* bin/genltl.cc: Implement these options. * NEWS: Mention them. * tests/core/genltl.test: New file with test cases. * tests/Makefile.am: Add it.
1115 lines
30 KiB
C++
1115 lines
30 KiB
C++
// -*- coding: utf-8 -*-
|
|
// Copyright (C) 2012, 2013, 2015, 2016 Laboratoire de Recherche et
|
|
// Développement de l'Epita (LRDE).
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// Families defined here come from the following papers:
|
|
//
|
|
// @InProceedings{cichon.09.depcos,
|
|
// author = {Jacek Cicho{\'n} and Adam Czubak and Andrzej Jasi{\'n}ski},
|
|
// title = {Minimal {B\"uchi} Automata for Certain Classes of {LTL} Formulas},
|
|
// booktitle = {Proceedings of the Fourth International Conference on
|
|
// Dependability of Computer Systems},
|
|
// pages = {17--24},
|
|
// year = 2009,
|
|
// publisher = {IEEE Computer Society},
|
|
// }
|
|
//
|
|
// @InProceedings{geldenhuys.06.spin,
|
|
// author = {Jaco Geldenhuys and Henri Hansen},
|
|
// title = {Larger Automata and Less Work for LTL Model Checking},
|
|
// booktitle = {Proceedings of the 13th International SPIN Workshop},
|
|
// year = {2006},
|
|
// pages = {53--70},
|
|
// series = {Lecture Notes in Computer Science},
|
|
// volume = {3925},
|
|
// publisher = {Springer}
|
|
// }
|
|
//
|
|
// @InProceedings{gastin.01.cav,
|
|
// author = {Paul Gastin and Denis Oddoux},
|
|
// title = {Fast {LTL} to {B\"u}chi Automata Translation},
|
|
// booktitle = {Proceedings of the 13th International Conference on
|
|
// Computer Aided Verification (CAV'01)},
|
|
// pages = {53--65},
|
|
// year = 2001,
|
|
// editor = {G. Berry and H. Comon and A. Finkel},
|
|
// volume = {2102},
|
|
// series = {Lecture Notes in Computer Science},
|
|
// address = {Paris, France},
|
|
// publisher = {Springer-Verlag}
|
|
// }
|
|
//
|
|
// @InProceedings{rozier.07.spin,
|
|
// author = {Kristin Y. Rozier and Moshe Y. Vardi},
|
|
// title = {LTL Satisfiability Checking},
|
|
// booktitle = {Proceedings of the 12th International SPIN Workshop on
|
|
// Model Checking of Software (SPIN'07)},
|
|
// pages = {149--167},
|
|
// year = {2007},
|
|
// volume = {4595},
|
|
// series = {Lecture Notes in Computer Science},
|
|
// publisher = {Springer-Verlag}
|
|
// }
|
|
//
|
|
// @InProceedings{dwyer.98.fmsp,
|
|
// author = {Matthew B. Dwyer and George S. Avrunin and James C. Corbett},
|
|
// title = {Property Specification Patterns for Finite-state
|
|
// Verification},
|
|
// booktitle = {Proceedings of the 2nd Workshop on Formal Methods in
|
|
// Software Practice (FMSP'98)},
|
|
// publisher = {ACM Press},
|
|
// address = {New York},
|
|
// editor = {Mark Ardis},
|
|
// month = mar,
|
|
// year = {1998},
|
|
// pages = {7--15}
|
|
// }
|
|
//
|
|
// @InProceedings{etessami.00.concur,
|
|
// author = {Kousha Etessami and Gerard J. Holzmann},
|
|
// title = {Optimizing {B\"u}chi Automata},
|
|
// booktitle = {Proceedings of the 11th International Conference on
|
|
// Concurrency Theory (Concur'00)},
|
|
// pages = {153--167},
|
|
// year = {2000},
|
|
// editor = {C. Palamidessi},
|
|
// volume = {1877},
|
|
// series = {Lecture Notes in Computer Science},
|
|
// address = {Pennsylvania, USA},
|
|
// publisher = {Springer-Verlag}
|
|
// }
|
|
//
|
|
// @InProceedings{somenzi.00.cav,
|
|
// author = {Fabio Somenzi and Roderick Bloem},
|
|
// title = {Efficient {B\"u}chi Automata for {LTL} Formul{\ae}},
|
|
// booktitle = {Proceedings of the 12th International Conference on
|
|
// Computer Aided Verification (CAV'00)},
|
|
// pages = {247--263},
|
|
// year = {2000},
|
|
// volume = {1855},
|
|
// series = {Lecture Notes in Computer Science},
|
|
// address = {Chicago, Illinois, USA},
|
|
// publisher = {Springer-Verlag}
|
|
// }
|
|
|
|
#include "common_sys.hh"
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <argp.h>
|
|
#include <cstdlib>
|
|
#include "error.h"
|
|
#include <vector>
|
|
|
|
#include "common_setup.hh"
|
|
#include "common_output.hh"
|
|
#include "common_range.hh"
|
|
|
|
#include <cassert>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <set>
|
|
#include <string>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <spot/tl/formula.hh>
|
|
#include <spot/tl/relabel.hh>
|
|
#include <spot/tl/parse.hh>
|
|
|
|
using namespace spot;
|
|
|
|
const char argp_program_doc[] ="\
|
|
Generate temporal logic formulas from predefined patterns.";
|
|
|
|
enum {
|
|
OPT_AND_F = 1,
|
|
OPT_AND_FG,
|
|
OPT_AND_GF,
|
|
OPT_CCJ_ALPHA,
|
|
OPT_CCJ_BETA,
|
|
OPT_CCJ_BETA_PRIME,
|
|
OPT_DAC_PATTERNS,
|
|
OPT_EH_PATTERNS,
|
|
OPT_GH_Q,
|
|
OPT_GH_R,
|
|
OPT_GO_THETA,
|
|
OPT_OR_FG,
|
|
OPT_OR_G,
|
|
OPT_OR_GF,
|
|
OPT_R_LEFT,
|
|
OPT_R_RIGHT,
|
|
OPT_RV_COUNTER,
|
|
OPT_RV_COUNTER_CARRY,
|
|
OPT_RV_COUNTER_CARRY_LINEAR,
|
|
OPT_RV_COUNTER_LINEAR,
|
|
OPT_SB_PATTERNS,
|
|
OPT_U_LEFT,
|
|
OPT_U_RIGHT,
|
|
LAST_CLASS,
|
|
OPT_POSITIVE,
|
|
OPT_NEGATIVE,
|
|
};
|
|
|
|
const char* const class_name[LAST_CLASS] =
|
|
{
|
|
"and-f",
|
|
"and-fg",
|
|
"and-gf",
|
|
"ccj-alpha",
|
|
"ccj-beta",
|
|
"ccj-beta-prime",
|
|
"dac-patterns",
|
|
"eh-patterns",
|
|
"gh-q",
|
|
"gh-r",
|
|
"go-theta",
|
|
"or-fg",
|
|
"or-g",
|
|
"or-gf",
|
|
"or-r-left",
|
|
"or-r-right",
|
|
"rv-counter",
|
|
"rv-counter-carry",
|
|
"rv-counter-carry-linear",
|
|
"rv-counter-linear",
|
|
"sb-patterns",
|
|
"u-left",
|
|
"u-right",
|
|
};
|
|
|
|
|
|
#define OPT_ALIAS(o) { #o, 0, nullptr, OPTION_ALIAS, nullptr, 0 }
|
|
|
|
static const argp_option options[] =
|
|
{
|
|
/**************************************************/
|
|
// Keep this alphabetically sorted (expect for aliases).
|
|
{ nullptr, 0, nullptr, 0, "Pattern selection:", 1},
|
|
// J. Geldenhuys and H. Hansen (Spin'06): Larger automata and less
|
|
// work for LTL model checking.
|
|
{ "and-f", OPT_AND_F, "RANGE", 0, "F(p1)&F(p2)&...&F(pn)", 0 },
|
|
OPT_ALIAS(gh-e),
|
|
{ "and-fg", OPT_AND_FG, "RANGE", 0, "FG(p1)&FG(p2)&...&FG(pn)", 0 },
|
|
{ "and-gf", OPT_AND_GF, "RANGE", 0, "GF(p1)&GF(p2)&...&GF(pn)", 0 },
|
|
OPT_ALIAS(ccj-phi),
|
|
OPT_ALIAS(gh-c2),
|
|
{ "ccj-alpha", OPT_CCJ_ALPHA, "RANGE", 0,
|
|
"F(p1&F(p2&F(p3&...F(pn)))) & F(q1&F(q2&F(q3&...F(qn))))", 0 },
|
|
{ "ccj-beta", OPT_CCJ_BETA, "RANGE", 0,
|
|
"F(p&X(p&X(p&...X(p)))) & F(q&X(q&X(q&...X(q))))", 0 },
|
|
{ "ccj-beta-prime", OPT_CCJ_BETA_PRIME, "RANGE", 0,
|
|
"F(p&(Xp)&(XXp)&...(X...X(p))) & F(q&(Xq)&(XXq)&...(X...X(q)))", 0 },
|
|
{ "dac-patterns", OPT_DAC_PATTERNS, "RANGE", OPTION_ARG_OPTIONAL,
|
|
"Dwyer et al. [FMSP'98] Spec. Patterns for LTL "
|
|
"(range should be included in 1..45)", 0 },
|
|
{ "eh-patterns", OPT_EH_PATTERNS, "RANGE", OPTION_ARG_OPTIONAL,
|
|
"Etessami and Holzmann [Concur'00] patterns "
|
|
"(range should be included in 1..12)", 0 },
|
|
{ "gh-q", OPT_GH_Q, "RANGE", 0,
|
|
"(F(p1)|G(p2))&(F(p2)|G(p3))&...&(F(pn)|G(p{n+1}))", 0 },
|
|
{ "gh-r", OPT_GH_R, "RANGE", 0,
|
|
"(GF(p1)|FG(p2))&(GF(p2)|FG(p3))&... &(GF(pn)|FG(p{n+1}))", 0},
|
|
{ "go-theta", OPT_GO_THETA, "RANGE", 0,
|
|
"!((GF(p1)&GF(p2)&...&GF(pn)) -> G(q->F(r)))", 0 },
|
|
{ "or-fg", OPT_OR_FG, "RANGE", 0, "FG(p1)|FG(p2)|...|FG(pn)", 0 },
|
|
OPT_ALIAS(ccj-xi),
|
|
{ "or-g", OPT_OR_G, "RANGE", 0, "G(p1)|G(p2)|...|G(pn)", 0 },
|
|
OPT_ALIAS(gh-s),
|
|
{ "or-gf", OPT_OR_GF, "RANGE", 0, "GF(p1)|GF(p2)|...|GF(pn)", 0 },
|
|
OPT_ALIAS(gh-c1),
|
|
{ "r-left", OPT_R_LEFT, "RANGE", 0, "(((p1 R p2) R p3) ... R pn)", 0 },
|
|
{ "r-right", OPT_R_RIGHT, "RANGE", 0, "(p1 R (p2 R (... R pn)))", 0 },
|
|
{ "rv-counter", OPT_RV_COUNTER, "RANGE", 0,
|
|
"n-bit counter", 0 },
|
|
{ "rv-counter-carry", OPT_RV_COUNTER_CARRY, "RANGE", 0,
|
|
"n-bit counter w/ carry", 0 },
|
|
{ "rv-counter-carry-linear", OPT_RV_COUNTER_CARRY_LINEAR, "RANGE", 0,
|
|
"n-bit counter w/ carry (linear size)", 0 },
|
|
{ "rv-counter-linear", OPT_RV_COUNTER_LINEAR, "RANGE", 0,
|
|
"n-bit counter (linear size)", 0 },
|
|
{ "sb-patterns", OPT_SB_PATTERNS, "RANGE", OPTION_ARG_OPTIONAL,
|
|
"Somenzi and Bloem [CAV'00] patterns "
|
|
"(range should be included in 1..27)", 0 },
|
|
{ "u-left", OPT_U_LEFT, "RANGE", 0, "(((p1 U p2) U p3) ... U pn)", 0 },
|
|
OPT_ALIAS(gh-u),
|
|
{ "u-right", OPT_U_RIGHT, "RANGE", 0, "(p1 U (p2 U (... U pn)))", 0 },
|
|
OPT_ALIAS(gh-u2),
|
|
OPT_ALIAS(go-phi),
|
|
RANGE_DOC,
|
|
/**************************************************/
|
|
{ nullptr, 0, nullptr, 0, "Output options:", -20 },
|
|
{ "negative", OPT_NEGATIVE, nullptr, 0,
|
|
"output the negated versions of all formulas", 0 },
|
|
OPT_ALIAS(negated),
|
|
{ "positive", OPT_POSITIVE, nullptr, 0,
|
|
"output the positive versions of all formulas (done by default, unless"
|
|
" --negative is specified without --positive)", 0 },
|
|
{ nullptr, 0, nullptr, 0, "The FORMAT string passed to --format may use "
|
|
"the following interpreted sequences:", -19 },
|
|
{ "%f", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
|
|
"the formula (in the selected syntax)", 0 },
|
|
{ "%F", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
|
|
"the name of the pattern", 0 },
|
|
{ "%L", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
|
|
"the argument of the pattern", 0 },
|
|
{ "%%", 0, nullptr, OPTION_DOC | OPTION_NO_USAGE,
|
|
"a single %", 0 },
|
|
{ nullptr, 0, nullptr, 0, "Miscellaneous options:", -1 },
|
|
{ nullptr, 0, nullptr, 0, nullptr, 0 }
|
|
};
|
|
|
|
struct job
|
|
{
|
|
int pattern;
|
|
struct range range;
|
|
};
|
|
|
|
typedef std::vector<job> jobs_t;
|
|
static jobs_t jobs;
|
|
bool opt_positive = false;
|
|
bool opt_negative = false;
|
|
|
|
const struct argp_child children[] =
|
|
{
|
|
{ &output_argp, 0, nullptr, -20 },
|
|
{ &misc_argp, 0, nullptr, -1 },
|
|
{ nullptr, 0, nullptr, 0 }
|
|
};
|
|
|
|
static void
|
|
enqueue_job(int pattern, const char* range_str)
|
|
{
|
|
job j;
|
|
j.pattern = pattern;
|
|
j.range = parse_range(range_str);
|
|
jobs.push_back(j);
|
|
}
|
|
|
|
static void
|
|
enqueue_job(int pattern, int min, int max)
|
|
{
|
|
job j;
|
|
j.pattern = pattern;
|
|
j.range = {min, max};
|
|
jobs.push_back(j);
|
|
}
|
|
|
|
static int
|
|
parse_opt(int key, char* arg, struct argp_state*)
|
|
{
|
|
// This switch is alphabetically-ordered.
|
|
switch (key)
|
|
{
|
|
case OPT_AND_F:
|
|
case OPT_AND_FG:
|
|
case OPT_AND_GF:
|
|
case OPT_CCJ_ALPHA:
|
|
case OPT_CCJ_BETA:
|
|
case OPT_CCJ_BETA_PRIME:
|
|
case OPT_GH_Q:
|
|
case OPT_GH_R:
|
|
case OPT_GO_THETA:
|
|
case OPT_OR_FG:
|
|
case OPT_OR_G:
|
|
case OPT_OR_GF:
|
|
case OPT_R_LEFT:
|
|
case OPT_R_RIGHT:
|
|
case OPT_RV_COUNTER:
|
|
case OPT_RV_COUNTER_CARRY:
|
|
case OPT_RV_COUNTER_CARRY_LINEAR:
|
|
case OPT_RV_COUNTER_LINEAR:
|
|
case OPT_U_LEFT:
|
|
case OPT_U_RIGHT:
|
|
enqueue_job(key, arg);
|
|
break;
|
|
case OPT_DAC_PATTERNS:
|
|
if (arg)
|
|
enqueue_job(key, arg);
|
|
else
|
|
enqueue_job(key, 1, 55);
|
|
break;
|
|
case OPT_EH_PATTERNS:
|
|
if (arg)
|
|
enqueue_job(key, arg);
|
|
else
|
|
enqueue_job(key, 1, 12);
|
|
break;
|
|
case OPT_SB_PATTERNS:
|
|
if (arg)
|
|
enqueue_job(key, arg);
|
|
else
|
|
enqueue_job(key, 1, 27);
|
|
break;
|
|
case OPT_POSITIVE:
|
|
opt_positive = true;
|
|
break;
|
|
case OPT_NEGATIVE:
|
|
opt_negative = true;
|
|
break;
|
|
default:
|
|
return ARGP_ERR_UNKNOWN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define G_(x) formula::G(x)
|
|
#define F_(x) formula::F(x)
|
|
#define X_(x) formula::X(x)
|
|
#define Not_(x) formula::Not(x)
|
|
|
|
#define Implies_(x, y) formula::Implies((x), (y))
|
|
#define Equiv_(x, y) formula::Equiv((x), (y))
|
|
#define And_(x, y) formula::And({(x), (y)})
|
|
#define Or_(x, y) formula::Or({(x), (y)})
|
|
#define U_(x, y) formula::U((x), (y))
|
|
|
|
// F(p_1 & F(p_2 & F(p_3 & ... F(p_n))))
|
|
static formula
|
|
E_n(std::string name, int n)
|
|
{
|
|
if (n <= 0)
|
|
return formula::tt();
|
|
|
|
formula result = nullptr;
|
|
|
|
for (; n > 0; --n)
|
|
{
|
|
std::ostringstream p;
|
|
p << name << n;
|
|
formula f = formula::ap(p.str());
|
|
if (result)
|
|
result = And_(f, result);
|
|
else
|
|
result = f;
|
|
result = F_(result);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// p & X(p & X(p & ... X(p)))
|
|
static formula
|
|
phi_n(std::string name, int n)
|
|
{
|
|
if (n <= 0)
|
|
return formula::tt();
|
|
|
|
formula result = nullptr;
|
|
formula p = formula::ap(name);
|
|
for (; n > 0; --n)
|
|
{
|
|
if (result)
|
|
result = And_(p, X_(result));
|
|
else
|
|
result = p;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static formula
|
|
N_n(std::string name, int n)
|
|
{
|
|
return formula::F(phi_n(name, n));
|
|
}
|
|
|
|
// p & X(p) & XX(p) & XXX(p) & ... X^n(p)
|
|
static formula
|
|
phi_prime_n(std::string name, int n)
|
|
{
|
|
if (n <= 0)
|
|
return formula::tt();
|
|
|
|
formula result = nullptr;
|
|
formula p = formula::ap(name);
|
|
for (; n > 0; --n)
|
|
{
|
|
if (result)
|
|
{
|
|
p = X_(p);
|
|
result = And_(result, p);
|
|
}
|
|
else
|
|
{
|
|
result = p;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static formula
|
|
N_prime_n(std::string name, int n)
|
|
{
|
|
return F_(phi_prime_n(name, n));
|
|
}
|
|
|
|
|
|
// GF(p_1) & GF(p_2) & ... & GF(p_n) if conj == true
|
|
// GF(p_1) | GF(p_2) | ... | GF(p_n) if conj == false
|
|
static formula
|
|
GF_n(std::string name, int n, bool conj = true)
|
|
{
|
|
if (n <= 0)
|
|
return conj ? formula::tt() : formula::ff();
|
|
|
|
formula result = nullptr;
|
|
|
|
op o = conj ? op::And : op::Or;
|
|
|
|
for (int i = 1; i <= n; ++i)
|
|
{
|
|
std::ostringstream p;
|
|
p << name << i;
|
|
formula f = G_(F_(formula::ap(p.str())));
|
|
|
|
if (result)
|
|
result = formula::multop(o, {f, result});
|
|
else
|
|
result = f;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// FG(p_1) | FG(p_2) | ... | FG(p_n) if conj == false
|
|
// FG(p_1) & FG(p_2) & ... & FG(p_n) if conj == true
|
|
static formula
|
|
FG_n(std::string name, int n, bool conj = false)
|
|
{
|
|
if (n <= 0)
|
|
return conj ? formula::tt() : formula::ff();
|
|
|
|
formula result = nullptr;
|
|
|
|
op o = conj ? op::And : op::Or;
|
|
|
|
for (int i = 1; i <= n; ++i)
|
|
{
|
|
std::ostringstream p;
|
|
p << name << i;
|
|
formula f = F_(G_(formula::ap(p.str())));
|
|
|
|
if (result)
|
|
result = formula::multop(o, {f, result});
|
|
else
|
|
result = f;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// (((p1 OP p2) OP p3)...OP pn) if right_assoc == false
|
|
// (p1 OP (p2 OP (p3 OP (... pn) if right_assoc == true
|
|
static formula
|
|
bin_n(std::string name, int n, op o, bool right_assoc = false)
|
|
{
|
|
if (n <= 0)
|
|
n = 1;
|
|
|
|
formula result = nullptr;
|
|
|
|
for (int i = 1; i <= n; ++i)
|
|
{
|
|
std::ostringstream p;
|
|
p << name << (right_assoc ? (n + 1 - i) : i);
|
|
formula f = formula::ap(p.str());
|
|
if (!result)
|
|
result = f;
|
|
else if (right_assoc)
|
|
result = formula::binop(o, f, result);
|
|
else
|
|
result = formula::binop(o, result, f);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// (GF(p1)|FG(p2))&(GF(p2)|FG(p3))&...&(GF(pn)|FG(p{n+1}))"
|
|
static formula
|
|
R_n(std::string name, int n)
|
|
{
|
|
if (n <= 0)
|
|
return formula::tt();
|
|
|
|
formula pi;
|
|
|
|
{
|
|
std::ostringstream p;
|
|
p << name << 1;
|
|
pi = formula::ap(p.str());
|
|
}
|
|
|
|
formula result = nullptr;
|
|
|
|
for (int i = 1; i <= n; ++i)
|
|
{
|
|
formula gf = G_(F_(pi));
|
|
std::ostringstream p;
|
|
p << name << i + 1;
|
|
pi = formula::ap(p.str());
|
|
|
|
formula fg = F_(G_(pi));
|
|
|
|
formula f = Or_(gf, fg);
|
|
|
|
if (result)
|
|
result = And_(f, result);
|
|
else
|
|
result = f;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// (F(p1)|G(p2))&(F(p2)|G(p3))&...&(F(pn)|G(p{n+1}))"
|
|
static formula
|
|
Q_n(std::string name, int n)
|
|
{
|
|
if (n <= 0)
|
|
return formula::tt();
|
|
|
|
formula pi;
|
|
|
|
{
|
|
std::ostringstream p;
|
|
p << name << 1;
|
|
pi = formula::ap(p.str());
|
|
}
|
|
|
|
formula result = nullptr;
|
|
|
|
for (int i = 1; i <= n; ++i)
|
|
{
|
|
formula f = F_(pi);
|
|
|
|
std::ostringstream p;
|
|
p << name << i + 1;
|
|
pi = formula::ap(p.str());
|
|
|
|
formula g = G_(pi);
|
|
|
|
f = Or_(f, g);
|
|
|
|
if (result)
|
|
result = And_(f, result);
|
|
else
|
|
result = f;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// OP(p1) | OP(p2) | ... | OP(Pn) if conj == false
|
|
// OP(p1) & OP(p2) & ... & OP(Pn) if conj == true
|
|
static formula
|
|
combunop_n(std::string name, int n, op o, bool conj = false)
|
|
{
|
|
if (n <= 0)
|
|
return conj ? formula::tt() : formula::ff();
|
|
|
|
formula result = nullptr;
|
|
|
|
op cop = conj ? op::And : op::Or;
|
|
|
|
for (int i = 1; i <= n; ++i)
|
|
{
|
|
std::ostringstream p;
|
|
p << name << i;
|
|
formula f = formula::unop(o, formula::ap(p.str()));
|
|
|
|
if (result)
|
|
result = formula::multop(cop, {f, result});
|
|
else
|
|
result = f;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// !((GF(p1)&GF(p2)&...&GF(pn))->G(q -> F(r)))
|
|
// From "Fast LTL to Büchi Automata Translation" [gastin.01.cav]
|
|
static formula
|
|
fair_response(std::string p, std::string q, std::string r, int n)
|
|
{
|
|
formula fair = GF_n(p, n);
|
|
formula resp = G_(Implies_(formula::ap(q), F_(formula::ap(r))));
|
|
return Not_(Implies_(fair, resp));
|
|
}
|
|
|
|
|
|
// Builds X(X(...X(p))) with n occurrences of X.
|
|
static formula
|
|
X_n(formula p, int n)
|
|
{
|
|
assert(n >= 0);
|
|
formula res = p;
|
|
while (n--)
|
|
res = X_(res);
|
|
return res;
|
|
}
|
|
|
|
// Based on LTLcounter.pl from Kristin Rozier.
|
|
// http://shemesh.larc.nasa.gov/people/kyr/benchmarking_scripts/
|
|
static formula
|
|
ltl_counter(std::string bit, std::string marker, int n, bool linear)
|
|
{
|
|
formula b = formula::ap(bit);
|
|
formula neg_b = Not_(b);
|
|
formula m = formula::ap(marker);
|
|
formula neg_m = Not_(m);
|
|
|
|
std::vector<formula> res(4);
|
|
|
|
// The marker starts with "1", followed by n-1 "0", then "1" again,
|
|
// n-1 "0", etc.
|
|
if (!linear)
|
|
{
|
|
// G(m -> X(!m)&XX(!m)&XXX(m)) [if n = 3]
|
|
std::vector<formula> v(n);
|
|
for (int i = 0; i + 1 < n; ++i)
|
|
v[i] = X_n(neg_m, i + 1);
|
|
v[n - 1] = X_n(m, n);
|
|
res[0] = And_(m, G_(Implies_(m, formula::And(std::move(v)))));
|
|
}
|
|
else
|
|
{
|
|
// G(m -> X(!m & X(!m X(m)))) [if n = 3]
|
|
formula p = m;
|
|
for (int i = n - 1; i > 0; --i)
|
|
p = And_(neg_m, X_(p));
|
|
res[0] = And_(m, G_(Implies_(m, X_(p))));
|
|
}
|
|
|
|
// All bits are initially zero.
|
|
if (!linear)
|
|
{
|
|
// !b & X(!b) & XX(!b) [if n = 3]
|
|
std::vector<formula> v2(n);
|
|
for (int i = 0; i < n; ++i)
|
|
v2[i] = X_n(neg_b, i);
|
|
res[1] = formula::And(std::move(v2));
|
|
}
|
|
else
|
|
{
|
|
// !b & X(!b & X(!b)) [if n = 3]
|
|
formula p = neg_b;
|
|
for (int i = n - 1; i > 0; --i)
|
|
p = And_(neg_b, X_(p));
|
|
res[1] = p;
|
|
}
|
|
|
|
#define AndX_(x, y) (linear ? X_(And_((x), (y))) : And_(X_(x), X_(y)))
|
|
|
|
// If the least significant bit is 0, it will be 1 at the next time,
|
|
// and other bits stay the same.
|
|
formula Xnm1_b = X_n(b, n - 1);
|
|
formula Xn_b = X_(Xnm1_b);
|
|
res[2] = G_(Implies_(And_(m, neg_b),
|
|
AndX_(Xnm1_b, U_(And_(Not_(m), Equiv_(b, Xn_b)), m))));
|
|
|
|
// From the least significant bit to the first 0, all the bits
|
|
// are flipped on the next value. Remaining bits are identical.
|
|
formula Xnm1_negb = X_n(neg_b, n - 1);
|
|
formula Xn_negb = X_(Xnm1_negb);
|
|
res[3] = G_(Implies_(And_(m, b),
|
|
AndX_(Xnm1_negb,
|
|
U_(And_(And_(b, neg_m), Xn_negb),
|
|
Or_(m, And_(And_(neg_m, neg_b),
|
|
AndX_(Xnm1_b,
|
|
U_(And_(neg_m,
|
|
Equiv_(b, Xn_b)),
|
|
m))))))));
|
|
return formula::And(std::move(res));
|
|
}
|
|
|
|
static formula
|
|
ltl_counter_carry(std::string bit, std::string marker,
|
|
std::string carry, int n, bool linear)
|
|
{
|
|
formula b = formula::ap(bit);
|
|
formula neg_b = Not_(b);
|
|
formula m = formula::ap(marker);
|
|
formula neg_m = Not_(m);
|
|
formula c = formula::ap(carry);
|
|
formula neg_c = Not_(c);
|
|
|
|
std::vector<formula> res(6);
|
|
|
|
// The marker starts with "1", followed by n-1 "0", then "1" again,
|
|
// n-1 "0", etc.
|
|
if (!linear)
|
|
{
|
|
// G(m -> X(!m)&XX(!m)&XXX(m)) [if n = 3]
|
|
std::vector<formula> v(n);
|
|
for (int i = 0; i + 1 < n; ++i)
|
|
v[i] = X_n(neg_m, i + 1);
|
|
v[n - 1] = X_n(m, n);
|
|
res[0] = And_(m, G_(Implies_(m, formula::And(std::move(v)))));
|
|
}
|
|
else
|
|
{
|
|
// G(m -> X(!m & X(!m X(m)))) [if n = 3]
|
|
formula p = m;
|
|
for (int i = n - 1; i > 0; --i)
|
|
p = And_(neg_m, X_(p));
|
|
res[0] = And_(m, G_(Implies_(m, X_(p))));
|
|
}
|
|
|
|
// All bits are initially zero.
|
|
if (!linear)
|
|
{
|
|
// !b & X(!b) & XX(!b) [if n = 3]
|
|
std::vector<formula> v2(n);
|
|
for (int i = 0; i < n; ++i)
|
|
v2[i] = X_n(neg_b, i);
|
|
res[1] = formula::And(std::move(v2));
|
|
}
|
|
else
|
|
{
|
|
// !b & X(!b & X(!b)) [if n = 3]
|
|
formula p = neg_b;
|
|
for (int i = n - 1; i > 0; --i)
|
|
p = And_(neg_b, X_(p));
|
|
res[1] = p;
|
|
}
|
|
|
|
formula Xn_b = X_n(b, n);
|
|
formula Xn_negb = X_n(neg_b, n);
|
|
|
|
// If m is 1 and b is 0 then c is 0 and n steps later b is 1.
|
|
res[2] = G_(Implies_(And_(m, neg_b), And_(neg_c, Xn_b)));
|
|
|
|
// If m is 1 and b is 1 then c is 1 and n steps later b is 0.
|
|
res[3] = G_(Implies_(And_(m, b), And_(c, Xn_negb)));
|
|
|
|
if (!linear)
|
|
{
|
|
// If there's no carry, then all of the bits stay the same n steps later.
|
|
res[4] = G_(Implies_(And_(neg_c, X_(neg_m)),
|
|
And_(X_(Not_(c)), Equiv_(X_(b), X_(Xn_b)))));
|
|
|
|
// If there's a carry, then add one: flip the bits of b and
|
|
// adjust the carry.
|
|
res[5] = G_(Implies_(c, And_(Implies_(X_(neg_b),
|
|
And_(X_(neg_c), X_(Xn_b))),
|
|
Implies_(X_(b),
|
|
And_(X_(c), X_(Xn_negb))))));
|
|
}
|
|
else
|
|
{
|
|
// If there's no carry, then all of the bits stay the same n steps later.
|
|
res[4] = G_(Implies_(And_(neg_c, X_(neg_m)),
|
|
X_(And_(Not_(c), Equiv_(b, Xn_b)))));
|
|
// If there's a carry, then add one: flip the bits of b and
|
|
// adjust the carry.
|
|
res[5] = G_(Implies_(c, X_(And_(Implies_(neg_b, And_(neg_c, Xn_b)),
|
|
Implies_(b, And_(c, Xn_negb))))));
|
|
}
|
|
return formula::And(std::move(res));
|
|
}
|
|
|
|
static void bad_number(const char* pattern, int n, int max)
|
|
{
|
|
std::ostringstream err;
|
|
err << "no pattern " << n << " for " << pattern
|
|
<< ", supported range is 1.." << max;
|
|
throw std::runtime_error(err.str());
|
|
}
|
|
|
|
static formula
|
|
dac_pattern(int n)
|
|
{
|
|
static const char* formulas[] = {
|
|
"[](!p0)",
|
|
"<>p2 -> (!p0 U p2)",
|
|
"[](p1 -> [](!p0))",
|
|
"[]((p1 & !p2 & <>p2) -> (!p0 U p2))",
|
|
"[](p1 & !p2 -> (!p0 W p2))",
|
|
|
|
"<>(p0)",
|
|
"!p2 W (p0 & !p2)",
|
|
"[](!p1) | <>(p1 & <>p0)",
|
|
"[](p1 & !p2 -> (!p2 W (p0 & !p2)))",
|
|
"[](p1 & !p2 -> (!p2 U (p0 & !p2)))",
|
|
|
|
"(!p0 W (p0 W (!p0 W (p0 W []!p0))))",
|
|
"<>p2 -> ((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 |"
|
|
" ((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 | (!p0 U p2)))))))))",
|
|
"<>p1 -> (!p1 U (p1 & (!p0 W (p0 W (!p0 W (p0 W []!p0))))))",
|
|
"[]((p1 & <>p2) -> ((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 |"
|
|
"((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 | (!p0 U p2))))))))))",
|
|
"[](p1 -> ((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 | ((!p0 & !p2) U"
|
|
"(p2 | ((p0 & !p2) U (p2 | (!p0 W p2) | []p0)))))))))",
|
|
|
|
"[](p0)",
|
|
"<>p2 -> (p0 U p2)",
|
|
"[](p1 -> [](p0))",
|
|
"[]((p1 & !p2 & <>p2) -> (p0 U p2))",
|
|
"[](p1 & !p2 -> (p0 W p2))",
|
|
|
|
"!p0 W p3",
|
|
"<>p2 -> (!p0 U (p3 | p2))",
|
|
"[]!p1 | <>(p1 & (!p0 W p3))",
|
|
"[]((p1 & !p2 & <>p2) -> (!p0 U (p3 | p2)))",
|
|
"[](p1 & !p2 -> (!p0 W (p3 | p2)))",
|
|
|
|
"[](p0 -> <>p3)",
|
|
"<>p2 -> (p0 -> (!p2 U (p3 & !p2))) U p2",
|
|
"[](p1 -> [](p0 -> <>p3))",
|
|
"[]((p1 & !p2 & <>p2) -> ((p0 -> (!p2 U (p3 & !p2))) U p2))",
|
|
"[](p1 & !p2 -> ((p0 -> (!p2 U (p3 & !p2))) W p2))",
|
|
|
|
"<>p0 -> (!p0 U (p3 & !p0 & X(!p0 U p4)))",
|
|
"<>p2 -> (!p0 U (p2 | (p3 & !p0 & X(!p0 U p4))))",
|
|
"([]!p1) | (!p1 U (p1 & <>p0 -> (!p0 U (p3 & !p0 & X(!p0 U p4)))))",
|
|
"[]((p1 & <>p2) -> (!p0 U (p2 | (p3 & !p0 & X(!p0 U p4)))))",
|
|
"[](p1 -> (<>p0 -> (!p0 U (p2 | (p3 & !p0 & X(!p0 U p4))))))",
|
|
|
|
"(<>(p3 & X<>p4)) -> ((!p3) U p0)",
|
|
"<>p2 -> ((!(p3 & (!p2) & X(!p2 U (p4 & !p2)))) U (p2 | p0))",
|
|
"([]!p1) | ((!p1) U (p1 & ((<>(p3 & X<>p4)) -> ((!p3) U p0))))",
|
|
"[]((p1 & <>p2) -> ((!(p3 & (!p2) & X(!p2 U (p4 & !p2)))) U (p2 | p0)))",
|
|
"[](p1 -> (!(p3 & (!p2) & X(!p2 U (p4 & !p2))) U (p2 | p0) |"
|
|
" [](!(p3 & X<>p4))))",
|
|
|
|
"[] (p3 & X<> p4 -> X(<>(p4 & <> p0)))",
|
|
"<>p2 -> (p3 & X(!p2 U p4) -> X(!p2 U (p4 & <> p0))) U p2",
|
|
"[] (p1 -> [] (p3 & X<> p4 -> X(!p4 U (p4 & <> p0))))",
|
|
"[] ((p1 & <>p2) -> (p3 & X(!p2 U p4) -> X(!p2 U (p4 & <> p0))) U p2)",
|
|
"[] (p1 -> (p3 & X(!p2 U p4) -> X(!p2 U (p4 & <> p0))) U (p2 |"
|
|
"[] (p3 & X(!p2 U p4) -> X(!p2 U (p4 & <> p0)))))",
|
|
|
|
"[] (p0 -> <>(p3 & X<>p4))",
|
|
"<>p2 -> (p0 -> (!p2 U (p3 & !p2 & X(!p2 U p4)))) U p2",
|
|
"[] (p1 -> [] (p0 -> (p3 & X<> p4)))",
|
|
"[] ((p1 & <>p2) -> (p0 -> (!p2 U (p3 & !p2 & X(!p2 U p4)))) U p2)",
|
|
"[] (p1 -> (p0 -> (!p2 U (p3 & !p2 & X(!p2 U p4)))) U (p2 | []"
|
|
"(p0 -> (p3 & X<> p4))))",
|
|
|
|
"[] (p0 -> <>(p3 & !p5 & X(!p5 U p4)))",
|
|
"<>p2 -> (p0 -> (!p2 U (p3 & !p2 & !p5 & X((!p2 & !p5) U p4)))) U p2",
|
|
"[] (p1 -> [] (p0 -> (p3 & !p5 & X(!p5 U p4))))",
|
|
"[] ((p1 & <>p2) -> (p0 -> (!p2 U (p3 & !p2 & !p5 & X((!p2 & !p5) U"
|
|
" p4)))) U p2)",
|
|
"[] (p1 -> (p0 -> (!p2 U (p3 & !p2 & !p5 & X((!p2 & !p5) U p4)))) U (p2 |"
|
|
"[] (p0 -> (p3 & !p5 & X(!p5 U p4)))))",
|
|
};
|
|
|
|
constexpr unsigned max = (sizeof formulas)/(sizeof *formulas);
|
|
if (n < 1 || (unsigned) n > max)
|
|
bad_number("--dac-patterns", n, max);
|
|
return spot::relabel(parse_formula(formulas[n - 1]), Pnn);
|
|
}
|
|
|
|
static formula
|
|
eh_pattern(int n)
|
|
{
|
|
static const char* formulas[] = {
|
|
"p0 U (p1 & G(p2))",
|
|
"p0 U (p1 & X(p2 U p3))",
|
|
"p0 U (p1 & X(p2 & (F(p3 & X(F(p4 & X(F(p5 & X(F(p6))))))))))",
|
|
"F(p0 & X(G(p1)))",
|
|
"F(p0 & X(p1 & X(F(p2))))",
|
|
"F(p0 & X(p1 U p2))",
|
|
"(F(G(p0))) | (G(F(p1)))",
|
|
"G(p0 -> (p1 U p2))",
|
|
"G(p0 & X(F(p1 & X(F(p2 & X(F(p3)))))))",
|
|
"(G(F(p0))) & (G(F(p1))) & (G(F(p2))) & (G(F(p3))) & (G(F(p4)))",
|
|
"(p0 U (p1 U p2)) | (p1 U (p2 U p0)) | (p2 U (p0 U p1))",
|
|
"G(p0 -> (p1 U ((G(p2)) | (G(p3)))))",
|
|
};
|
|
|
|
constexpr unsigned max = (sizeof formulas)/(sizeof *formulas);
|
|
if (n < 1 || (unsigned) n > max)
|
|
bad_number("--eh-patterns", n, max);
|
|
return spot::relabel(parse_formula(formulas[n - 1]), Pnn);
|
|
}
|
|
|
|
static formula
|
|
sb_pattern(int n)
|
|
{
|
|
static const char* formulas[] = {
|
|
"p0 U p1",
|
|
"p0 U (p1 U p2)",
|
|
"!(p0 U (p1 U p2))",
|
|
"G(F(p0)) -> G(F(p1))",
|
|
"(F(p0)) U (G(p1))",
|
|
"(G(p0)) U p1",
|
|
"!((F(F(p0))) <-> (F(p)))",
|
|
"!((G(F(p0))) -> (G(F(p))))",
|
|
"!((G(F(p0))) <-> (G(F(p))))",
|
|
"p0 R (p0 | p1)",
|
|
"(Xp0 U Xp1) | !X(p0 U p1)",
|
|
"(Xp0 U p1) | !X(p0 U (p0 & p1))",
|
|
"G(p0 -> F(p1)) & (((X(p0)) U p1) | !X(p0 U (p0 & p1)))",
|
|
"G(p0 -> F(p1)) & (((X(p0)) U X(p1)) | !X(p0 U p1))",
|
|
"G(p0 -> F(p1))",
|
|
"!G(p0 -> X(p1 R p2))",
|
|
"!(F(G(p0)) | F(G(p1)))",
|
|
"G(F(p0) & F(p1))",
|
|
"F(p0) & F(!p0)",
|
|
"(X(p1) & p2) R X(((p3 U p0) R p2) U (p3 R p2))",
|
|
"(G(p1 | G(F(p0))) & G(p2 | G(F(!p0)))) | G(p1) | G(p2)",
|
|
"(G(p1 | F(G(p0))) & G(p2 | F(G(!p0)))) | G(p1) | G(p2)",
|
|
"!((G(p1 | G(F(p0))) & G(p2 | G(F(!p0)))) | G(p1) | G(p2))",
|
|
"!((G(p1 | F(G(p0))) & G(p2 | F(G(!p0)))) | G(p1) | G(p2))",
|
|
"(G(p1 | X(G p0))) & (G (p2 | X(G !p0)))",
|
|
"G(p1 | (Xp0 & X!p0))",
|
|
// p0 U p0 can't be represented other than as p0 in Spot
|
|
"(p0 U p0) | (p1 U p0)",
|
|
};
|
|
|
|
constexpr unsigned max = (sizeof formulas)/(sizeof *formulas);
|
|
if (n < 1 || (unsigned) n > max)
|
|
bad_number("--sb-patterns", n, max);
|
|
return spot::relabel(parse_formula(formulas[n - 1]), Pnn);
|
|
}
|
|
|
|
static void
|
|
output_pattern(int pattern, int n)
|
|
{
|
|
formula f = nullptr;
|
|
switch (pattern)
|
|
{
|
|
// Keep this alphabetically-ordered!
|
|
case OPT_AND_F:
|
|
f = combunop_n("p", n, op::F, true);
|
|
break;
|
|
case OPT_AND_FG:
|
|
f = FG_n("p", n, true);
|
|
break;
|
|
case OPT_AND_GF:
|
|
f = GF_n("p", n, true);
|
|
break;
|
|
case OPT_CCJ_ALPHA:
|
|
f = formula::And({E_n("p", n), E_n("q", n)});
|
|
break;
|
|
case OPT_CCJ_BETA:
|
|
f = formula::And({N_n("p", n), N_n("q", n)});
|
|
break;
|
|
case OPT_CCJ_BETA_PRIME:
|
|
f = formula::And({N_prime_n("p", n), N_prime_n("q", n)});
|
|
break;
|
|
case OPT_DAC_PATTERNS:
|
|
f = dac_pattern(n);
|
|
break;
|
|
case OPT_EH_PATTERNS:
|
|
f = eh_pattern(n);
|
|
break;
|
|
case OPT_GH_Q:
|
|
f = Q_n("p", n);
|
|
break;
|
|
case OPT_GH_R:
|
|
f = R_n("p", n);
|
|
break;
|
|
case OPT_GO_THETA:
|
|
f = fair_response("p", "q", "r", n);
|
|
break;
|
|
case OPT_OR_FG:
|
|
f = FG_n("p", n, false);
|
|
break;
|
|
case OPT_OR_G:
|
|
f = combunop_n("p", n, op::G, false);
|
|
break;
|
|
case OPT_OR_GF:
|
|
f = GF_n("p", n, false);
|
|
break;
|
|
case OPT_R_LEFT:
|
|
f = bin_n("p", n, op::R, false);
|
|
break;
|
|
case OPT_R_RIGHT:
|
|
f = bin_n("p", n, op::R, true);
|
|
break;
|
|
case OPT_RV_COUNTER_CARRY:
|
|
f = ltl_counter_carry("b", "m", "c", n, false);
|
|
break;
|
|
case OPT_RV_COUNTER_CARRY_LINEAR:
|
|
f = ltl_counter_carry("b", "m", "c", n, true);
|
|
break;
|
|
case OPT_RV_COUNTER:
|
|
f = ltl_counter("b", "m", n, false);
|
|
break;
|
|
case OPT_RV_COUNTER_LINEAR:
|
|
f = ltl_counter("b", "m", n, true);
|
|
break;
|
|
case OPT_SB_PATTERNS:
|
|
f = sb_pattern(n);
|
|
break;
|
|
case OPT_U_LEFT:
|
|
f = bin_n("p", n, op::U, false);
|
|
break;
|
|
case OPT_U_RIGHT:
|
|
f = bin_n("p", n, op::U, true);
|
|
break;
|
|
default:
|
|
error(100, 0, "internal error: pattern not implemented");
|
|
}
|
|
|
|
// Make sure we use only "p42"-style of atomic propositions
|
|
// in lbt's output.
|
|
if (output_format == lbt_output && !f.has_lbt_atomic_props())
|
|
f = relabel(f, Pnn);
|
|
|
|
if (opt_positive || !opt_negative)
|
|
{
|
|
output_formula_checked(f, class_name[pattern - 1], n);
|
|
}
|
|
if (opt_negative)
|
|
{
|
|
std::string tmp = "!";
|
|
tmp += class_name[pattern - 1];
|
|
output_formula_checked(spot::formula::Not(f), tmp.c_str(), n);
|
|
}
|
|
}
|
|
|
|
static void
|
|
run_jobs()
|
|
{
|
|
for (auto& j: jobs)
|
|
{
|
|
int inc = (j.range.max < j.range.min) ? -1 : 1;
|
|
int n = j.range.min;
|
|
for (;;)
|
|
{
|
|
output_pattern(j.pattern, n);
|
|
if (n == j.range.max)
|
|
break;
|
|
n += inc;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int
|
|
main(int argc, char** argv)
|
|
{
|
|
setup(argv);
|
|
|
|
const argp ap = { options, parse_opt, nullptr, argp_program_doc,
|
|
children, nullptr, nullptr };
|
|
|
|
if (int err = argp_parse(&ap, argc, argv, ARGP_NO_HELP, nullptr, nullptr))
|
|
exit(err);
|
|
|
|
if (jobs.empty())
|
|
error(1, 0, "Nothing to do. Try '%s --help' for more information.",
|
|
program_name);
|
|
|
|
try
|
|
{
|
|
run_jobs();
|
|
}
|
|
catch (const std::runtime_error& e)
|
|
{
|
|
error(2, 0, "%s", e.what());
|
|
}
|
|
|
|
return 0;
|
|
}
|