* src/ltlvisit/syntimpl.hh (syntactic_implication, syntactic_implication_neg): Move as member of ... (syntactic_implication_cache): ... this new class, that holds a cache of results to speedup these functions. * src/ltlvisit/syntimpl.cc: Adjust to use (lookup, populate, and cleanup) the cache. * src/ltltest/syntimpl.cc: Likewise. * src/ltlvisit/reduce.hh (reduce): Take an optional syntactic_implication_cache parameter. * src/ltlvisit/reduce.cc: Adjust to use a syntactic_implication_cache. * src/ltltest/equals.cc: Call dump_instances() to help debugging.
649 lines
14 KiB
C++
649 lines
14 KiB
C++
// Copyright (C) 2009, 2010 Laboratoire de Recherche et Développement
|
|
// de l'Epita (LRDE).
|
|
// Copyright (C) 2004, 2005 Laboratoire d'Informatique de Paris 6 (LIP6),
|
|
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
|
|
// et Marie Curie.
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Spot; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
|
// 02111-1307, USA.
|
|
|
|
#include "syntimpl.hh"
|
|
#include "ltlast/allnodes.hh"
|
|
#include <cassert>
|
|
|
|
#include "lunabbrev.hh"
|
|
#include "simpfg.hh"
|
|
#include "nenoform.hh"
|
|
|
|
namespace spot
|
|
{
|
|
namespace ltl
|
|
{
|
|
namespace
|
|
{
|
|
|
|
class inf_right_recurse_visitor: public const_visitor
|
|
{
|
|
public:
|
|
|
|
inf_right_recurse_visitor(const formula *f,
|
|
syntactic_implication_cache* c)
|
|
: result_(false), f(f), c(c)
|
|
{
|
|
}
|
|
|
|
virtual
|
|
~inf_right_recurse_visitor()
|
|
{
|
|
}
|
|
|
|
int
|
|
result() const
|
|
{
|
|
return result_;
|
|
}
|
|
|
|
void
|
|
visit(const atomic_prop* ap)
|
|
{
|
|
if (f == ap)
|
|
result_ = true;
|
|
}
|
|
|
|
void
|
|
visit(const constant* c)
|
|
{
|
|
switch (c->val())
|
|
{
|
|
case constant::True:
|
|
result_ = true;
|
|
return;
|
|
case constant::False:
|
|
result_ = false;
|
|
return;
|
|
case constant::EmptyWord:
|
|
result_ = true;
|
|
}
|
|
}
|
|
|
|
void
|
|
visit(const bunop*)
|
|
{
|
|
}
|
|
|
|
void
|
|
visit(const unop* uo)
|
|
{
|
|
const formula* f1 = uo->child();
|
|
switch (uo->op())
|
|
{
|
|
case unop::Not:
|
|
if (uo == f)
|
|
result_ = true;
|
|
return;
|
|
case unop::X:
|
|
{
|
|
if (f->kind() != formula::UnOp)
|
|
return;
|
|
const unop* op = static_cast<const unop*>(f);
|
|
if (op->op() == unop::X)
|
|
result_ = c->syntactic_implication(op->child(), f1);
|
|
}
|
|
return;
|
|
case unop::F:
|
|
/* F(a) = true U a */
|
|
result_ = c->syntactic_implication(f, f1);
|
|
return;
|
|
case unop::G:
|
|
/* G(a) = false R a */
|
|
if (c->syntactic_implication(f, constant::false_instance()))
|
|
result_ = true;
|
|
return;
|
|
case unop::Finish:
|
|
case unop::Closure:
|
|
case unop::NegClosure:
|
|
return;
|
|
}
|
|
/* Unreachable code. */
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(const binop* bo)
|
|
{
|
|
const formula* f1 = bo->first();
|
|
const formula* f2 = bo->second();
|
|
switch (bo->op())
|
|
{
|
|
case binop::Xor:
|
|
case binop::Equiv:
|
|
case binop::Implies:
|
|
case binop::UConcat:
|
|
case binop::EConcat:
|
|
case binop::EConcatMarked:
|
|
return;
|
|
case binop::U:
|
|
case binop::W:
|
|
if (c->syntactic_implication(f, f2))
|
|
result_ = true;
|
|
return;
|
|
case binop::R:
|
|
if (f->kind() == formula::BinOp)
|
|
{
|
|
const binop* fb = static_cast<const binop*>(f);
|
|
if (fb->op() == binop::R
|
|
&& c->syntactic_implication(fb->first(), f1)
|
|
&& c->syntactic_implication(fb->second(), f2))
|
|
{
|
|
result_ = true;
|
|
return;
|
|
}
|
|
}
|
|
if (f->kind() == formula::UnOp)
|
|
{
|
|
const unop* fu = static_cast<const unop*>(f);
|
|
if (fu->op() == unop::G
|
|
&& f1 == constant::false_instance()
|
|
&& c->syntactic_implication(fu->child(), f2))
|
|
{
|
|
result_ = true;
|
|
return;
|
|
}
|
|
}
|
|
if (c->syntactic_implication(f, f1)
|
|
&& c->syntactic_implication(f, f2))
|
|
result_ = true;
|
|
return;
|
|
case binop::M:
|
|
if (f->kind() == formula::BinOp)
|
|
{
|
|
const binop* fb = static_cast<const binop*>(f);
|
|
if (fb->op() == binop::M
|
|
&& c->syntactic_implication(fb->first(), f1)
|
|
&& c->syntactic_implication(fb->second(), f2))
|
|
{
|
|
result_ = true;
|
|
return;
|
|
}
|
|
}
|
|
if (f->kind() == formula::UnOp)
|
|
{
|
|
const unop* fu = static_cast<const unop*>(f);
|
|
if (fu->op() == unop::F
|
|
&& f2 == constant::true_instance()
|
|
&& c->syntactic_implication(fu->child(), f1))
|
|
{
|
|
result_ = true;
|
|
return;
|
|
}
|
|
}
|
|
if (c->syntactic_implication(f, f1)
|
|
&& c->syntactic_implication(f, f2))
|
|
result_ = true;
|
|
return;
|
|
}
|
|
/* Unreachable code. */
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(const automatop*)
|
|
{
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(const multop* mo)
|
|
{
|
|
multop::type op = mo->op();
|
|
unsigned mos = mo->size();
|
|
switch (op)
|
|
{
|
|
case multop::And:
|
|
for (unsigned i = 0; i < mos; ++i)
|
|
if (!c->syntactic_implication(f, mo->nth(i)))
|
|
return;
|
|
result_ = true;
|
|
break;
|
|
case multop::Or:
|
|
for (unsigned i = 0; i < mos && !result_; ++i)
|
|
if (c->syntactic_implication(f, mo->nth(i)))
|
|
result_ = true;
|
|
break;
|
|
case multop::Concat:
|
|
case multop::Fusion:
|
|
case multop::AndNLM:
|
|
break;
|
|
}
|
|
}
|
|
|
|
protected:
|
|
bool result_; /* true if f < f1, false otherwise. */
|
|
const formula* f;
|
|
syntactic_implication_cache* c;
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
class inf_left_recurse_visitor: public const_visitor
|
|
{
|
|
public:
|
|
|
|
inf_left_recurse_visitor(const formula *f,
|
|
syntactic_implication_cache* c)
|
|
: result_(false), f(f), c(c)
|
|
{
|
|
}
|
|
|
|
virtual
|
|
~inf_left_recurse_visitor()
|
|
{
|
|
}
|
|
|
|
bool
|
|
special_case(const binop* f2)
|
|
{
|
|
if (f->kind() != formula::BinOp)
|
|
return false;
|
|
const binop* fb = static_cast<const binop*>(f);
|
|
if (fb->op() == f2->op()
|
|
&& c->syntactic_implication(f2->first(), fb->first())
|
|
&& c->syntactic_implication(f2->second(), fb->second()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
special_case_check(const formula* f2)
|
|
{
|
|
if (f2->kind() != formula::BinOp)
|
|
return false;
|
|
return special_case(static_cast<const binop*>(f2));
|
|
}
|
|
|
|
int
|
|
result() const
|
|
{
|
|
return result_;
|
|
}
|
|
|
|
void
|
|
visit(const atomic_prop* ap)
|
|
{
|
|
inf_right_recurse_visitor v(ap, c);
|
|
const_cast<formula*>(f)->accept(v);
|
|
result_ = v.result();
|
|
}
|
|
|
|
void
|
|
visit(const bunop*)
|
|
{
|
|
}
|
|
|
|
void
|
|
visit(const constant* cst)
|
|
{
|
|
inf_right_recurse_visitor v(cst, c);
|
|
switch (cst->val())
|
|
{
|
|
case constant::True:
|
|
const_cast<formula*>(f)->accept(v);
|
|
result_ = v.result();
|
|
return;
|
|
case constant::False:
|
|
result_ = true;
|
|
return;
|
|
case constant::EmptyWord:
|
|
result_ = true;
|
|
return;
|
|
}
|
|
/* Unreachable code. */
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(const unop* uo)
|
|
{
|
|
const formula* f1 = uo->child();
|
|
inf_right_recurse_visitor v(uo, c);
|
|
switch (uo->op())
|
|
{
|
|
case unop::Not:
|
|
if (uo == f)
|
|
result_ = true;
|
|
return;
|
|
case unop::X:
|
|
if (f->kind() == formula::UnOp)
|
|
{
|
|
const unop* op = static_cast<const unop*>(f);
|
|
if (op->op() == unop::X)
|
|
result_ = c->syntactic_implication(f1, op->child());
|
|
}
|
|
return;
|
|
case unop::F:
|
|
{
|
|
/* F(a) = true U a */
|
|
const formula* tmp = binop::instance(binop::U,
|
|
constant::true_instance(),
|
|
f1->clone());
|
|
if (special_case_check(tmp))
|
|
{
|
|
result_ = true;
|
|
tmp->destroy();
|
|
return;
|
|
}
|
|
if (c->syntactic_implication(tmp, f))
|
|
result_ = true;
|
|
tmp->destroy();
|
|
return;
|
|
}
|
|
case unop::G:
|
|
{
|
|
/* G(a) = false R a */
|
|
const formula* tmp = binop::instance(binop::R,
|
|
constant::false_instance(),
|
|
f1->clone());
|
|
if (special_case_check(tmp))
|
|
{
|
|
result_ = true;
|
|
tmp->destroy();
|
|
return;
|
|
}
|
|
if (c->syntactic_implication(tmp, f))
|
|
result_ = true;
|
|
tmp->destroy();
|
|
return;
|
|
}
|
|
case unop::Finish:
|
|
case unop::Closure:
|
|
case unop::NegClosure:
|
|
return;
|
|
}
|
|
/* Unreachable code. */
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(const binop* bo)
|
|
{
|
|
if (special_case(bo))
|
|
{
|
|
result_ = true;
|
|
return;
|
|
}
|
|
|
|
const formula* f1 = bo->first();
|
|
const formula* f2 = bo->second();
|
|
switch (bo->op())
|
|
{
|
|
case binop::Xor:
|
|
case binop::Equiv:
|
|
case binop::Implies:
|
|
case binop::UConcat:
|
|
case binop::EConcat:
|
|
case binop::EConcatMarked:
|
|
return;
|
|
case binop::U:
|
|
/* (a < c) && (c < d) => a U b < c U d */
|
|
if (f->kind() == formula::BinOp)
|
|
{
|
|
const binop* fb = static_cast<const binop*>(f);
|
|
if (fb->op() == binop::U
|
|
&& c->syntactic_implication(f1, fb->first())
|
|
&& c->syntactic_implication(f2, fb->second()))
|
|
{
|
|
result_ = true;
|
|
return;
|
|
}
|
|
}
|
|
if (f->kind() == formula::UnOp)
|
|
{
|
|
const unop* fu = static_cast<const unop*>(f);
|
|
if (fu->op() == unop::F
|
|
&& f1 == constant::true_instance()
|
|
&& c->syntactic_implication(f2, fu->child()))
|
|
{
|
|
result_ = true;
|
|
return;
|
|
}
|
|
}
|
|
if (c->syntactic_implication(f1, f)
|
|
&& c->syntactic_implication(f2, f))
|
|
result_ = true;
|
|
return;
|
|
case binop::W:
|
|
/* (a < c) && (c < d) => a W b < c W d */
|
|
if (f->kind() == formula::BinOp)
|
|
{
|
|
const binop* fb = static_cast<const binop*>(f);
|
|
if (fb->op() == binop::W
|
|
&& c->syntactic_implication(f1, fb->first())
|
|
&& c->syntactic_implication(f2, fb->second()))
|
|
{
|
|
result_ = true;
|
|
return;
|
|
}
|
|
}
|
|
if (f->kind() == formula::UnOp)
|
|
{
|
|
const unop* fu = static_cast<const unop*>(f);
|
|
if (fu && fu->op() == unop::G
|
|
&& f2 == constant::false_instance()
|
|
&& c->syntactic_implication(f1, fu->child()))
|
|
{
|
|
result_ = true;
|
|
return;
|
|
}
|
|
}
|
|
if (c->syntactic_implication(f1, f)
|
|
&& c->syntactic_implication(f2, f))
|
|
result_ = true;
|
|
return;
|
|
case binop::R:
|
|
if (f->kind() == formula::UnOp)
|
|
{
|
|
const unop* fu = static_cast<const unop*>(f);
|
|
if (fu->op() == unop::G
|
|
&& f1 == constant::false_instance()
|
|
&& c->syntactic_implication(f2, fu->child()))
|
|
{
|
|
result_ = true;
|
|
return;
|
|
}
|
|
}
|
|
if (c->syntactic_implication(f2, f))
|
|
result_ = true;
|
|
return;
|
|
case binop::M:
|
|
if (f->kind() == formula::UnOp)
|
|
{
|
|
const unop* fu = static_cast<const unop*>(f);
|
|
if (fu->op() == unop::F
|
|
&& f2 == constant::true_instance()
|
|
&& c->syntactic_implication(f1, fu->child()))
|
|
{
|
|
result_ = true;
|
|
return;
|
|
}
|
|
}
|
|
if (c->syntactic_implication(f2, f))
|
|
result_ = true;
|
|
return;
|
|
}
|
|
/* Unreachable code. */
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(const automatop*)
|
|
{
|
|
assert(0);
|
|
}
|
|
|
|
void
|
|
visit(const multop* mo)
|
|
{
|
|
multop::type op = mo->op();
|
|
unsigned mos = mo->size();
|
|
switch (op)
|
|
{
|
|
case multop::And:
|
|
for (unsigned i = 0; (i < mos) && !result_; ++i)
|
|
if (c->syntactic_implication(mo->nth(i), f))
|
|
result_ = true;
|
|
break;
|
|
case multop::Or:
|
|
for (unsigned i = 0; i < mos; ++i)
|
|
if (!c->syntactic_implication(mo->nth(i), f))
|
|
return;
|
|
result_ = true;
|
|
break;
|
|
case multop::Concat:
|
|
case multop::Fusion:
|
|
case multop::AndNLM:
|
|
break;
|
|
}
|
|
}
|
|
|
|
protected:
|
|
bool result_; /* true if f1 < f, 1 otherwise. */
|
|
const formula* f;
|
|
syntactic_implication_cache* c;
|
|
};
|
|
|
|
} // anonymous
|
|
|
|
// This is called by syntactic_implication() after the
|
|
// formulae have been normalized.
|
|
bool
|
|
syntactic_implication_cache::syntactic_implication(const formula* f1,
|
|
const formula* f2)
|
|
{
|
|
if (f1 == f2)
|
|
return true;
|
|
if (f2 == constant::true_instance()
|
|
|| f1 == constant::false_instance())
|
|
return true;
|
|
|
|
// Cache lookup
|
|
{
|
|
pairf p(f1, f2);
|
|
cache_t::const_iterator i = cache_.find(p);
|
|
if (i != cache_.end())
|
|
return i->second;
|
|
}
|
|
|
|
bool result = false;
|
|
|
|
inf_left_recurse_visitor v1(f2, this);
|
|
const_cast<formula*>(f1)->accept(v1);
|
|
if (v1.result())
|
|
{
|
|
result = true;
|
|
}
|
|
else
|
|
{
|
|
inf_right_recurse_visitor v2(f1, this);
|
|
const_cast<formula*>(f2)->accept(v2);
|
|
if (v2.result())
|
|
result = true;
|
|
}
|
|
|
|
// Cache result
|
|
{
|
|
pairf p(f1->clone(), f2->clone());
|
|
cache_[p] = result;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
bool
|
|
syntactic_implication_cache::syntactic_implication_neg(const formula* f1,
|
|
const formula* f2,
|
|
bool right)
|
|
{
|
|
formula* l = f1->clone();
|
|
formula* r = f2->clone();
|
|
if (right)
|
|
r = unop::instance(unop::Not, r);
|
|
else
|
|
l = unop::instance(unop::Not, l);
|
|
|
|
// Cache lookup
|
|
{
|
|
pairf p(l, r);
|
|
cache_t::const_iterator i = cache_.find(p);
|
|
if (i != cache_.end())
|
|
{
|
|
l->destroy();
|
|
r->destroy();
|
|
return i->second;
|
|
}
|
|
}
|
|
// Save the cache key for latter.
|
|
pairf p(l->clone(), r->clone());
|
|
|
|
formula* tmp = unabbreviate_logic(l);
|
|
l->destroy();
|
|
l = simplify_f_g(tmp);
|
|
tmp->destroy();
|
|
tmp = negative_normal_form(l);
|
|
l->destroy();
|
|
l = tmp;
|
|
|
|
tmp = unabbreviate_logic(r);
|
|
r->destroy();
|
|
r = simplify_f_g(tmp);
|
|
tmp->destroy();
|
|
tmp = negative_normal_form(r);
|
|
r->destroy();
|
|
r = tmp;
|
|
|
|
bool result = syntactic_implication(l, r);
|
|
l->destroy();
|
|
r->destroy();
|
|
|
|
// Cache result if is has not be done by syntactic_implication() already.
|
|
if (l != p.first || r != p.second)
|
|
{
|
|
cache_[p] = result;
|
|
}
|
|
else
|
|
{
|
|
p.first->destroy();
|
|
p.second->destroy();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
syntactic_implication_cache::~syntactic_implication_cache()
|
|
{
|
|
cache_t::const_iterator i = cache_.begin();
|
|
while (i != cache_.end())
|
|
{
|
|
// Advance the iterator before deleting the key.
|
|
pairf p = i->first;
|
|
++i;
|
|
|
|
p.first->destroy();
|
|
p.second->destroy();
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|