|
|
/*
|
|
The rightmost conjunction, f1 & next, doesn't actually
|
|
encode the fact that f2 should be fulfilled eventually.
|
|
We declare an accepting condition for this purpose (see
|
|
the comment in the unop::F case).
|
|
*/
|
|
fact_.declare_accepting_condition(f2 | !now, node->second());
|
|
res_ = now;
|
|
return;
|
|
}
|
|
case binop::R:
|
|
{
|
|
/*
|
|
f1 R f2 <=> f2 & (f1 | X(f1 U f2))
|
|
In other words:
|
|
now <=> f2 & (f1 | next)
|
|
*/
|
|
int v = fact_.create_state(node);
|
|
bdd now = bdd_ithvar(v);
|
|
bdd next = bdd_ithvar(v + 1);
|
|
fact_.constrain_relation(bdd_apply(now, f2 & (f1 | next),
|
|
bddop_biimp));
|
|
res_ = now;
|
|
return;
|
|
}
|
|
}
|
|
/* Unreachable code. */
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(const multop* node)
|
|
{
|
|
int op = -1;
|
|
bool root = false;
|
|
switch (node->op())
|
|
{
|
|
case multop::And:
|
|
op = bddop_and;
|
|
res_ = bddtrue;
|
|
// When the root formula is a conjunction it's ok to
|
|
// consider all children as root formulae. This allows the
|
|
// root-G trick to save many more variable. (See the
|
|
// translation of G.)
|
|
root = root_;
|
|
break;
|
|
case multop::Or:
|
|
op = bddop_or;
|
|
res_ = bddfalse;
|
|
break;
|
|
}
|
|
assert(op != -1);
|
|
unsigned s = node->size();
|
|
for (unsigned n = 0; n < s; ++n)
|
|
{
|
|
res_ = bdd_apply(res_, recurse(node->nth(n), root), op);
|
|
}
|
|
}
|
|
|
|
bdd
|
|
recurse(const formula* f, bool root = false)
|
|
{
|
|
ltl_trad_visitor v(fact_, root);
|
|
f->accept(v);
|
|
return v.result();
|
|
}
|
|
|
|
private:
|
|
bdd res_;
|
|
tgba_bdd_concrete_factory& fact_;
|
|
bool root_;
|
|
};
|
|
|
|
tgba_bdd_concrete*
|
|
ltl_to_tgba_lacim(const ltl::formula* f, bdd_dict* dict)
|
|
{
|
|
// Normalize the formula. We want all the negations on
|
|
// the atomic propositions. We also suppress logic
|
|
// abbreviations such as <=>, =>, or XOR, since they
|
|
// would involve negations at the BDD level.
|
|
const ltl::formula* f1 = ltl::unabbreviate_logic(f);
|
|
const ltl::formula* f2 = ltl::negative_normal_form(f1);
|
|
ltl::destroy(f1);
|
|
|
|
// Traverse the formula and draft the automaton in a factory.
|
|
tgba_bdd_concrete_factory fact(dict);
|
|
ltl_trad_visitor v(fact, true);
|
|
f2->accept(v);
|
|
ltl::destroy(f2);
|
|
fact.finish();
|
|
|
|
// Finally setup the resulting automaton.
|
|
return new tgba_bdd_concrete(fact, v.result());
|
|
}
|
|
}
|