spot/tests/python/game.py
Philipp Schlehuber 5ddac258e1 Introduce new ways to split an automaton
The explicit way of splitting suffers if there are
too many input APs, two new ways of splitting
are introduced as well as a heuristic to chose
between them.

* NEWS: update
* spot/twaalgos/synthesis.cc,
spot/twaalgos/synthesis.hh: New fonctions
* bin/ltlsynt.cc: Add corresponding option
* tests/core/gamehoa.test,
tests/core/ltlsynt.test,
tests/python/_partitioned_relabel.ipynb,
tests/python/_synthesis.ipynb,
tests/python/game.py,
tests/python/split.py,
tests/python/synthesis.py: Adjusting and adding test
2024-07-18 10:13:14 +02:00

540 lines
No EOL
19 KiB
Python

#!/usr/bin/python3
# -*- mode: python; coding: utf-8 -*-
# Copyright (C) by the Spot authors, see the AUTHORS file for details.
#
# This file is part of Spot, a model checking library.
#
# Spot is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# Spot is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
# License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import spot, buddy
from unittest import TestCase
tc = TestCase()
g = spot.automaton("""HOA: v1 States: 9 Start: 0 AP: 2 "a" "b"
acc-name: Streett 1 Acceptance: 2 Fin(0) | Inf(1) properties:
trans-labels explicit-labels state-acc spot-state-player: 0 1 0 1 0 1
0 1 1 --BODY-- State: 0 {1} [1] 1 [1] 3 State: 1 {1} [1] 2 State: 2
{1} [0] 8 State: 3 {1} [1] 4 State: 4 {1} [0] 5 State: 5 {1} [0] 6
State: 6 {1} [1] 7 State: 7 State: 8 {1} [0] 2 --END--""")
tc.assertFalse(spot.solve_parity_game(g))
s = spot.highlight_strategy(g).to_str("HOA", "1.1")
tc.assertEqual(s, """HOA: v1.1
States: 9
Start: 0
AP: 2 "a" "b"
acc-name: Streett 1
Acceptance: 2 Fin(0) | Inf(1)
properties: trans-labels explicit-labels state-acc !complete
properties: !deterministic exist-branch
spot.highlight.states: 0 5 1 4 2 4 3 5 4 5 5 5 6 5 7 5 8 4
spot.highlight.edges: 2 5 3 4 6 5 8 5 9 4
spot.state-player: 0 1 0 1 0 1 0 1 1
--BODY--
State: 0 {1}
[1] 1
[1] 3
State: 1 {1}
[1] 2
State: 2 {1}
[0] 8
State: 3 {1}
[1] 4
State: 4 {1}
[0] 5
State: 5 {1}
[0] 6
State: 6 {1}
[1] 7
State: 7
State: 8 {1}
[0] 2
--END--""")
# Testing case where parity_game optimization
# lead to wrong results
si = spot.synthesis_info()
game = spot.automaton("""HOA: v1
States: 27
Start: 7
AP: 11 "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k"
acc-name: parity max odd 3
Acceptance: 3 Fin(2) & (Inf(1) | Fin(0))
properties: trans-labels explicit-labels trans-acc colored
properties: deterministic
spot-state-player: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
controllable-AP: 0 1 2 3 4 5 6 7
--BODY--
State: 0
[t] 8 {0}
State: 1
[8&9] 8 {0}
[!8&!10 | !9&!10] 9 {0}
[!8&10 | !9&10] 10 {0}
State: 2
[8&9] 8 {0}
[!8&!10 | !9&!10] 11 {0}
[!8&10 | !9&10] 12 {0}
State: 3
[8&9] 8 {0}
[!9&!10] 13 {0}
[!8&10 | !9&10] 14 {0}
[!8&9&!10] 15 {0}
State: 4
[8&9] 8 {0}
[!8&!10 | !9&!10] 16 {0}
[!8&!9&10] 17 {0}
[!8&9&10] 18 {0}
[8&!9&10] 19 {0}
State: 5
[8&9] 8 {0}
[!9&!10] 20 {0}
[!8&10 | !9&10] 21 {0}
[!8&9&!10] 22 {0}
State: 6
[8&9] 8 {0}
[!8&!10 | !9&!10] 23 {0}
[!8&!9&10] 24 {0}
[!8&9&10] 25 {0}
[8&!9&10] 26 {0}
State: 7
[8&9] 8 {0}
[!9&!10] 13 {0}
[!8&9&!10] 15 {0}
[!8&!9&10] 17 {0}
[!8&9&10] 18 {0}
[8&!9&10] 19 {0}
State: 8
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 |
!0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 |
!0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 | !0&1&!2&!3&4&!5&!6&7 |
!0&1&!2&!3&4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 |
0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 |
0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 0 {1}
State: 9
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 |
!0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 |
!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 |
0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 1 {2}
[!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 |
!0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {2}
State: 10
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 |
!0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 |
!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 |
0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 0 {1}
[!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 |
!0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {2}
State: 11
[!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 |
!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 |
!0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 |
0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 0 {1}
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 |
!0&1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {2}
State: 12
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 |
!0&1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {2}
[!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 |
!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 |
!0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 |
0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {2}
State: 13
[!0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 |
!0&1&!2&!3&!4&5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 |
0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 |
0&!1&!2&!3&4&!5&6&!7] 1 {1}
[!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 |
0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1}
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&4&!5&!6&7] 3 {1}
[!0&!1&2&3&!4&!5&!6&7] 5 {1}
State: 14
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 |
!0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 |
!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 |
0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 0 {1}
[!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 |
!0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1}
State: 15
[!0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 |
!0&1&!2&!3&!4&5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 |
0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 |
0&!1&!2&!3&4&!5&6&!7] 1 {1}
[!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 |
0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1}
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&4&!5&!6&7] 4 {1}
[!0&!1&2&3&!4&!5&!6&7] 6 {1}
State: 16
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 |
!0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 |
!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 |
0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 1 {1}
[!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 |
!0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1}
State: 17
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 |
!0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 |
!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 |
0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 0 {1}
[!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&6&!7 |
0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1}
[!0&1&!2&3&!4&!5&!6&7] 6 {1}
State: 18
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 |
!0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 |
!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 |
0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 0 {1}
[!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&6&!7 |
0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1}
[!0&1&!2&3&!4&!5&!6&7] 5 {1}
State: 19
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 |
!0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 |
!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 |
0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 0 {1}
[!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 |
0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1}
[!0&1&!2&3&!4&!5&6&!7] 6 {1}
State: 20
[!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 |
!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 |
!0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 |
0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 0 {1}
[!0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 |
0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1}
[!0&!1&2&!3&!4&5&!6&7] 3 {1}
State: 21
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 |
!0&1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1}
[!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 |
!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 |
!0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 |
0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1}
State: 22
[!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 |
!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 |
!0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 |
0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 0 {1}
[!0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 |
0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1}
[!0&!1&2&!3&!4&5&!6&7] 4 {1}
State: 23
[!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 |
!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 |
!0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 |
0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 0 {1}
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 |
!0&1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1}
State: 24
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&6&!7 |
0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1}
[!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 |
!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&6&!7 | !0&1&!2&3&!4&!5&6&!7 |
0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 |
0&!1&!2&3&!4&!5&6&!7] 2 {1}
[!0&1&!2&!3&!4&5&!6&7] 4 {1}
[!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&3&!4&!5&!6&7] 6 {1}
State: 25
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&6&!7 |
0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1}
[!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 |
!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&6&!7 | !0&1&!2&3&!4&!5&6&!7 |
0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 |
0&!1&!2&3&!4&!5&6&!7] 2 {1}
[!0&1&!2&!3&!4&5&!6&7] 3 {1}
[!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&3&!4&!5&!6&7] 5 {1}
State: 26
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 |
0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1}
[!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 |
!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&3&!4&!5&!6&7 |
0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 |
0&!1&!2&3&!4&!5&6&!7] 2 {1}
[!0&1&!2&!3&!4&5&6&!7] 4 {1}
[!0&1&!2&!3&4&!5&6&!7 | !0&1&!2&3&!4&!5&6&!7] 6 {1}
--END--""")
tc.assertTrue(spot.solve_game(game, si))
games = spot.split_edges(game)
spot.set_state_players(games, spot.get_state_players(game))
tc.assertTrue(spot.solve_game(games, si))
g = spot.translate("GF(a&X(a)) -> GFb")
a = buddy.bdd_ithvar(g.register_ap("a"))
b = buddy.bdd_ithvar(g.register_ap("b"))
gdpa = spot.tgba_determinize(spot.degeneralize_tba(g),
False, True, True, False)
spot.change_parity_here(gdpa, spot.parity_kind_max, spot.parity_style_odd)
gsdpa = spot.split_2step(gdpa, b, True)
spot.colorize_parity_here(gsdpa, True)
tc.assertTrue(spot.solve_parity_game(gsdpa))
gsdpa_solved_ref = spot.automaton(
"""HOA: v1.1
States: 18
Start: 0
AP: 2 "a" "b"
acc-name: parity max odd 5
Acceptance: 5 Fin(4) & (Inf(3) | (Fin(2) & (Inf(1) | Fin(0))))
properties: trans-labels explicit-labels trans-acc colored complete
properties: deterministic
spot.highlight.states: 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 """
+"""10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4
spot.highlight.edges: 15 4 17 4 20 4 22 4 24 4 26 4 28 4 30 4 31 4 32 4 33 4
spot.state-player: 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
controllable-AP: 1
--BODY--
State: 0
[!0] 7 {0}
[0] 8 {0}
State: 1
[!0] 9 {3}
[0] 10 {3}
State: 2
[!0] 11 {1}
[0] 12 {1}
State: 3
[!0] 9 {3}
[0] 13 {4}
State: 4
[!0] 11 {1}
[0] 14 {2}
State: 5
[!0] 15 {3}
[0] 16 {3}
State: 6
[!0] 15 {3}
[0] 17 {4}
State: 7
[!1] 1 {0}
[1] 2 {0}
State: 8
[!1] 3 {0}
[1] 4 {0}
State: 9
[!1] 1 {3}
[1] 5 {3}
State: 10
[!1] 3 {3}
[1] 6 {3}
State: 11
[!1] 2 {1}
[1] 2 {3}
State: 12
[!1] 4 {1}
[1] 4 {3}
State: 13
[!1] 3 {4}
[1] 4 {4}
State: 14
[!1] 4 {2}
[1] 4 {3}
State: 15
[t] 5 {3}
State: 16
[t] 6 {3}
State: 17
[t] 4 {4}
--END--"""
)
tc.assertTrue(spot.solve_parity_game(gsdpa_solved_ref))
# Check for the same language
tc.assertTrue(spot.are_equivalent(gsdpa, gsdpa_solved_ref))
# Check if the winning regions are the same for env states
# Env states should by construction have the same number as before
players_new = spot.get_state_players(gsdpa)
players_ref = spot.get_state_players(gsdpa_solved_ref)
# States maybe renumbered, but remain in the same "class"
tc.assertEqual(players_new, players_ref)
# Check that env states have the same winner
winners_new = spot.get_state_winners(gsdpa)
winners_ref = spot.get_state_winners(gsdpa_solved_ref)
tc.assertTrue(all([wn == wr for (wn, wr, p) in
zip(winners_new, winners_ref, players_ref)
if not p]))
# Test the different parity conditions
gdpa = spot.tgba_determinize(spot.degeneralize_tba(g),
False, True, True, False)
g_test = spot.change_parity(gdpa, spot.parity_kind_max, spot.parity_style_odd)
g_test_split = spot.split_2step(g_test, b, True)
sp = spot.get_state_players(g_test_split)
g_test_split_c = spot.colorize_parity(g_test_split)
spot.set_state_players(g_test_split_c, sp)
tc.assertTrue(spot.solve_parity_game(g_test_split_c))
c_strat = spot.get_strategy(g_test_split_c)
# All versions of parity need to result in the same strategy
for kind in [spot.parity_kind_min, spot.parity_kind_max]:
for style in [spot.parity_style_even, spot.parity_style_odd]:
g_test_split1 = spot.change_parity(g_test_split, kind, style)
spot.set_state_players(g_test_split1, sp)
tc.assertTrue(spot.solve_parity_game(g_test_split1))
c_strat1 = spot.get_strategy(g_test_split1)
tc.assertTrue(c_strat == c_strat1)
# Test that strategies are not appended
# if solve is called multiple times
aut = spot.make_twa_graph()
aut.set_buchi()
aut.new_states(2)
aut.new_edge(0,1,buddy.bddtrue, [0])
aut.new_edge(1,0,buddy.bddtrue, [])
spot.set_state_players(aut, [False, True])
spot.solve_game(aut)
S1 = list(spot.get_strategy(aut))
spot.solve_game(aut)
S2 = list(spot.get_strategy(aut))
tc.assertEqual(S1, S2)
# Finite games
alive = "__alive__"
def finite_existential(auts):
# 1 Accepting state -> selfloop
# 2 Prune
acc_state = set()
sp = list(spot.get_state_players(auts))
for e in auts.edges():
if e.acc:
acc_state.add(e.src)
for s in acc_state:
e_kill = auts.out_iteraser(s)
while (e_kill):
e_kill.erase()
for s in acc_state:
sprime = auts.new_state()
sp.append(not sp[s])
auts.new_edge(s, sprime, buddy.bddtrue, [0])
auts.new_edge(sprime, s, buddy.bddtrue, [0])
spot.set_state_players(auts, sp)
auts.purge_dead_states()
spot.alternate_players(auts, False, False)
return auts
def is_input_complete(auts):
sp = spot.get_state_players(auts)
for s in range(auts.num_states()):
if sp[s]:
continue # Player
cumul = buddy.bddfalse
for e in auts.out(s):
cumul |= e.cond
if cumul != buddy.bddtrue:
return False
return True
def synt_from_ltlf(f:str, outs):
ff = spot.from_ltlf(f, alive)
aut = ff.translate("buchi", "sbacc")
outbdd = buddy.bddtrue
for out in outs:
outbdd &= buddy.bdd_ithvar(aut.register_ap(out))
alive_bdd = buddy.bdd_ithvar(aut.register_ap(alive))
auts = spot.split_2step(aut, outbdd & alive_bdd, False)
auts = spot.to_finite(auts, alive)
spot.alternate_players(auts, False, False)
spot.set_synthesis_outputs(auts, outbdd)
if not is_input_complete(auts):
print("Not synthesizable")
return None
auts = finite_existential(auts)
return auts
def synt_ltlf(f:str, outs, res:str = "aut"):
auts = synt_from_ltlf(f, outs)
succ = spot.solve_parity_game(auts)
if not succ:
if res == "aut":
return False, auts
else:
return False, None
mealy_cc = spot.solved_game_to_split_mealy(auts)
if res == "aut":
return True, mealy_cc
elif res == "aig":
return True, spot.mealy_machine_to_aig(mealy_cc, "isop")
else:
raise RuntimeError("Unknown option")
sink_player = None
def negate_ltlf(f:str, outs, opt = "buchi"):
global sink_player
sink_player = None
aut = synt_from_ltlf(f, outs)
# Implies input completeness
# We need output completeness
acc = []
sp = list(spot.get_state_players(aut))
def get_sink():
global sink_player
if sink_player is None:
sink_player = aut.new_states(2)
aut.new_edge(sink_player, sink_player + 1, buddy.bddtrue, acc)
aut.new_edge(sink_player + 1, sink_player, buddy.bddtrue, acc)
sp.append(False)
sp.append(True)
spot.set_state_players(aut, sp)
return sink_player
for s in range(aut.num_states()):
if not sp[s]:
continue
rem = buddy.bddtrue
for e in aut.out(s):
rem -= e.cond
if rem != buddy.bddfalse:
aut.new_edge(s, get_sink(), rem)
# Better to invert colors or condition?
if opt == "buchi":
for e in aut.edges():
if e.acc:
e.acc = spot.mark_t()
else:
e.acc = spot.mark_t([0])
elif opt == "cobuchi":
aut.set_co_buchi()
else:
raise RuntimeError("Unknown opt")
return aut
# Game where the edge_vector is larger
# than the number of transitions
f1 = "((((G (F (idle))) && (G (((idle) && (X ((! (grant_0)) \
&& (! (grant_1))))) -> (X (idle))))) && (G ((X (! (grant_0))) \
|| (X (((! (request_0)) && (! (idle))) U ((! (request_0)) \
&& (idle))))))) -> (((G (((((X (((! (grant_0)) && (true)) \
|| ((true) && (! (grant_1))))) && ((X (grant_0)) -> (request_0))) \
&& ((X (grant_1)) -> (request_1))) && ((request_0) -> (grant_1))) \
&& ((! (idle)) -> (X ((! (grant_0)) && (! (grant_1))))))) \
&& (! (F (G ((request_0) && (X (! (grant_0)))))))) \
&& (! (F (G ((request_1) && (X (! (grant_1)))))))))"
outs = ["grant_0", "grant1"]
tc.assertEqual(synt_ltlf(f1, outs)[0], False)