* bin/autfilt.cc, spot/twaalgos/isweakscc.cc, spot/twaalgos/remfin.cc, spot/twaalgos/sccinfo.cc: Use mask_keep_accessible_states instead of mask_keep_states.
758 lines
26 KiB
C++
758 lines
26 KiB
C++
// -*- coding: utf-8 -*-
|
|
// Copyright (C) 2015, 2016 Laboratoire de Recherche et
|
|
// Développement de l'Epita.
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include <spot/twaalgos/remfin.hh>
|
|
#include <spot/twaalgos/sccinfo.hh>
|
|
#include <iostream>
|
|
#include <spot/twaalgos/cleanacc.hh>
|
|
#include <spot/twaalgos/totgba.hh>
|
|
#include <spot/twaalgos/isdet.hh>
|
|
#include <spot/twaalgos/mask.hh>
|
|
|
|
//#define TRACE
|
|
#ifdef TRACE
|
|
#define trace std::cerr
|
|
#else
|
|
#define trace while (0) std::cerr
|
|
#endif
|
|
|
|
namespace spot
|
|
{
|
|
namespace
|
|
{
|
|
// Check whether the SCC composed of all states STATES, and
|
|
// visiting all acceptance marks in SETS contains non-accepting
|
|
// cycles.
|
|
//
|
|
// A cycle is accepting (in a Rabin automaton) if there exists an
|
|
// acceptance pair (Fᵢ, Iᵢ) such that some states from Iᵢ are
|
|
// visited while no states from Fᵢ are visited.
|
|
//
|
|
// Consequently, a cycle is non-accepting if for all acceptance
|
|
// pairs (Fᵢ, Iᵢ), either no states from Iᵢ are visited or some
|
|
// states from Fᵢ are visited. (This corresponds to an accepting
|
|
// cycle with Streett acceptance.)
|
|
static bool
|
|
is_scc_ba_type(const const_twa_graph_ptr& aut,
|
|
const std::vector<unsigned>& states,
|
|
std::vector<bool>& final,
|
|
acc_cond::mark_t inf_pairs,
|
|
acc_cond::mark_t inf_alone,
|
|
acc_cond::mark_t sets)
|
|
{
|
|
// Consider the SCC as one large cycle and check its
|
|
// intersection with all Fᵢs and Iᵢs: This is the SETS
|
|
// variable.
|
|
//
|
|
// Let f=[F₁,F₂,...] and i=[I₁,I₂,...] be bitvectors where bit
|
|
// Fᵢ (resp. Iᵢ) indicates that Fᵢ (resp. Iᵢ) has been visited
|
|
// in the SCC.
|
|
acc_cond::mark_t f = (sets << 1U) & inf_pairs;
|
|
acc_cond::mark_t i = sets & inf_pairs;
|
|
// If we have i&!f = [0,0,...] that means that the cycle formed
|
|
// by the entire SCC is not accepting. However that does not
|
|
// necessarily imply that all cycles in the SCC are also
|
|
// non-accepting. We may have a smaller cycle that is
|
|
// accepting, but which becomes non-accepting when extended with
|
|
// more states.
|
|
i -= f;
|
|
i |= (inf_alone & sets);
|
|
if (!i)
|
|
{
|
|
// Check whether the SCC is accepting. We do that by simply
|
|
// converting that SCC into a TGBA and running our emptiness
|
|
// check. This is not a really smart implementation and
|
|
// could be improved.
|
|
std::vector<bool> keep(aut->num_states(), false);
|
|
for (auto s: states)
|
|
keep[s] = true;
|
|
auto sccaut = mask_keep_accessible_states(aut, keep, states.front());
|
|
// Force SBA to false. It does not affect the emptiness
|
|
// check result, however it prevent recurring into this
|
|
// procedure, because empty() will call to_tgba() which will
|
|
// call remove_fin()...
|
|
sccaut->prop_state_acc(false);
|
|
// If SCCAUT is empty, the SCC is BA-type (and none
|
|
// of its states are final). If SCCAUT is nonempty, the SCC
|
|
// is not BA type.
|
|
return sccaut->is_empty();
|
|
}
|
|
// The bits remaining sets in i corresponds to I₁s that have
|
|
// been seen with seeing the mathing F₁. In this SCC any state
|
|
// in these I₁ is therefore final. Otherwise we do not know: it
|
|
// is possible that there is a non-accepting cycle in the SCC
|
|
// that do not visit Fᵢ.
|
|
std::set<unsigned> unknown;
|
|
for (auto s: states)
|
|
{
|
|
if (aut->state_acc_sets(s) & i)
|
|
final[s] = true;
|
|
else
|
|
unknown.insert(s);
|
|
}
|
|
// Check whether it is possible to build non-accepting cycles
|
|
// using only the "unknown" states.
|
|
while (!unknown.empty())
|
|
{
|
|
std::vector<bool> keep(aut->num_states(), false);
|
|
for (auto s: unknown)
|
|
keep[s] = true;
|
|
|
|
scc_info si(mask_keep_states(aut, keep, *unknown.begin()));
|
|
unsigned scc_max = si.scc_count();
|
|
for (unsigned scc = 0; scc < scc_max; ++scc)
|
|
{
|
|
for (auto s: si.states_of(scc))
|
|
unknown.erase(s);
|
|
if (si.is_rejecting_scc(scc)) // this includes trivial SCCs
|
|
continue;
|
|
if (!is_scc_ba_type(aut, si.states_of(scc),
|
|
final, inf_pairs, 0U, si.acc(scc)))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Specialized conversion from Rabin acceptance to Büchi acceptance.
|
|
// Is able to detect SCCs that are Büchi-type (i.e., they can be
|
|
// converted to Büchi acceptance without chaning their structure).
|
|
// Currently only works with state-based acceptance.
|
|
//
|
|
// See "Deterministic ω-automata vis-a-vis Deterministic Büchi
|
|
// Automata", S. Krishnan, A. Puri, and R. Brayton (ISAAC'94) for
|
|
// some details about detecting Büchi-typeness.
|
|
//
|
|
// We essentially apply this method SCC-wise. The paper is
|
|
// concerned about *deterministic* automata, but we apply the
|
|
// algorithm on non-deterministic automata as well: in the worst
|
|
// case it is possible that a Büchi-type SCC with some
|
|
// non-deterministic has one accepting and one rejecting run for
|
|
// the same word. In this case we may fail to detect the
|
|
// Büchi-typeness of the SCC, but the resulting automaton should
|
|
// be correct nonetheless.
|
|
static twa_graph_ptr
|
|
ra_to_ba(const const_twa_graph_ptr& aut,
|
|
acc_cond::mark_t inf_pairs,
|
|
acc_cond::mark_t inf_alone,
|
|
acc_cond::mark_t fin_alone)
|
|
{
|
|
assert((bool)aut->prop_state_acc());
|
|
|
|
scc_info si(aut);
|
|
// For state-based Rabin automata, we check each SCC for
|
|
// BA-typeness. If an SCC is BA-type, its final states are stored
|
|
// in BA_FINAL_STATES.
|
|
std::vector<bool> scc_is_ba_type(si.scc_count(), false);
|
|
bool ba_type = false;
|
|
std::vector<bool> ba_final_states;
|
|
|
|
#ifdef DEBUG
|
|
acc_cond::mark_t fin;
|
|
acc_cond::mark_t inf;
|
|
std::tie(inf, fin) = aut->get_acceptance().used_inf_fin_sets();
|
|
assert(inf == (inf_pairs | inf_alone));
|
|
assert(fin == ((inf_pairs >> 1U) | fin_alone));
|
|
#endif
|
|
ba_final_states.resize(aut->num_states(), false);
|
|
ba_type = true; // until proven otherwise
|
|
unsigned scc_max = si.scc_count();
|
|
for (unsigned scc = 0; scc < scc_max; ++scc)
|
|
{
|
|
if (si.is_rejecting_scc(scc)) // this includes trivial SCCs
|
|
{
|
|
scc_is_ba_type[scc] = true;
|
|
continue;
|
|
}
|
|
bool scc_ba_type = false;
|
|
auto sets = si.acc(scc);
|
|
// If there is one fin_alone that is not in the SCC,
|
|
// any cycle in the SCC is accepting. Mark all states
|
|
// as final.
|
|
if ((sets & fin_alone) != fin_alone)
|
|
{
|
|
for (auto s: si.states_of(scc))
|
|
ba_final_states[s] = true;
|
|
scc_ba_type = true;
|
|
}
|
|
// Conversely, if all fin_alone appear in the SCC, then it
|
|
// cannot be accepting.
|
|
else if (sets & fin_alone)
|
|
{
|
|
scc_ba_type = false;
|
|
}
|
|
// In the generale case (no fin_alone involved), we need
|
|
// a dedicated check.
|
|
else
|
|
{
|
|
scc_ba_type = is_scc_ba_type(aut, si.states_of(scc),
|
|
ba_final_states,
|
|
inf_pairs, inf_alone, si.acc(scc));
|
|
}
|
|
ba_type &= scc_ba_type;
|
|
scc_is_ba_type[scc] = scc_ba_type;
|
|
}
|
|
|
|
#ifdef TRACE
|
|
trace << "SCC DBA-realizibility\n";
|
|
for (unsigned scc = 0; scc < scc_max; ++scc)
|
|
{
|
|
trace << scc << ": " << scc_is_ba_type[scc] << " {";
|
|
for (auto s: si.states_of(scc))
|
|
trace << ' ' << s;
|
|
trace << " }\n";
|
|
}
|
|
#endif
|
|
|
|
unsigned nst = aut->num_states();
|
|
auto res = make_twa_graph(aut->get_dict());
|
|
res->copy_ap_of(aut);
|
|
res->prop_copy(aut, { true, false, false, true });
|
|
res->new_states(nst);
|
|
res->set_buchi();
|
|
res->set_init_state(aut->get_init_state_number());
|
|
trival deterministic = aut->prop_deterministic();
|
|
|
|
std::vector<unsigned> state_map(aut->num_states());
|
|
for (unsigned n = 0; n < scc_max; ++n)
|
|
{
|
|
auto states = si.states_of(n);
|
|
|
|
if (scc_is_ba_type[n])
|
|
{
|
|
// If the SCC is BA-type, we know exactly what state need to
|
|
// be marked as accepting.
|
|
for (auto s: states)
|
|
{
|
|
bool acc = ba_final_states[s];
|
|
for (auto& t: aut->out(s))
|
|
res->new_acc_edge(s, t.dst, t.cond, acc);
|
|
}
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
deterministic = false;
|
|
|
|
// The main copy is only accepting for inf_alone
|
|
// and for all Inf sets that have no matching Fin
|
|
// sets in this SCC.
|
|
acc_cond::mark_t sccsets = si.acc(n);
|
|
acc_cond::mark_t f = (sccsets << 1U) & inf_pairs;
|
|
acc_cond::mark_t i = sccsets & (inf_pairs | inf_alone);
|
|
i -= f;
|
|
for (auto s: states)
|
|
{
|
|
bool acc = aut->state_acc_sets(s) & i;
|
|
for (auto& t: aut->out(s))
|
|
res->new_acc_edge(s, t.dst, t.cond, acc);
|
|
}
|
|
|
|
auto rem = sccsets & ((inf_pairs >> 1U) | fin_alone);
|
|
assert(rem != 0U);
|
|
auto sets = rem.sets();
|
|
|
|
unsigned ss = states.size();
|
|
|
|
for (auto r: sets)
|
|
{
|
|
unsigned base = res->new_states(ss);
|
|
for (auto s: states)
|
|
state_map[s] = base++;
|
|
for (auto s: states)
|
|
{
|
|
auto ns = state_map[s];
|
|
acc_cond::mark_t acc = aut->state_acc_sets(s);
|
|
if (acc.has(r))
|
|
continue;
|
|
bool jacc = acc & inf_alone;
|
|
bool cacc = fin_alone.has(r) || acc.has(r + 1);
|
|
for (auto& t: aut->out(s))
|
|
{
|
|
if (si.scc_of(t.dst) != n)
|
|
continue;
|
|
auto nd = state_map[t.dst];
|
|
res->new_acc_edge(ns, nd, t.cond, cacc);
|
|
// We need only one non-deterministic jump per
|
|
// cycle. As an approximation, we only do
|
|
// them on back-links.
|
|
if (t.dst <= s)
|
|
res->new_acc_edge(s, nd, t.cond, jacc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
res->purge_dead_states();
|
|
res->prop_deterministic(deterministic);
|
|
return res;
|
|
}
|
|
|
|
static twa_graph_ptr
|
|
rabin_to_buchi_maybe(const const_twa_graph_ptr& aut)
|
|
{
|
|
if (!aut->prop_state_acc().is_true())
|
|
return nullptr;
|
|
|
|
auto code = aut->get_acceptance();
|
|
|
|
if (code.is_t())
|
|
return nullptr;
|
|
|
|
acc_cond::mark_t inf_pairs = 0U;
|
|
acc_cond::mark_t inf_alone = 0U;
|
|
acc_cond::mark_t fin_alone = 0U;
|
|
|
|
auto s = code.back().size;
|
|
|
|
// Rabin 1
|
|
if (code.back().op == acc_cond::acc_op::And && s == 4)
|
|
goto start_and;
|
|
// Co-Büchi
|
|
else if (code.back().op == acc_cond::acc_op::Fin && s == 1)
|
|
goto start_fin;
|
|
// Rabin >1
|
|
else if (code.back().op != acc_cond::acc_op::Or)
|
|
return nullptr;
|
|
|
|
while (s)
|
|
{
|
|
--s;
|
|
if (code[s].op == acc_cond::acc_op::And)
|
|
{
|
|
start_and:
|
|
auto o1 = code[--s].op;
|
|
auto m1 = code[--s].mark;
|
|
auto o2 = code[--s].op;
|
|
auto m2 = code[--s].mark;
|
|
// We expect
|
|
// Fin({n}) & Inf({n+1})
|
|
if (o1 != acc_cond::acc_op::Fin ||
|
|
o2 != acc_cond::acc_op::Inf ||
|
|
m1.count() != 1 ||
|
|
m2.count() != 1 ||
|
|
m2 != (m1 << 1U))
|
|
return nullptr;
|
|
inf_pairs |= m2;
|
|
}
|
|
else if (code[s].op == acc_cond::acc_op::Fin)
|
|
{
|
|
start_fin:
|
|
fin_alone |= code[--s].mark;
|
|
}
|
|
else if (code[s].op == acc_cond::acc_op::Inf)
|
|
{
|
|
auto m1 = code[--s].mark;
|
|
if (m1.count() != 1)
|
|
return nullptr;
|
|
inf_alone |= m1;
|
|
}
|
|
else
|
|
{
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
trace << "inf_pairs: " << inf_pairs << '\n';
|
|
trace << "inf_alone: " << inf_alone << '\n';
|
|
trace << "fin_alone: " << fin_alone << '\n';
|
|
return ra_to_ba(aut, inf_pairs, inf_alone, fin_alone);
|
|
}
|
|
|
|
|
|
|
|
// If the DNF is
|
|
// Fin(1)&Inf(2)&Inf(4) | Fin(2)&Fin(3)&Inf(1) |
|
|
// Inf(1)&Inf(3) | Inf(1)&Inf(2) | Fin(4)
|
|
// this returns the following map:
|
|
// {1} => Inf(2)&Inf(4)
|
|
// {2,3} => Inf(1)
|
|
// {} => Inf(1)&Inf(3) | Inf(1)&Inf(2)
|
|
// {4} => t
|
|
static std::map<acc_cond::mark_t, acc_cond::acc_code>
|
|
split_dnf_acc_by_fin(const acc_cond::acc_code& acc)
|
|
{
|
|
std::map<acc_cond::mark_t, acc_cond::acc_code> res;
|
|
auto pos = &acc.back();
|
|
if (pos->op == acc_cond::acc_op::Or)
|
|
--pos;
|
|
auto start = &acc.front();
|
|
while (pos > start)
|
|
{
|
|
if (pos->op == acc_cond::acc_op::Fin)
|
|
{
|
|
// We have only a Fin term, without Inf. In this case
|
|
// only, the Fin() may encode a disjunction of sets.
|
|
for (auto s: pos[-1].mark.sets())
|
|
{
|
|
acc_cond::mark_t fin = 0U;
|
|
fin.set(s);
|
|
res[fin] = acc_cond::acc_code{};
|
|
}
|
|
pos -= pos->size + 1;
|
|
}
|
|
else
|
|
{
|
|
// We have a conjunction of Fin and Inf sets.
|
|
auto end = pos - pos->size - 1;
|
|
acc_cond::mark_t fin = 0U;
|
|
acc_cond::mark_t inf = 0U;
|
|
while (pos > end)
|
|
{
|
|
switch (pos->op)
|
|
{
|
|
case acc_cond::acc_op::And:
|
|
--pos;
|
|
break;
|
|
case acc_cond::acc_op::Fin:
|
|
fin |= pos[-1].mark;
|
|
assert(pos[-1].mark.count() == 1);
|
|
pos -= 2;
|
|
break;
|
|
case acc_cond::acc_op::Inf:
|
|
inf |= pos[-1].mark;
|
|
pos -= 2;
|
|
break;
|
|
case acc_cond::acc_op::FinNeg:
|
|
case acc_cond::acc_op::InfNeg:
|
|
case acc_cond::acc_op::Or:
|
|
SPOT_UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
assert(pos == end);
|
|
acc_cond::acc_word w[2];
|
|
w[0].mark = inf;
|
|
w[1].op = acc_cond::acc_op::Inf;
|
|
w[1].size = 1;
|
|
acc_cond::acc_code c;
|
|
c.insert(c.end(), w, w + 2);
|
|
auto p = res.emplace(fin, c);
|
|
if (!p.second)
|
|
p.first->second |= std::move(c);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static twa_graph_ptr
|
|
remove_fin_det_weak(const const_twa_graph_ptr& aut)
|
|
{
|
|
// Clone the original automaton.
|
|
auto res = make_twa_graph(aut,
|
|
{
|
|
true, // state based
|
|
true, // inherently weak
|
|
true, // determinisitic
|
|
true, // stutter inv.
|
|
});
|
|
res->purge_dead_states();
|
|
scc_info si(res);
|
|
|
|
// We will modify res in place, and the resulting
|
|
// automaton will only have one acceptance set.
|
|
acc_cond::mark_t all_acc = res->set_buchi();
|
|
res->prop_state_acc(true);
|
|
res->prop_deterministic(true);
|
|
|
|
unsigned sink = res->num_states();
|
|
for (unsigned src = 0; src < sink; ++src)
|
|
{
|
|
acc_cond::mark_t acc = 0U;
|
|
unsigned scc = si.scc_of(src);
|
|
if (si.is_accepting_scc(scc) && !si.is_trivial(scc))
|
|
acc = all_acc;
|
|
// Keep track of all conditions on edge leaving state
|
|
// SRC, so we can complete it.
|
|
bdd missingcond = bddtrue;
|
|
for (auto& t: res->out(src))
|
|
{
|
|
missingcond -= t.cond;
|
|
t.acc = acc;
|
|
}
|
|
// Complete the original automaton.
|
|
if (missingcond != bddfalse)
|
|
{
|
|
if (res->num_states() == sink)
|
|
{
|
|
res->new_state();
|
|
res->new_acc_edge(sink, sink, bddtrue);
|
|
}
|
|
res->new_edge(src, sink, missingcond);
|
|
}
|
|
}
|
|
//res->merge_edges();
|
|
return res;
|
|
}
|
|
}
|
|
|
|
twa_graph_ptr remove_fin(const const_twa_graph_ptr& aut)
|
|
{
|
|
if (!aut->acc().uses_fin_acceptance())
|
|
return std::const_pointer_cast<twa_graph>(aut);
|
|
|
|
// FIXME: we should check whether the automaton is weak.
|
|
if (aut->prop_inherently_weak().is_true() && is_deterministic(aut))
|
|
return remove_fin_det_weak(aut);
|
|
|
|
if (auto maybe = streett_to_generalized_buchi_maybe(aut))
|
|
return maybe;
|
|
|
|
if (auto maybe = rabin_to_buchi_maybe(aut))
|
|
return maybe;
|
|
|
|
std::vector<acc_cond::acc_code> code;
|
|
std::vector<acc_cond::mark_t> rem;
|
|
std::vector<acc_cond::mark_t> keep;
|
|
std::vector<acc_cond::mark_t> add;
|
|
bool has_true_term = false;
|
|
acc_cond::mark_t allinf = 0U;
|
|
acc_cond::mark_t allfin = 0U;
|
|
{
|
|
auto acccode = aut->get_acceptance();
|
|
if (!acccode.is_dnf())
|
|
acccode = acccode.to_dnf();
|
|
|
|
auto split = split_dnf_acc_by_fin(acccode);
|
|
|
|
auto sz = split.size();
|
|
assert(sz > 0);
|
|
|
|
rem.reserve(sz);
|
|
code.reserve(sz);
|
|
keep.reserve(sz);
|
|
add.reserve(sz);
|
|
for (auto p: split)
|
|
{
|
|
// The empty Fin should always come first
|
|
assert(p.first != 0U || rem.empty());
|
|
rem.push_back(p.first);
|
|
allfin |= p.first;
|
|
acc_cond::mark_t inf = 0U;
|
|
if (!p.second.empty())
|
|
{
|
|
auto pos = &p.second.back();
|
|
auto end = &p.second.front();
|
|
while (pos > end)
|
|
{
|
|
switch (pos->op)
|
|
{
|
|
case acc_cond::acc_op::And:
|
|
case acc_cond::acc_op::Or:
|
|
--pos;
|
|
break;
|
|
case acc_cond::acc_op::Inf:
|
|
inf |= pos[-1].mark;
|
|
pos -= 2;
|
|
break;
|
|
case acc_cond::acc_op::Fin:
|
|
case acc_cond::acc_op::FinNeg:
|
|
case acc_cond::acc_op::InfNeg:
|
|
SPOT_UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (inf == 0U)
|
|
{
|
|
has_true_term = true;
|
|
}
|
|
code.push_back(std::move(p.second));
|
|
keep.push_back(inf);
|
|
allinf |= inf;
|
|
add.push_back(0U);
|
|
}
|
|
}
|
|
assert(add.size() > 0);
|
|
|
|
acc_cond acc = aut->acc();
|
|
unsigned extra_sets = 0;
|
|
|
|
// Do we have common sets between the acceptance terms?
|
|
// If so, we need extra sets to distinguish the terms.
|
|
bool interference = false;
|
|
{
|
|
auto sz = keep.size();
|
|
acc_cond::mark_t sofar = 0U;
|
|
for (unsigned i = 0; i < sz; ++i)
|
|
{
|
|
auto k = keep[i];
|
|
if (k & sofar)
|
|
{
|
|
interference = true;
|
|
break;
|
|
}
|
|
sofar |= k;
|
|
}
|
|
if (interference)
|
|
{
|
|
trace << "We have interferences\n";
|
|
// We need extra set, but we will try
|
|
// to reuse the Fin number if they are
|
|
// not used as Inf as well.
|
|
std::vector<int> exs(acc.num_sets());
|
|
for (auto f: allfin.sets())
|
|
{
|
|
if (allinf.has(f)) // Already used as Inf
|
|
{
|
|
exs[f] = acc.add_set();
|
|
++extra_sets;
|
|
}
|
|
else
|
|
{
|
|
exs[f] = f;
|
|
}
|
|
}
|
|
for (unsigned i = 0; i < sz; ++i)
|
|
{
|
|
acc_cond::mark_t m = 0U;
|
|
for (auto f: rem[i].sets())
|
|
m.set(exs[f]);
|
|
trace << "rem[" << i << "] = " << rem[i]
|
|
<< " m = " << m << '\n';
|
|
add[i] = m;
|
|
code[i] &= acc.inf(m);
|
|
trace << "code[" << i << "] = " << code[i] << '\n';
|
|
}
|
|
}
|
|
else if (has_true_term)
|
|
{
|
|
trace << "We have a true term\n";
|
|
unsigned one = acc.add_sets(1);
|
|
extra_sets += 1;
|
|
acc_cond::mark_t m({one});
|
|
auto c = acc.inf(m);
|
|
for (unsigned i = 0; i < sz; ++i)
|
|
{
|
|
if (!code[i].is_t())
|
|
continue;
|
|
add[i] = m;
|
|
code[i] &= std::move(c);
|
|
c = acc.fin(0U); // Use false for the other terms.
|
|
trace << "code[" << i << "] = " << code[i] << '\n';
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
acc_cond::acc_code new_code = aut->acc().fin(0U);
|
|
for (auto c: code)
|
|
new_code |= std::move(c);
|
|
|
|
unsigned cs = code.size();
|
|
for (unsigned i = 0; i < cs; ++i)
|
|
trace << i << " Rem " << rem[i] << " Code " << code[i]
|
|
<< " Keep " << keep[i] << '\n';
|
|
|
|
unsigned nst = aut->num_states();
|
|
auto res = make_twa_graph(aut->get_dict());
|
|
res->copy_ap_of(aut);
|
|
res->prop_copy(aut, { true, false, false, true });
|
|
res->new_states(nst);
|
|
res->set_acceptance(aut->num_sets() + extra_sets, new_code);
|
|
res->set_init_state(aut->get_init_state_number());
|
|
|
|
bool sbacc = aut->prop_state_acc().is_true();
|
|
scc_info si(aut);
|
|
unsigned nscc = si.scc_count();
|
|
std::vector<unsigned> state_map(nst);
|
|
for (unsigned n = 0; n < nscc; ++n)
|
|
{
|
|
auto m = si.acc(n);
|
|
auto states = si.states_of(n);
|
|
trace << "SCC #" << n << " uses " << m << '\n';
|
|
|
|
// What to keep and add into the main copy
|
|
acc_cond::mark_t main_sets = 0U;
|
|
acc_cond::mark_t main_add = 0U;
|
|
bool intersects_fin = false;
|
|
for (unsigned i = 0; i < cs; ++i)
|
|
if (!(m & rem[i]))
|
|
{
|
|
main_sets |= keep[i];
|
|
main_add |= add[i];
|
|
}
|
|
else
|
|
{
|
|
intersects_fin = true;
|
|
}
|
|
trace << "main_sets " << main_sets << "\nmain_add " << main_add << '\n';
|
|
|
|
// Create the main copy
|
|
for (auto s: states)
|
|
for (auto& t: aut->out(s))
|
|
{
|
|
acc_cond::mark_t a = 0U;
|
|
if (sbacc || SPOT_LIKELY(si.scc_of(t.dst) == n))
|
|
a = (t.acc & main_sets) | main_add;
|
|
res->new_edge(s, t.dst, t.cond, a);
|
|
}
|
|
|
|
// We do not need any other copy if the SCC is non-accepting,
|
|
// of if it does not intersect any Fin.
|
|
if (!intersects_fin || si.is_rejecting_scc(n))
|
|
continue;
|
|
|
|
// Create clones
|
|
for (unsigned i = 0; i < cs; ++i)
|
|
if (m & rem[i])
|
|
{
|
|
auto r = rem[i];
|
|
trace << "rem[" << i << "] = " << r << " requires a copy\n";
|
|
unsigned base = res->new_states(states.size());
|
|
for (auto s: states)
|
|
state_map[s] = base++;
|
|
auto k = keep[i];
|
|
auto a = add[i];
|
|
for (auto s: states)
|
|
{
|
|
auto ns = state_map[s];
|
|
for (auto& t: aut->out(s))
|
|
{
|
|
if ((t.acc & r) || si.scc_of(t.dst) != n)
|
|
continue;
|
|
auto nd = state_map[t.dst];
|
|
res->new_edge(ns, nd, t.cond, (t.acc & k) | a);
|
|
// We need only one non-deterministic jump per
|
|
// cycle. As an approximation, we only do
|
|
// them on back-links.
|
|
if (t.dst <= s)
|
|
{
|
|
acc_cond::mark_t a = 0U;
|
|
if (sbacc)
|
|
a = (t.acc & main_sets) | main_add;
|
|
res->new_edge(s, nd, t.cond, a);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the input had no Inf, the output is a state-based automaton.
|
|
if (allinf == 0U)
|
|
res->prop_state_acc(true);
|
|
|
|
res->purge_dead_states();
|
|
trace << "before cleanup: " << res->get_acceptance() << '\n';
|
|
cleanup_acceptance_here(res);
|
|
trace << "after cleanup: " << res->get_acceptance() << '\n';
|
|
res->merge_edges();
|
|
return res;
|
|
}
|
|
}
|