Improve the construction of the above constructions, saving colors. * spot/twaalgos/product.cc: Here. * spot/twaalgos/product.hh, NEWS: Mention it. * tests/core/prodchain.test, tests/core/prodor.test, tests/python/_product_weak.ipynb: Adjust.
730 lines
28 KiB
C++
730 lines
28 KiB
C++
// -*- coding: utf-8 -*-
|
|
// Copyright (C) 2014-2020, 2022 Laboratoire de Recherche et Développement
|
|
// de l'Epita (LRDE).
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "config.h"
|
|
#include <spot/twaalgos/product.hh>
|
|
#include <spot/twa/twagraph.hh>
|
|
#include <spot/twaalgos/complete.hh>
|
|
#include <spot/twaalgos/sccinfo.hh>
|
|
#include <spot/twaalgos/isdet.hh>
|
|
#include <deque>
|
|
#include <unordered_map>
|
|
#include <spot/misc/hash.hh>
|
|
|
|
namespace spot
|
|
{
|
|
namespace
|
|
{
|
|
typedef std::pair<unsigned, unsigned> product_state;
|
|
|
|
struct product_state_hash
|
|
{
|
|
size_t
|
|
operator()(product_state s) const noexcept
|
|
{
|
|
return wang32_hash(s.first ^ wang32_hash(s.second));
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
static
|
|
void product_main(const const_twa_graph_ptr& left,
|
|
const const_twa_graph_ptr& right,
|
|
unsigned left_state,
|
|
unsigned right_state,
|
|
twa_graph_ptr& res, T merge_acc,
|
|
const output_aborter* aborter)
|
|
{
|
|
std::unordered_map<product_state, unsigned, product_state_hash> s2n;
|
|
std::deque<std::pair<product_state, unsigned>> todo;
|
|
|
|
auto v = new product_states;
|
|
res->set_named_prop("product-states", v);
|
|
|
|
auto new_state =
|
|
[&](unsigned left_state, unsigned right_state) -> unsigned
|
|
{
|
|
product_state x(left_state, right_state);
|
|
auto p = s2n.emplace(x, 0);
|
|
if (p.second) // This is a new state
|
|
{
|
|
p.first->second = res->new_state();
|
|
todo.emplace_back(x, p.first->second);
|
|
assert(p.first->second == v->size());
|
|
v->emplace_back(x);
|
|
}
|
|
return p.first->second;
|
|
};
|
|
|
|
res->set_init_state(new_state(left_state, right_state));
|
|
if (res->acc().is_f())
|
|
// Do not bother doing any work if the resulting acceptance is
|
|
// false.
|
|
return;
|
|
while (!todo.empty())
|
|
{
|
|
if (aborter && aborter->too_large(res))
|
|
{
|
|
res = nullptr;
|
|
return;
|
|
}
|
|
auto top = todo.front();
|
|
todo.pop_front();
|
|
for (auto& l: left->out(top.first.first))
|
|
for (auto& r: right->out(top.first.second))
|
|
{
|
|
auto cond = l.cond & r.cond;
|
|
if (cond == bddfalse)
|
|
continue;
|
|
auto dst = new_state(l.dst, r.dst);
|
|
res->new_edge(top.second, dst, cond,
|
|
merge_acc(l.acc, r.acc));
|
|
// If right is deterministic, we can abort immediately!
|
|
}
|
|
}
|
|
}
|
|
|
|
enum acc_op { and_acc, or_acc, xor_acc, xnor_acc };
|
|
|
|
|
|
static
|
|
twa_graph_ptr product_aux(const const_twa_graph_ptr& left,
|
|
const const_twa_graph_ptr& right,
|
|
unsigned left_state,
|
|
unsigned right_state,
|
|
acc_op aop,
|
|
const output_aborter* aborter)
|
|
{
|
|
if (SPOT_UNLIKELY(!(left->is_existential() && right->is_existential())))
|
|
throw std::runtime_error
|
|
("product() does not support alternating automata");
|
|
if (SPOT_UNLIKELY(left->get_dict() != right->get_dict()))
|
|
throw std::runtime_error("product: left and right automata should "
|
|
"share their bdd_dict");
|
|
|
|
auto res = make_twa_graph(left->get_dict());
|
|
res->copy_ap_of(left);
|
|
res->copy_ap_of(right);
|
|
|
|
auto& lacc = left->acc();
|
|
auto& racc = right->acc();
|
|
|
|
bool leftweak = left->prop_weak().is_true();
|
|
bool rightweak = right->prop_weak().is_true();
|
|
|
|
// The conjunction of two co-Büchi automata is a co-Büchi automaton.
|
|
// The disjunction of two Büchi automata is a Büchi automaton.
|
|
//
|
|
// The code to handle this case is similar to the weak_weak case,
|
|
// except we do not set the weak property on the result.
|
|
if (!leftweak
|
|
&& !rightweak
|
|
&& ((aop == and_acc && lacc.is_co_buchi() && racc.is_co_buchi())
|
|
|| (aop == or_acc && lacc.is_buchi() && racc.is_buchi())))
|
|
goto and_cobuchi_or_buchi;
|
|
|
|
// We have optimization to the standard product in case one
|
|
// of the arguments is weak.
|
|
if (leftweak || rightweak)
|
|
{
|
|
// If both automata are weak, we can restrict the result to
|
|
// t, f, Büchi or co-Büchi. We use co-Büchi only when
|
|
// t and f cannot be used, and both acceptance conditions
|
|
// are in {t,f,co-Büchi}.
|
|
if ((leftweak && rightweak))
|
|
{
|
|
weak_weak:
|
|
res->prop_weak(true);
|
|
and_cobuchi_or_buchi:
|
|
acc_cond::mark_t accmark = {0};
|
|
acc_cond::mark_t rejmark = {};
|
|
if ((lacc.is_co_buchi() && (racc.is_co_buchi()
|
|
|| racc.num_sets() == 0))
|
|
|| (lacc.num_sets() == 0 && racc.is_co_buchi()))
|
|
{
|
|
res->set_co_buchi();
|
|
std::swap(accmark, rejmark);
|
|
}
|
|
else if ((aop == and_acc && lacc.is_t() && racc.is_t())
|
|
|| (aop == or_acc && (lacc.is_t() || racc.is_t()))
|
|
|| (aop == xnor_acc && ((lacc.is_t() && racc.is_t()) ||
|
|
(lacc.is_f() && racc.is_f())))
|
|
|| (aop == xor_acc && ((lacc.is_t() && racc.is_f()) ||
|
|
(lacc.is_f() && racc.is_t()))))
|
|
{
|
|
res->set_acceptance(0, acc_cond::acc_code::t());
|
|
accmark = {};
|
|
}
|
|
else if ((aop == and_acc && (lacc.is_f() || racc.is_f()))
|
|
|| (aop == or_acc && lacc.is_f() && racc.is_f())
|
|
|| (aop == xor_acc && ((lacc.is_t() && racc.is_t()) ||
|
|
(lacc.is_f() && racc.is_f())))
|
|
|| (aop == xnor_acc && ((lacc.is_t() && racc.is_f()) ||
|
|
(lacc.is_f() && racc.is_t()))))
|
|
{
|
|
res->set_acceptance(0, acc_cond::acc_code::f());
|
|
accmark = {};
|
|
}
|
|
else
|
|
{
|
|
res->set_buchi();
|
|
}
|
|
switch (aop)
|
|
{
|
|
case and_acc:
|
|
product_main(left, right, left_state, right_state, res,
|
|
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
|
{
|
|
if (lacc.accepting(ml) && racc.accepting(mr))
|
|
return accmark;
|
|
else
|
|
return rejmark;
|
|
}, aborter);
|
|
break;
|
|
case or_acc:
|
|
product_main(left, right, left_state, right_state, res,
|
|
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
|
{
|
|
if (lacc.accepting(ml) || racc.accepting(mr))
|
|
return accmark;
|
|
else
|
|
return rejmark;
|
|
}, aborter);
|
|
break;
|
|
case xor_acc:
|
|
product_main(left, right, left_state, right_state, res,
|
|
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
|
{
|
|
if (lacc.accepting(ml) ^ racc.accepting(mr))
|
|
return accmark;
|
|
else
|
|
return rejmark;
|
|
}, aborter);
|
|
break;
|
|
case xnor_acc:
|
|
product_main(left, right, left_state, right_state, res,
|
|
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
|
{
|
|
if (lacc.accepting(ml) == racc.accepting(mr))
|
|
return accmark;
|
|
else
|
|
return rejmark;
|
|
}, aborter);
|
|
break;
|
|
}
|
|
}
|
|
else if (!rightweak)
|
|
{
|
|
switch (aop)
|
|
{
|
|
case and_acc:
|
|
{
|
|
auto rightunsatmark = right->acc().unsat_mark();
|
|
if (!rightunsatmark.first)
|
|
{
|
|
// Left is weak. Right was not weak, but it is
|
|
// always accepting. We can therefore pretend
|
|
// that right is weak.
|
|
goto weak_weak;
|
|
}
|
|
res->copy_acceptance_of(right);
|
|
acc_cond::mark_t rejmark = rightunsatmark.second;
|
|
auto& lacc = left->acc();
|
|
product_main(left, right, left_state, right_state, res,
|
|
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
|
{
|
|
if (lacc.accepting(ml))
|
|
return mr;
|
|
else
|
|
return rejmark;
|
|
}, aborter);
|
|
break;
|
|
}
|
|
case or_acc:
|
|
{
|
|
auto rightsatmark = right->acc().sat_mark();
|
|
if (!rightsatmark.first)
|
|
{
|
|
// Left is weak. Right was not weak, but it is
|
|
// always rejecting. We can therefore pretend
|
|
// that right is weak.
|
|
goto weak_weak;
|
|
}
|
|
res->copy_acceptance_of(right);
|
|
acc_cond::mark_t accmark = rightsatmark.second;
|
|
auto& lacc = left->acc();
|
|
product_main(left, right, left_state, right_state, res,
|
|
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
|
{
|
|
if (!lacc.accepting(ml))
|
|
return mr;
|
|
else
|
|
return accmark;
|
|
}, aborter);
|
|
break;
|
|
}
|
|
case xor_acc:
|
|
case xnor_acc:
|
|
{
|
|
auto rightsatmark = right->acc().sat_mark();
|
|
auto rightunsatmark = right->acc().unsat_mark();
|
|
if (!rightunsatmark.first || !rightsatmark.first)
|
|
{
|
|
// Left is weak. Right was not weak, but it
|
|
// is either always rejecting or always
|
|
// accepting. We can therefore pretend that
|
|
// right is weak.
|
|
goto weak_weak;
|
|
}
|
|
goto generalcase;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else // right weak
|
|
{
|
|
assert(!leftweak);
|
|
switch (aop)
|
|
{
|
|
case and_acc:
|
|
{
|
|
auto leftunsatmark = left->acc().unsat_mark();
|
|
if (!leftunsatmark.first)
|
|
{
|
|
// Right is weak. Left was not weak, but it is
|
|
// always accepting. We can therefore pretend
|
|
// that left is weak.
|
|
goto weak_weak;
|
|
}
|
|
res->copy_acceptance_of(left);
|
|
acc_cond::mark_t rejmark = leftunsatmark.second;
|
|
auto& racc = right->acc();
|
|
product_main(left, right, left_state, right_state, res,
|
|
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
|
{
|
|
if (racc.accepting(mr))
|
|
return ml;
|
|
else
|
|
return rejmark;
|
|
}, aborter);
|
|
break;
|
|
}
|
|
case or_acc:
|
|
{
|
|
auto leftsatmark = left->acc().sat_mark();
|
|
if (!leftsatmark.first)
|
|
{
|
|
// Right is weak. Left was not weak, but it is
|
|
// always rejecting. We can therefore pretend
|
|
// that left is weak.
|
|
goto weak_weak;
|
|
}
|
|
res->copy_acceptance_of(left);
|
|
acc_cond::mark_t accmark = leftsatmark.second;
|
|
auto& racc = right->acc();
|
|
product_main(left, right, left_state, right_state, res,
|
|
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
|
{
|
|
if (!racc.accepting(mr))
|
|
return ml;
|
|
else
|
|
return accmark;
|
|
}, aborter);
|
|
|
|
break;
|
|
}
|
|
case xor_acc:
|
|
case xnor_acc:
|
|
{
|
|
auto leftsatmark = left->acc().sat_mark();
|
|
auto leftunsatmark = left->acc().unsat_mark();
|
|
if (!leftunsatmark.first || !leftsatmark.first)
|
|
{
|
|
// Right is weak. Left was not weak, but it
|
|
// is either always rejecting or always
|
|
// accepting. We can therefore pretend that
|
|
// left is weak.
|
|
goto weak_weak;
|
|
}
|
|
goto generalcase;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else // general case
|
|
{
|
|
generalcase:
|
|
auto left_num = left->num_sets();
|
|
auto& left_acc = left->get_acceptance();
|
|
auto right_acc = right->get_acceptance() << left_num;
|
|
switch (aop)
|
|
{
|
|
case and_acc:
|
|
right_acc &= left_acc;
|
|
break;
|
|
case or_acc:
|
|
right_acc |= left_acc;
|
|
break;
|
|
case xor_acc:
|
|
{
|
|
auto tmp = right_acc.complement() & left_acc;
|
|
right_acc &= left_acc.complement();
|
|
right_acc |= tmp;
|
|
break;
|
|
}
|
|
case xnor_acc:
|
|
{
|
|
auto tmp = right_acc.complement() & left_acc.complement();
|
|
right_acc &= left_acc;
|
|
tmp |= right_acc;
|
|
std::swap(tmp, right_acc);
|
|
break;
|
|
}
|
|
}
|
|
res->set_acceptance(left_num + right->num_sets(), right_acc);
|
|
product_main(left, right, left_state, right_state, res,
|
|
[&] (acc_cond::mark_t ml, acc_cond::mark_t mr)
|
|
{
|
|
return ml | (mr << left_num);
|
|
}, aborter);
|
|
}
|
|
|
|
if (!res) // aborted
|
|
return nullptr;
|
|
|
|
if (res->acc().is_f())
|
|
{
|
|
assert(res->num_edges() == 0);
|
|
res->prop_universal(true);
|
|
res->prop_complete(false);
|
|
res->prop_stutter_invariant(true);
|
|
res->prop_terminal(true);
|
|
res->prop_state_acc(true);
|
|
}
|
|
else
|
|
{
|
|
// The product of two non-deterministic automata could be
|
|
// deterministic. Likewise for non-complete automata.
|
|
if (left->prop_universal() && right->prop_universal())
|
|
res->prop_universal(true);
|
|
if (left->prop_complete() && right->prop_complete())
|
|
res->prop_complete(true);
|
|
if (left->prop_stutter_invariant() && right->prop_stutter_invariant())
|
|
res->prop_stutter_invariant(true);
|
|
if (left->prop_inherently_weak() && right->prop_inherently_weak())
|
|
res->prop_inherently_weak(true);
|
|
if (left->prop_weak() && right->prop_weak())
|
|
res->prop_weak(true);
|
|
if (left->prop_terminal() && right->prop_terminal())
|
|
res->prop_terminal(true);
|
|
res->prop_state_acc(left->prop_state_acc()
|
|
&& right->prop_state_acc());
|
|
}
|
|
return res;
|
|
}
|
|
}
|
|
|
|
twa_graph_ptr product(const const_twa_graph_ptr& left,
|
|
const const_twa_graph_ptr& right,
|
|
unsigned left_state,
|
|
unsigned right_state,
|
|
const output_aborter* aborter)
|
|
{
|
|
return product_aux(left, right, left_state, right_state, and_acc, aborter);
|
|
}
|
|
|
|
twa_graph_ptr product(const const_twa_graph_ptr& left,
|
|
const const_twa_graph_ptr& right,
|
|
const output_aborter* aborter)
|
|
{
|
|
return product(left, right,
|
|
left->get_init_state_number(),
|
|
right->get_init_state_number(), aborter);
|
|
}
|
|
|
|
twa_graph_ptr product_or(const const_twa_graph_ptr& left,
|
|
const const_twa_graph_ptr& right,
|
|
unsigned left_state,
|
|
unsigned right_state)
|
|
{
|
|
return product_aux(complete(left), complete(right),
|
|
left_state, right_state, or_acc, nullptr);
|
|
}
|
|
|
|
twa_graph_ptr product_or(const const_twa_graph_ptr& left,
|
|
const const_twa_graph_ptr& right)
|
|
{
|
|
return product_or(left, right,
|
|
left->get_init_state_number(),
|
|
right->get_init_state_number());
|
|
}
|
|
|
|
twa_graph_ptr product_xor(const const_twa_graph_ptr& left,
|
|
const const_twa_graph_ptr& right)
|
|
{
|
|
if (SPOT_UNLIKELY(!is_deterministic(left) || !is_deterministic(right)))
|
|
throw std::runtime_error
|
|
("product_xor() only works with deterministic automata");
|
|
|
|
return product_aux(complete(left), complete(right),
|
|
left->get_init_state_number(),
|
|
right->get_init_state_number(),
|
|
xor_acc, nullptr);
|
|
}
|
|
|
|
twa_graph_ptr product_xnor(const const_twa_graph_ptr& left,
|
|
const const_twa_graph_ptr& right)
|
|
{
|
|
if (SPOT_UNLIKELY(!is_deterministic(left) || !is_deterministic(right)))
|
|
throw std::runtime_error
|
|
("product_xnor() only works with deterministic automata");
|
|
|
|
return product_aux(complete(left), complete(right),
|
|
left->get_init_state_number(),
|
|
right->get_init_state_number(),
|
|
xnor_acc, nullptr);
|
|
}
|
|
|
|
|
|
namespace
|
|
{
|
|
|
|
template<typename T>
|
|
static void
|
|
product_susp_aux(const const_twa_graph_ptr& left,
|
|
const const_twa_graph_ptr& right,
|
|
twa_graph_ptr res, bool and_acc,
|
|
bool sync_all, acc_cond::mark_t rejmark, T merge_acc)
|
|
{
|
|
std::unordered_map<product_state, unsigned, product_state_hash> s2n;
|
|
std::deque<std::pair<product_state, unsigned>> todo;
|
|
|
|
scc_info si(left,
|
|
and_acc ? scc_info_options::TRACK_STATES_IF_FIN_USED
|
|
: (scc_info_options::TRACK_STATES_IF_FIN_USED
|
|
| scc_info_options::TRACK_SUCCS));
|
|
si.determine_unknown_acceptance();
|
|
|
|
auto new_state =
|
|
[&](unsigned left_state, unsigned right_state) -> unsigned
|
|
{
|
|
product_state x(left_state, right_state);
|
|
auto p = s2n.emplace(x, 0);
|
|
if (p.second) // This is a new state
|
|
{
|
|
p.first->second = res->new_state();
|
|
todo.emplace_back(x, p.first->second);
|
|
}
|
|
return p.first->second;
|
|
};
|
|
|
|
unsigned right_init = right->get_init_state_number();
|
|
unsigned left_init = left->get_init_state_number();
|
|
unsigned res_init;
|
|
|
|
auto target_scc = [&](unsigned scc) -> bool
|
|
{
|
|
return (!si.is_trivial(scc)
|
|
&& (sync_all || si.is_accepting_scc(scc) == and_acc));
|
|
};
|
|
|
|
if (target_scc(si.scc_of(left_init)))
|
|
res_init = new_state(left_init, right_init);
|
|
else
|
|
res_init = new_state(left_init, -1U);
|
|
res->set_init_state(res_init);
|
|
|
|
bool sbacc = res->prop_state_acc().is_true();
|
|
|
|
while (!todo.empty())
|
|
{
|
|
auto top = todo.front();
|
|
todo.pop_front();
|
|
for (auto& l: left->out(top.first.first))
|
|
if (!target_scc(si.scc_of(l.dst)))
|
|
{
|
|
acc_cond::mark_t right_acc =
|
|
(sbacc && top.first.second != -1U)
|
|
// This edge leaves a target SCC, but we build a
|
|
// state-based automaton, so make sure we still use
|
|
// the same acceptance marks as in the SCC we leave.
|
|
? right->state_acc_sets(top.first.second)
|
|
: rejmark;
|
|
res->new_edge(top.second, new_state(l.dst, -1U), l.cond,
|
|
merge_acc(l.acc, right_acc));
|
|
}
|
|
else
|
|
{
|
|
unsigned right_state = top.first.second;
|
|
if (top.first.second == -1U)
|
|
right_state = right_init;
|
|
for (auto& r: right->out(right_state))
|
|
{
|
|
auto cond = l.cond & r.cond;
|
|
if (cond == bddfalse)
|
|
continue;
|
|
auto dst = new_state(l.dst, r.dst);
|
|
|
|
// For state-based automata, we cannot use the
|
|
// right-mark when entering a target SCC, because
|
|
// another sibling transition might be going to a
|
|
// non-target SCC without this mark.
|
|
acc_cond::mark_t right_acc =
|
|
(sbacc && top.first.second == -1U) ? rejmark : r.acc;
|
|
res->new_edge(top.second, dst, cond,
|
|
merge_acc(l.acc, right_acc));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static twa_graph_ptr
|
|
product_susp_main(const const_twa_graph_ptr& left,
|
|
const const_twa_graph_ptr& right,
|
|
bool and_acc = true)
|
|
{
|
|
if (SPOT_UNLIKELY(!(left->is_existential() && right->is_existential())))
|
|
throw std::runtime_error
|
|
("product_susp() does not support alternating automata");
|
|
if (SPOT_UNLIKELY(left->get_dict() != right->get_dict()))
|
|
throw std::runtime_error("product_susp(): left and right automata "
|
|
"should share their bdd_dict");
|
|
|
|
auto false_or_left = [&] (bool ff)
|
|
{
|
|
if (ff)
|
|
{
|
|
auto res = make_twa_graph(left->get_dict());
|
|
res->new_state();
|
|
res->prop_terminal(true);
|
|
res->prop_stutter_invariant(true);
|
|
res->prop_universal(true);
|
|
res->prop_complete(false);
|
|
return res;
|
|
}
|
|
return make_twa_graph(left, twa::prop_set::all());
|
|
};
|
|
|
|
// We assume RIGHT is suspendable, but we want to deal with some
|
|
// trivial true/false cases so we can later assume right has
|
|
// more than one acceptance set.
|
|
// Note: suspendable with "t" acceptance = universal language.
|
|
if (SPOT_UNLIKELY(right->num_sets() == 0))
|
|
{
|
|
if (and_acc)
|
|
return false_or_left(right->is_empty());
|
|
else if (right->is_empty()) // left OR false = left
|
|
return make_twa_graph(left, twa::prop_set::all());
|
|
else // left OR true = true
|
|
return make_twa_graph(right, twa::prop_set::all());
|
|
}
|
|
|
|
auto res = make_twa_graph(left->get_dict());
|
|
res->copy_ap_of(left);
|
|
res->copy_ap_of(right);
|
|
bool leftweak = left->prop_weak().is_true();
|
|
|
|
res->prop_state_acc(left->prop_state_acc() && right->prop_state_acc());
|
|
|
|
auto rightunsatmark = right->acc().unsat_mark();
|
|
if (SPOT_UNLIKELY(!rightunsatmark.first))
|
|
return false_or_left(and_acc);
|
|
acc_cond::mark_t rejmark = rightunsatmark.second;
|
|
|
|
if (leftweak)
|
|
{
|
|
res->copy_acceptance_of(right);
|
|
if (and_acc)
|
|
{
|
|
product_susp_aux(left, right, res, true, false, rejmark,
|
|
[&] (acc_cond::mark_t,
|
|
acc_cond::mark_t mr)
|
|
{
|
|
return mr;
|
|
});
|
|
}
|
|
else
|
|
{
|
|
auto rightsatmark = right->acc().sat_mark();
|
|
if (!rightsatmark.first)
|
|
// Right is always rejecting, no point in making a product_or
|
|
return make_twa_graph(left, twa::prop_set::all());
|
|
acc_cond::mark_t accmark = rightsatmark.second;
|
|
auto& lacc = left->acc();
|
|
product_susp_aux(left, right, res, false, false, rejmark,
|
|
[&] (acc_cond::mark_t ml,
|
|
acc_cond::mark_t mr)
|
|
{
|
|
if (!lacc.accepting(ml))
|
|
return mr;
|
|
else
|
|
return accmark;
|
|
});
|
|
}
|
|
}
|
|
else // general case
|
|
{
|
|
auto left_num = left->num_sets();
|
|
auto right_acc = right->get_acceptance() << left_num;
|
|
if (and_acc)
|
|
right_acc &= left->get_acceptance();
|
|
else
|
|
right_acc |= left->get_acceptance();
|
|
res->set_acceptance(left_num + right->num_sets(), right_acc);
|
|
|
|
product_susp_aux(left, right, res, and_acc, !and_acc, rejmark,
|
|
[&] (acc_cond::mark_t ml,
|
|
acc_cond::mark_t mr)
|
|
{
|
|
return ml | (mr << left_num);
|
|
});
|
|
}
|
|
|
|
// The product of two non-deterministic automata could be
|
|
// deterministic. Likewise for non-complete automata.
|
|
if (left->prop_universal() && right->prop_universal())
|
|
res->prop_universal(true);
|
|
if (left->prop_complete() && right->prop_complete())
|
|
res->prop_complete(true);
|
|
if (left->prop_stutter_invariant() && right->prop_stutter_invariant())
|
|
res->prop_stutter_invariant(true);
|
|
if (left->prop_inherently_weak() && right->prop_inherently_weak())
|
|
res->prop_inherently_weak(true);
|
|
if (left->prop_weak() && right->prop_weak())
|
|
res->prop_weak(true);
|
|
if (left->prop_terminal() && right->prop_terminal())
|
|
res->prop_terminal(true);
|
|
return res;
|
|
}
|
|
}
|
|
|
|
twa_graph_ptr product_susp(const const_twa_graph_ptr& left,
|
|
const const_twa_graph_ptr& right)
|
|
{
|
|
return product_susp_main(left, right);
|
|
}
|
|
|
|
twa_graph_ptr product_or_susp(const const_twa_graph_ptr& left,
|
|
const const_twa_graph_ptr& right)
|
|
{
|
|
return product_susp_main(complete(left), right, false);
|
|
}
|
|
|
|
}
|