spot/spot/twaalgos/rabin2parity.cc
Alexandre Duret-Lutz 527c802511 more coverage
* python/spot/impl.i: Add missing bindings from remprop.hh
* tests/python/except.py: New file to test several error cases.
* tests/Makefile.am: Add it.
* spot/twaalgos/rabin2parity.cc (iar): Fix error message.
2018-01-19 21:19:36 +01:00

289 lines
9.6 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) 2017-2018 Laboratoire de Recherche et Développement de l'Epita.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include <deque>
#include <spot/twaalgos/rabin2parity.hh>
#include <spot/twaalgos/sccinfo.hh>
#include <spot/twaalgos/isdet.hh>
namespace spot
{
namespace
{
using perm_t = std::vector<unsigned>;
struct iar_state
{
unsigned state;
perm_t perm;
bool
operator<(const iar_state& other) const
{
return state == other.state ? perm < other.perm : state < other.state;
}
};
class iar_generator
{
public:
explicit iar_generator(const const_twa_graph_ptr& a,
const std::vector<acc_cond::rs_pair>& p)
: aut_(a)
, pairs_(p)
, scc_(scc_info(a))
{}
twa_graph_ptr
run()
{
res_ = make_twa_graph(aut_->get_dict());
res_->copy_ap_of(aut_);
build_iar_scc(scc_.initial());
// resulting automaton has acceptance condition: parity max odd
// with priorities ranging from 0 to 2*(nb Rabin pairs)
// /!\ priorities are shifted by -1 compared to the original paper
res_->set_acceptance(2*pairs_.size() + 1,
acc_cond::acc_code::parity(true, true, 2*pairs_.size() + 1));
// set initial state
res_->set_init_state(
iar2num.at(state2iar.at(aut_->get_init_state_number())));
// there could be quite a number of unreachable states, prune them
res_->purge_unreachable_states();
return res_;
}
void
build_iar_scc(unsigned scc_num)
{
// we are working on an SCC: the state we start from does not matter
unsigned init = scc_.one_state_of(scc_num);
std::deque<iar_state> todo;
auto get_state = [&](const iar_state& s)
{
auto it = iar2num.find(s);
if (it == iar2num.end())
{
unsigned nb = res_->new_state();
iar2num[s] = nb;
num2iar[nb] = s;
todo.push_back(s);
return nb;
}
return it->second;
};
auto get_other_scc = [this](unsigned state)
{
auto it = state2iar.find(state);
// recursively build the destination SCC if we detect that it has
// not been already built.
if (it == state2iar.end())
build_iar_scc(scc_.scc_of(state));
return iar2num.at(state2iar.at(state));
};
if (scc_.is_trivial(scc_num))
{
iar_state iar_s{init, perm_t()};
state2iar[init] = iar_s;
unsigned src_num = get_state(iar_s);
// Do not forget to connect to subsequent SCCs
for (const auto& e : aut_->out(init))
res_->new_edge(src_num, get_other_scc(e.dst), e.cond);
return;
}
// determine the Rabin pairs that appear in the SCC
auto colors = scc_.acc_sets_of(scc_num);
std::set<unsigned> scc_pairs;
for (unsigned k = 0; k != pairs_.size(); ++k)
if (colors & (pairs_[k].fin | pairs_[k].inf))
scc_pairs.insert(k);
perm_t p0;
for (unsigned k : scc_pairs)
p0.push_back(k);
iar_state s0{init, p0};
get_state(s0); // put s0 in todo
// the main loop
while (!todo.empty())
{
iar_state current = todo.front();
todo.pop_front();
unsigned src_num = get_state(current);
for (const auto& e : aut_->out(current.state))
{
// connect to the appropriate state
if (scc_.scc_of(e.dst) != scc_num)
res_->new_edge(src_num, get_other_scc(e.dst), e.cond);
else
{
// find the new permutation
perm_t new_perm = current.perm;
// Count pairs whose fin-part is seen on this transition
unsigned seen_nb = 0;
std::vector<unsigned> seen;
// consider the pairs for this SCC only
for (unsigned k : scc_pairs)
if (e.acc & pairs_[k].fin)
{
++seen_nb;
auto it = std::find(new_perm.begin(),
new_perm.end(),
k);
// move the pair in front of the permutation
std::rotate(new_perm.begin(), it, it+1);
}
iar_state dst;
unsigned dst_num = -1U;
// Optimization: when several indices are seen in the
// transition, they move at the front of new_perm in any
// order. Check whether there already exists an iar_state
// that matches this condition.
for (unsigned i = 0; i != num2iar.size(); ++i)
if (num2iar[i].state == e.dst)
if (std::equal(new_perm.begin() + seen_nb,
new_perm.end(),
num2iar[i].perm.begin() + seen_nb))
{
dst = num2iar[i];
dst_num = i;
break;
}
// if such a state was not found, build it
if (dst_num == -1U)
{
dst = iar_state{e.dst, new_perm};
dst_num = get_state(dst);
}
// find the maximal index encountered by this transition
unsigned maxint = -1U;
for (unsigned k = 0; k != current.perm.size(); ++k)
{
unsigned pk = current.perm[k];
if (e.acc & (pairs_[pk].fin | pairs_[pk].inf))
// k increases in the loop, so k > maxint necessarily
maxint = k;
}
acc_cond::mark_t acc = 0U;
if (maxint == -1U)
acc = {0};
else if (e.acc & pairs_[current.perm[maxint]].fin)
acc = {2*maxint+2};
else
acc = {2*maxint+1};
res_->new_edge(src_num, dst_num, e.cond, acc);
}
}
}
// Optimization: find the bottom SCC of the sub-automaton we have just
// built. To that end, we have to ignore edges going out of scc_num.
auto leaving_edge = [&](unsigned d)
{
return scc_.scc_of(num2iar.at(d).state) != scc_num;
};
auto filter_edge = [](const twa_graph::edge_storage_t&,
unsigned dst,
void* filter_data)
{
decltype(leaving_edge)* data =
static_cast<decltype(leaving_edge)*>(filter_data);
if ((*data)(dst))
return scc_info::edge_filter_choice::ignore;
return scc_info::edge_filter_choice::keep;
};
scc_info sub_scc(res_, get_state(s0), filter_edge, &leaving_edge);
// SCCs are numbered in reverse topological order, so the bottom SCC has
// index 0.
const unsigned bscc = 0;
assert(sub_scc.succ(0).empty());
assert(
[&]()
{
for (unsigned s = 1; s != sub_scc.scc_count(); ++s)
if (sub_scc.succ(s).empty())
return false;
return true;
} ());
assert(sub_scc.states_of(bscc).size()
>= scc_.states_of(scc_num).size());
// update state2iar
for (const auto& scc_state : sub_scc.states_of(bscc))
{
iar_state iar = num2iar.at(scc_state);
if (state2iar.find(iar.state) == state2iar.end())
state2iar[iar.state] = iar;
}
}
private:
const const_twa_graph_ptr& aut_;
const std::vector<acc_cond::rs_pair>& pairs_;
const scc_info scc_;
twa_graph_ptr res_;
// to be used when entering a new SCC
// maps a state of aut_ onto an iar_state with the appropriate perm
std::map<unsigned, iar_state> state2iar;
std::map<iar_state, unsigned> iar2num;
std::map<unsigned, iar_state> num2iar;
};
}
twa_graph_ptr
iar_maybe(const const_twa_graph_ptr& aut)
{
std::vector<acc_cond::rs_pair> rabin_pairs;
if (!aut->acc().is_rabin_like(rabin_pairs))
return nullptr;
iar_generator gen(aut, rabin_pairs);
return gen.run();
}
twa_graph_ptr
iar(const const_twa_graph_ptr& aut)
{
if (auto res = iar_maybe(aut))
return res;
throw std::runtime_error("iar() expects Rabin-like input");
}
}