spot/src/ltlvisit/syntimpl.cc
Alexandre Duret-Lutz 4ef7805e73 Speedup syntactic_implication() by using a cache.
* src/ltlvisit/syntimpl.hh (syntactic_implication,
syntactic_implication_neg): Move as member of ...
(syntactic_implication_cache): ... this new class, that holds
a cache of results to speedup these functions.
* src/ltlvisit/syntimpl.cc: Adjust to use (lookup, populate,
and cleanup) the cache.
* src/ltltest/syntimpl.cc: Likewise.
* src/ltlvisit/reduce.hh (reduce): Take an optional
syntactic_implication_cache parameter.
* src/ltlvisit/reduce.cc: Adjust to use a
syntactic_implication_cache.
* src/ltltest/equals.cc: Call dump_instances() to help debugging.
2012-04-28 09:30:36 +02:00

649 lines
14 KiB
C++

// Copyright (C) 2009, 2010 Laboratoire de Recherche et Développement
// de l'Epita (LRDE).
// Copyright (C) 2004, 2005 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#include "syntimpl.hh"
#include "ltlast/allnodes.hh"
#include <cassert>
#include "lunabbrev.hh"
#include "simpfg.hh"
#include "nenoform.hh"
namespace spot
{
namespace ltl
{
namespace
{
class inf_right_recurse_visitor: public const_visitor
{
public:
inf_right_recurse_visitor(const formula *f,
syntactic_implication_cache* c)
: result_(false), f(f), c(c)
{
}
virtual
~inf_right_recurse_visitor()
{
}
int
result() const
{
return result_;
}
void
visit(const atomic_prop* ap)
{
if (f == ap)
result_ = true;
}
void
visit(const constant* c)
{
switch (c->val())
{
case constant::True:
result_ = true;
return;
case constant::False:
result_ = false;
return;
case constant::EmptyWord:
result_ = true;
}
}
void
visit(const bunop*)
{
}
void
visit(const unop* uo)
{
const formula* f1 = uo->child();
switch (uo->op())
{
case unop::Not:
if (uo == f)
result_ = true;
return;
case unop::X:
{
if (f->kind() != formula::UnOp)
return;
const unop* op = static_cast<const unop*>(f);
if (op->op() == unop::X)
result_ = c->syntactic_implication(op->child(), f1);
}
return;
case unop::F:
/* F(a) = true U a */
result_ = c->syntactic_implication(f, f1);
return;
case unop::G:
/* G(a) = false R a */
if (c->syntactic_implication(f, constant::false_instance()))
result_ = true;
return;
case unop::Finish:
case unop::Closure:
case unop::NegClosure:
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const binop* bo)
{
const formula* f1 = bo->first();
const formula* f2 = bo->second();
switch (bo->op())
{
case binop::Xor:
case binop::Equiv:
case binop::Implies:
case binop::UConcat:
case binop::EConcat:
case binop::EConcatMarked:
return;
case binop::U:
case binop::W:
if (c->syntactic_implication(f, f2))
result_ = true;
return;
case binop::R:
if (f->kind() == formula::BinOp)
{
const binop* fb = static_cast<const binop*>(f);
if (fb->op() == binop::R
&& c->syntactic_implication(fb->first(), f1)
&& c->syntactic_implication(fb->second(), f2))
{
result_ = true;
return;
}
}
if (f->kind() == formula::UnOp)
{
const unop* fu = static_cast<const unop*>(f);
if (fu->op() == unop::G
&& f1 == constant::false_instance()
&& c->syntactic_implication(fu->child(), f2))
{
result_ = true;
return;
}
}
if (c->syntactic_implication(f, f1)
&& c->syntactic_implication(f, f2))
result_ = true;
return;
case binop::M:
if (f->kind() == formula::BinOp)
{
const binop* fb = static_cast<const binop*>(f);
if (fb->op() == binop::M
&& c->syntactic_implication(fb->first(), f1)
&& c->syntactic_implication(fb->second(), f2))
{
result_ = true;
return;
}
}
if (f->kind() == formula::UnOp)
{
const unop* fu = static_cast<const unop*>(f);
if (fu->op() == unop::F
&& f2 == constant::true_instance()
&& c->syntactic_implication(fu->child(), f1))
{
result_ = true;
return;
}
}
if (c->syntactic_implication(f, f1)
&& c->syntactic_implication(f, f2))
result_ = true;
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const automatop*)
{
assert(0);
}
void
visit(const multop* mo)
{
multop::type op = mo->op();
unsigned mos = mo->size();
switch (op)
{
case multop::And:
for (unsigned i = 0; i < mos; ++i)
if (!c->syntactic_implication(f, mo->nth(i)))
return;
result_ = true;
break;
case multop::Or:
for (unsigned i = 0; i < mos && !result_; ++i)
if (c->syntactic_implication(f, mo->nth(i)))
result_ = true;
break;
case multop::Concat:
case multop::Fusion:
case multop::AndNLM:
break;
}
}
protected:
bool result_; /* true if f < f1, false otherwise. */
const formula* f;
syntactic_implication_cache* c;
};
/////////////////////////////////////////////////////////////////////////
class inf_left_recurse_visitor: public const_visitor
{
public:
inf_left_recurse_visitor(const formula *f,
syntactic_implication_cache* c)
: result_(false), f(f), c(c)
{
}
virtual
~inf_left_recurse_visitor()
{
}
bool
special_case(const binop* f2)
{
if (f->kind() != formula::BinOp)
return false;
const binop* fb = static_cast<const binop*>(f);
if (fb->op() == f2->op()
&& c->syntactic_implication(f2->first(), fb->first())
&& c->syntactic_implication(f2->second(), fb->second()))
return true;
return false;
}
bool
special_case_check(const formula* f2)
{
if (f2->kind() != formula::BinOp)
return false;
return special_case(static_cast<const binop*>(f2));
}
int
result() const
{
return result_;
}
void
visit(const atomic_prop* ap)
{
inf_right_recurse_visitor v(ap, c);
const_cast<formula*>(f)->accept(v);
result_ = v.result();
}
void
visit(const bunop*)
{
}
void
visit(const constant* cst)
{
inf_right_recurse_visitor v(cst, c);
switch (cst->val())
{
case constant::True:
const_cast<formula*>(f)->accept(v);
result_ = v.result();
return;
case constant::False:
result_ = true;
return;
case constant::EmptyWord:
result_ = true;
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const unop* uo)
{
const formula* f1 = uo->child();
inf_right_recurse_visitor v(uo, c);
switch (uo->op())
{
case unop::Not:
if (uo == f)
result_ = true;
return;
case unop::X:
if (f->kind() == formula::UnOp)
{
const unop* op = static_cast<const unop*>(f);
if (op->op() == unop::X)
result_ = c->syntactic_implication(f1, op->child());
}
return;
case unop::F:
{
/* F(a) = true U a */
const formula* tmp = binop::instance(binop::U,
constant::true_instance(),
f1->clone());
if (special_case_check(tmp))
{
result_ = true;
tmp->destroy();
return;
}
if (c->syntactic_implication(tmp, f))
result_ = true;
tmp->destroy();
return;
}
case unop::G:
{
/* G(a) = false R a */
const formula* tmp = binop::instance(binop::R,
constant::false_instance(),
f1->clone());
if (special_case_check(tmp))
{
result_ = true;
tmp->destroy();
return;
}
if (c->syntactic_implication(tmp, f))
result_ = true;
tmp->destroy();
return;
}
case unop::Finish:
case unop::Closure:
case unop::NegClosure:
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const binop* bo)
{
if (special_case(bo))
{
result_ = true;
return;
}
const formula* f1 = bo->first();
const formula* f2 = bo->second();
switch (bo->op())
{
case binop::Xor:
case binop::Equiv:
case binop::Implies:
case binop::UConcat:
case binop::EConcat:
case binop::EConcatMarked:
return;
case binop::U:
/* (a < c) && (c < d) => a U b < c U d */
if (f->kind() == formula::BinOp)
{
const binop* fb = static_cast<const binop*>(f);
if (fb->op() == binop::U
&& c->syntactic_implication(f1, fb->first())
&& c->syntactic_implication(f2, fb->second()))
{
result_ = true;
return;
}
}
if (f->kind() == formula::UnOp)
{
const unop* fu = static_cast<const unop*>(f);
if (fu->op() == unop::F
&& f1 == constant::true_instance()
&& c->syntactic_implication(f2, fu->child()))
{
result_ = true;
return;
}
}
if (c->syntactic_implication(f1, f)
&& c->syntactic_implication(f2, f))
result_ = true;
return;
case binop::W:
/* (a < c) && (c < d) => a W b < c W d */
if (f->kind() == formula::BinOp)
{
const binop* fb = static_cast<const binop*>(f);
if (fb->op() == binop::W
&& c->syntactic_implication(f1, fb->first())
&& c->syntactic_implication(f2, fb->second()))
{
result_ = true;
return;
}
}
if (f->kind() == formula::UnOp)
{
const unop* fu = static_cast<const unop*>(f);
if (fu && fu->op() == unop::G
&& f2 == constant::false_instance()
&& c->syntactic_implication(f1, fu->child()))
{
result_ = true;
return;
}
}
if (c->syntactic_implication(f1, f)
&& c->syntactic_implication(f2, f))
result_ = true;
return;
case binop::R:
if (f->kind() == formula::UnOp)
{
const unop* fu = static_cast<const unop*>(f);
if (fu->op() == unop::G
&& f1 == constant::false_instance()
&& c->syntactic_implication(f2, fu->child()))
{
result_ = true;
return;
}
}
if (c->syntactic_implication(f2, f))
result_ = true;
return;
case binop::M:
if (f->kind() == formula::UnOp)
{
const unop* fu = static_cast<const unop*>(f);
if (fu->op() == unop::F
&& f2 == constant::true_instance()
&& c->syntactic_implication(f1, fu->child()))
{
result_ = true;
return;
}
}
if (c->syntactic_implication(f2, f))
result_ = true;
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const automatop*)
{
assert(0);
}
void
visit(const multop* mo)
{
multop::type op = mo->op();
unsigned mos = mo->size();
switch (op)
{
case multop::And:
for (unsigned i = 0; (i < mos) && !result_; ++i)
if (c->syntactic_implication(mo->nth(i), f))
result_ = true;
break;
case multop::Or:
for (unsigned i = 0; i < mos; ++i)
if (!c->syntactic_implication(mo->nth(i), f))
return;
result_ = true;
break;
case multop::Concat:
case multop::Fusion:
case multop::AndNLM:
break;
}
}
protected:
bool result_; /* true if f1 < f, 1 otherwise. */
const formula* f;
syntactic_implication_cache* c;
};
} // anonymous
// This is called by syntactic_implication() after the
// formulae have been normalized.
bool
syntactic_implication_cache::syntactic_implication(const formula* f1,
const formula* f2)
{
if (f1 == f2)
return true;
if (f2 == constant::true_instance()
|| f1 == constant::false_instance())
return true;
// Cache lookup
{
pairf p(f1, f2);
cache_t::const_iterator i = cache_.find(p);
if (i != cache_.end())
return i->second;
}
bool result = false;
inf_left_recurse_visitor v1(f2, this);
const_cast<formula*>(f1)->accept(v1);
if (v1.result())
{
result = true;
}
else
{
inf_right_recurse_visitor v2(f1, this);
const_cast<formula*>(f2)->accept(v2);
if (v2.result())
result = true;
}
// Cache result
{
pairf p(f1->clone(), f2->clone());
cache_[p] = result;
}
return result;
}
bool
syntactic_implication_cache::syntactic_implication_neg(const formula* f1,
const formula* f2,
bool right)
{
formula* l = f1->clone();
formula* r = f2->clone();
if (right)
r = unop::instance(unop::Not, r);
else
l = unop::instance(unop::Not, l);
// Cache lookup
{
pairf p(l, r);
cache_t::const_iterator i = cache_.find(p);
if (i != cache_.end())
{
l->destroy();
r->destroy();
return i->second;
}
}
// Save the cache key for latter.
pairf p(l->clone(), r->clone());
formula* tmp = unabbreviate_logic(l);
l->destroy();
l = simplify_f_g(tmp);
tmp->destroy();
tmp = negative_normal_form(l);
l->destroy();
l = tmp;
tmp = unabbreviate_logic(r);
r->destroy();
r = simplify_f_g(tmp);
tmp->destroy();
tmp = negative_normal_form(r);
r->destroy();
r = tmp;
bool result = syntactic_implication(l, r);
l->destroy();
r->destroy();
// Cache result if is has not be done by syntactic_implication() already.
if (l != p.first || r != p.second)
{
cache_[p] = result;
}
else
{
p.first->destroy();
p.second->destroy();
}
return result;
}
syntactic_implication_cache::~syntactic_implication_cache()
{
cache_t::const_iterator i = cache_.begin();
while (i != cache_.end())
{
// Advance the iterator before deleting the key.
pairf p = i->first;
++i;
p.first->destroy();
p.second->destroy();
}
}
}
}