spot/spot/twaalgos/zlktree.cc
Alexandre Duret-Lutz 6aa2079079 zlktree: speedup the construction of ACD nodes
This uses the foreach_set_index() method introduced in the previous
patch to speed up the copy bitvectors in ACD nodes, as pointed in
issue #476.

Running
PREFIXCMD='valgrind --tool=callgrind' ./run python3 -c \
"import spot; spot.acd_transform(spot.automaton('syntcomp_91.hoa'))"
went from 65139436227 instruction fetches down to 18490399159.

* spot/twaalgos/zlktree.cc (acd::build_): Use foreach_set_index().
2021-09-11 01:00:38 +02:00

872 lines
28 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) 2021 Laboratoire de Recherche et Developpement de
// l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "config.h"
#include <iostream>
#include <deque>
#include <memory>
#include <spot/twaalgos/zlktree.hh>
#include <spot/twaalgos/genem.hh>
#include <spot/misc/escape.hh>
#include <spot/misc/bitvect.hh>
namespace spot
{
namespace
{
// Or goal is the find the list of maximal models for a formula
// named cond and defined later for each node.
//
// For instance if cond is satisfied by {1}, {3}, {1,2}, {1,2,3},
// {0,3}, and {0,1,3}, then the maximal models are {1,2,3} and
// {0,1,3}.
//
// To do that we build a list of models ordered by decreasing
// size. When inserting a model, we will compare it to all
// model of larger size first, and abort the insertion if
// needed. Otherwise we insert it, and then compare it to
// smaller models to possibly remove them.
//
// "models" is the variable where we store those ordered models.
// This list is local to each node, but we reuse the vector
// between each iteration to avoid unnecessary allocations.
struct size_model
{
unsigned size;
acc_cond::mark_t model;
};
void max_models(acc_cond cond,
acc_cond::mark_t colors,
std::vector<size_model>& out)
{
if (!colors)
return;
if (cond.accepting(colors))
{
unsigned sz = colors.count();
auto iter = out.begin();
while (iter != out.end())
{
if (iter->size < sz)
// We have checked all larger models.
break;
if (colors.subset(iter->model))
// curmodel is covered by iter->model.
return;
++iter;
}
// insert the model
iter = out.insert(iter, {sz, colors});
++iter;
// erase all models it contains
out.erase(std::remove_if(iter, out.end(),
[&](auto& mod) {
return mod.model.subset(colors);
}), out.end());
return;
}
// If the condition has some Inf(x) forced at the top-level, we
// may simply replace Inf(x) by t and Fin(x) by f in condition
// to simplify it. This is a kind of cheap unit-propagation.
if (acc_cond::mark_t fu = cond.inf_unit())
cond = cond.remove(fu, false);
// Now if we have some Fin(x) forced at the top-level,
// we know the corresponding color need to me removed from
// the set.
if (acc_cond::mark_t fu = cond.fin_unit())
{
max_models(cond.remove(fu, true), colors - fu, out);
}
// Otherwise, we simply have to pick a random Fin(x) and see if
// we can satisfy the condition when x is present or absent. In
// this case, we do not know whether the generated models will
// be maximal, so this justifies the inclusion checks between
// models at the top of this function.
else if (int fo = cond.fin_one(); fo >= 0)
{
acc_cond::mark_t fo_m = {(unsigned) fo};
max_models(cond.remove(fo_m, true), colors - fo_m, out);
max_models(cond.remove(fo_m, false), colors, out);
}
}
}
zielonka_tree::zielonka_tree(const acc_cond& cond)
{
const acc_cond::acc_code& code = cond.get_acceptance();
auto all = cond.all_sets();
acc_cond negcond(cond.num_sets(), cond.get_acceptance().complement());
nodes_.emplace_back();
nodes_[0].parent = 0;
nodes_[0].colors = all;
nodes_[0].level = 0;
std::vector<size_model> models;
// This loop is a BFS over the increasing set of nodes.
for (unsigned node = 0; node < nodes_.size(); ++node)
{
acc_cond::mark_t colors = nodes_[node].colors;
bool is_accepting = code.accepting(colors);
if (node == 0)
is_even_ = is_accepting;
acc_cond c = (is_accepting ? negcond : cond).restrict_to(colors);
models.clear();
max_models(c, colors, models);
unsigned num_children = models.size();
if (num_children == 0) // This is a leaf of the tree.
{
if (num_branches_++ == 0)
one_branch_ = node;
continue;
}
unsigned first = nodes_.size();
nodes_[node].first_child = first;
nodes_.reserve(first + num_children);
for (auto& m: models)
nodes_.push_back({node, static_cast<unsigned>(nodes_.size() + 1),
0, nodes_[node].level + 1, m.model});
nodes_.back().next_sibling = first;
if (num_children > 1)
{
if (is_accepting)
has_rabin_shape_ = false;
else
has_streett_shape_ = false;
}
}
bool empty_is_accepting = code.accepting(acc_cond::mark_t{});
empty_is_even_ = empty_is_accepting == is_even_;
}
void zielonka_tree::dot(std::ostream& os) const
{
os << "digraph zielonka_tree {\n";
unsigned ns = nodes_.size();
for (unsigned n = 0; n < ns; ++n)
{
os << " " << n << " [label=\"" << nodes_[n].colors;
unsigned first_child = nodes_[n].first_child;
if (!first_child)
os << "\n<" << n << '>';
os << "\", shape="
<< (((nodes_[n].level & 1) ^ is_even_) ? "ellipse" : "box")
<< "]\n";
if (first_child)
{
unsigned child = first_child;
do
{
os << " " << n << " -> " << child << '\n';
child = nodes_[child].next_sibling;
}
while (child != first_child);
}
}
os << "}\n";
}
std::pair<unsigned, unsigned>
zielonka_tree::step(unsigned branch, acc_cond::mark_t colors) const
{
if (SPOT_UNLIKELY(nodes_.size() < branch || nodes_[branch].first_child))
throw std::runtime_error
("zielonka_tree::step(): incorrect branch number");
if (!colors)
{
unsigned lvl = nodes_[branch].level;
return {branch, lvl + ((lvl & 1) == empty_is_even_)};
}
unsigned child = 0;
for (;;)
{
colors -= nodes_[branch].colors;
if (!colors)
break;
child = branch;
branch = nodes_[branch].parent;
}
unsigned lvl = nodes_[branch].level;
if (child != 0)
{
// The following computation could be precomputed.
branch = nodes_[child].next_sibling;
while (nodes_[branch].first_child)
branch = nodes_[branch].first_child;
}
return {branch, lvl};
}
namespace
{
// A state in the zielonka_tree_transform or acd_transform outputs
// corresponds to a state in the input associated to a branch of
// the tree.
typedef std::pair<unsigned, unsigned> zlk_state;
struct zlk_state_hash
{
size_t
operator()(const zlk_state& s) const noexcept
{
return wang32_hash(s.first ^ wang32_hash(s.second));
}
};
}
twa_graph_ptr
zielonka_tree_transform(const const_twa_graph_ptr& a)
{
auto res = make_twa_graph(a->get_dict());
res->copy_ap_of(a);
zielonka_tree zlk(a->get_acceptance());
// Preserve determinism, weakness, and stutter-invariance
res->prop_copy(a, { false, true, true, true, true, true });
auto orig_states = new std::vector<unsigned>();
auto branches = new std::vector<unsigned>();
unsigned ns = a->num_states();
orig_states->reserve(ns); // likely more are needed.
res->set_named_prop("original-states", orig_states);
res->set_named_prop("degen-levels", branches);
// Associate each zlk_state to its number.
typedef std::unordered_map<zlk_state, unsigned, zlk_state_hash> zs2num_map;
zs2num_map zs2num;
// Queue of states to be processed.
std::deque<zlk_state> todo;
auto new_state = [&](zlk_state zs)
{
if (auto i = zs2num.find(zs); i != zs2num.end())
return i->second;
unsigned ns = res->new_state();
zs2num[zs] = ns;
todo.emplace_back(zs);
unsigned orig = zs.first;
assert(ns == orig_states->size());
orig_states->emplace_back(orig);
branches->emplace_back(zs.second);
return ns;
};
zlk_state s(a->get_init_state_number(), zlk.first_branch());
new_state(s);
unsigned max_color = 0;
while (!todo.empty())
{
s = todo.front();
todo.pop_front();
int src = zs2num[s];
unsigned branch = s.second;
for (auto& i: a->out(s.first))
{
auto [newbranch, prio] = zlk.step(branch, i.acc);
zlk_state d(i.dst, newbranch);
unsigned dst = new_state(d);
max_color = std::max(max_color, prio);
res->new_edge(src, dst, i.cond, {prio});
}
}
res->set_acceptance(max_color + 1,
acc_cond::acc_code::parity_min(!zlk.is_even(),
max_color + 1));
// compose original-states with the any previously existing one.
// We do that now, because for the bottommost copy below, it's better
// if we compose everything.
if (auto old_orig_states =
a->get_named_prop<std::vector<unsigned>>("original-states"))
for (auto& s: *orig_states)
s = (*old_orig_states)[s];
// Now we will iterate over the SCCs in topological order to
// remember the "bottommost" SCCs that contain each original
// state. If an original state is duplicated in a higher SCC,
// it can be shunted away. Amen.
scc_info si_res(res, scc_info_options::TRACK_STATES);
unsigned res_scc_count = si_res.scc_count();
unsigned maxorig = *std::max_element(orig_states->begin(),
orig_states->end());
std::vector<unsigned> bottommost_occurence(maxorig + 1);
{
unsigned n = res_scc_count;
do
for (unsigned s: si_res.states_of(--n))
bottommost_occurence[(*orig_states)[s]] = s;
while (n);
}
unsigned res_ns = res->num_states();
std::vector<unsigned> retarget(res_ns);
for (unsigned n = 0; n < res_ns; ++n)
{
unsigned other = bottommost_occurence[(*orig_states)[n]];
retarget[n] =
(si_res.scc_of(n) != si_res.scc_of(other)) ? other : n;
}
for (auto& e: res->edges())
e.dst = retarget[e.dst];
res->set_init_state(retarget[res->get_init_state_number()]);
res->purge_unreachable_states();
return res;
}
void acd::report_invalid_scc_number(unsigned num, const char* fn)
{
throw std::runtime_error(std::string(fn) +
"(): SCC number " + std::to_string(num)
+ " is too large");
}
acd::acd(const const_twa_graph_ptr& aut)
: si_(new scc_info(aut)), own_si_(true), trees_(si_->scc_count())
{
build_();
}
acd::acd(const scc_info& si)
: si_(&si), own_si_(false), trees_(si_->scc_count())
{
build_();
}
acd::~acd()
{
if (own_si_)
delete si_;
}
void acd::build_()
{
unsigned scc_count = scc_count_ = si_->scc_count();
const_twa_graph_ptr aut = aut_ = si_->get_aut();
unsigned nedges = aut->get_graph().edge_vector().size();
unsigned nstates = aut->num_states();
acc_cond posacc = aut->acc();
acc_cond negacc(posacc.num_sets(), posacc.get_acceptance().complement());
// The bitvectors store edge and state-vectors that are shared
// among the different trees.
auto allocate_vectors_maybe = [&](unsigned n)
{
if (bitvectors.size() > 2 * n)
return;
bitvectors.emplace_back(nedges, false);
bitvectors.emplace_back(nstates, false);
};
auto edge_vector = [&] (unsigned n) -> std::vector<bool>&
{
return bitvectors[2 * n];
};
auto state_vector = [&] (unsigned n) -> std::vector<bool>&
{
return bitvectors[2 * n + 1];
};
allocate_vectors_maybe(0);
// Remember the max level since of each tree of different parity.
// We will use that to decide if the output should have parity
// "min even" or "min odd" so as to minimize the number of colors
// used.
int max_level_of_even_tree = -1;
int max_level_of_odd_tree = -1;
for (unsigned scc = 0; scc < scc_count; ++scc)
{
if ((trees_[scc].trivial = si_->is_trivial(scc)))
continue;
trees_[scc].num_nodes = 1;
unsigned root = nodes_.size();
trees_[scc].root = root;
bool is_even = si_->is_maximally_accepting_scc(scc);
trees_[scc].is_even = is_even;
nodes_.emplace_back(edge_vector(0), state_vector(0));
auto& n = nodes_.back();
n.parent = root;
n.level = 0;
n.scc = scc;
for (auto& e: si_->inner_edges_of(scc))
{
n.edges[aut->edge_number(e)] = true;
n.states[e.src] = true;
}
}
struct size_model
{
unsigned size;
std::unique_ptr<bitvect> trans;
};
std::vector<size_model> out;
// This loop is a BFS over the increasing set of nodes.
for (unsigned node = 0; node < nodes_.size(); ++node)
{
unsigned scc = nodes_[node].scc;
unsigned lvl = nodes_[node].level;
bool accepting_node = (lvl & 1) != trees_[scc].is_even;
out.clear();
auto callback = [&](scc_info si, unsigned siscc)
{
bitvect* bv = make_bitvect(nedges);
unsigned sz = 0;
for (auto& e: si.inner_edges_of(siscc))
{
bv->set(aut->edge_number(e));
++sz;
}
auto iter = out.begin();
while (iter != out.end())
{
if (iter->size < sz)
// We have checked all larger models.
break;
if (bv->is_subset_of(*iter->trans))
// ignore smaller models
{
delete bv;
return;
}
++iter;
}
// insert the model
iter = out.insert(iter, {sz, std::unique_ptr<bitvect>(bv)});
++iter;
// erase all models it contains
out.erase(std::remove_if(iter, out.end(),
[&](auto& mod) {
return mod.trans->is_subset_of(*bv);
}), out.end());
};
maximal_accepting_loops_for_scc(*si_, scc,
accepting_node ? negacc : posacc,
nodes_[node].edges, callback);
unsigned before_size = nodes_.size();
for (const auto& [sz, bv]: out)
{
unsigned vnum = trees_[scc].num_nodes++;
allocate_vectors_maybe(vnum);
nodes_.emplace_back(edge_vector(vnum), state_vector(vnum));
auto& n = nodes_.back();
n.parent = node;
n.level = lvl + 1;
n.scc = scc;
bv->foreach_set_index([&](unsigned e)
{
n.edges[e] = true;
n.states[aut->edge_storage(e).src] = true;
});
}
unsigned after_size = nodes_.size();
unsigned children = after_size - before_size;
// Chain the children together, and connect them to the parent
for (unsigned child = before_size; child < after_size; ++child)
{
unsigned next = child + 1;
if (next == after_size)
{
next = before_size;
nodes_[node].first_child = before_size;
}
nodes_[child].next_sibling = next;
}
if (children == 0)
{
// this node is a leaf.
if (trees_[scc].is_even)
max_level_of_even_tree = lvl;
else
max_level_of_odd_tree = lvl;
}
else if (children > 1)
{
if (accepting_node)
has_rabin_shape_ = false;
else
has_streett_shape_ = false;
}
}
// Now we decide if the ACD corresponds to a "min even" or "max
// even" parity. We want to minimize the number of colors
// introduced (because of Spot's limitation to a fixed number of
// those), so the parity of the tallest tree will give the parity
// of the ACD.
bool is_even = is_even_ = max_level_of_even_tree >= max_level_of_odd_tree;
// add one to the level of each node belonging to a tree of the
// opposite parity
for (auto& node: nodes_)
{
unsigned scc = node.scc;
if (trees_[scc].is_even != is_even)
++node.level;
trees_[scc].max_level = std::max(trees_[scc].max_level, node.level);
}
}
unsigned acd::leftmost_branch_(unsigned n, unsigned state) const
{
loop:
unsigned first_child = nodes_[n].first_child;
if (first_child == 0) // no children
return n;
unsigned child = first_child;
do
{
if (nodes_[child].states[state])
{
n = child;
goto loop;
}
child = nodes_[child].next_sibling;
}
while (child != first_child);
return n;
}
unsigned acd::first_branch(unsigned s) const
{
if (SPOT_UNLIKELY(aut_->num_states() < s))
throw std::runtime_error("first_branch(): unknown state " +
std::to_string(s));
unsigned scc = si_->scc_of(s);
if (trees_[scc].trivial) // the branch is irrelevant for transiant SCCs
return 0;
unsigned n = trees_[scc].root;
assert(nodes_[n].states[s]);
return leftmost_branch_(n, s);
}
std::pair<unsigned, unsigned>
acd::step(unsigned branch, unsigned edge) const
{
if (SPOT_UNLIKELY(nodes_.size() < branch))
throw std::runtime_error("acd::step(): incorrect branch number");
if (SPOT_UNLIKELY(nodes_[branch].edges.size() < edge))
throw std::runtime_error("acd::step(): incorrect edge number");
unsigned child = 0;
unsigned dst = aut_->edge_storage(edge).dst;
while (!nodes_[branch].edges[edge])
{
unsigned parent = nodes_[branch].parent;
if (SPOT_UNLIKELY(branch == parent))
{
// We are changing SCC, so the level emitted does not
// matter.
assert(si_->scc_of(aut_->edge_storage(edge).src)
!= si_->scc_of(dst));
return { first_branch(dst), 0 };
}
child = branch;
branch = parent;
}
unsigned lvl = nodes_[branch].level;
if (child != 0)
{
unsigned start_child = child;
// find the next children that contains dst.
do
{
child = nodes_[child].next_sibling;
if (nodes_[child].states[dst])
return {leftmost_branch_(child, dst), lvl};
}
while (child != start_child);
return { branch, lvl };
}
else
{
return { leftmost_branch_(branch, dst), lvl };
}
}
void acd::dot(std::ostream& os, const char* id) const
{
os << "digraph acd {\n labelloc=\"t\"\n label=\"\n"
<< (is_even_ ? "min even\"" : "min odd\"\n");
if (id)
escape_str(os << " id=\"", id)
// fill the node so that the entire node is clickable
<< "\"\n node [id=\"N\\N\", style=filled, fillcolor=white]\n";
unsigned ns = nodes_.size();
for (unsigned n = 0; n < ns; ++n)
{
acc_cond::mark_t m = {};
os << " " << n << " [label=\"";
unsigned scc = nodes_[n].scc;
// The top of each tree has level 0 or 1, depending on whether
// the tree's parity matches the overall ACD parity.
if (nodes_[n].level == (trees_[scc].is_even != is_even_))
os << "SCC #" << scc << '\n';
// Prints the indices that are true in edges. To save space,
// we print span of 3 or more elements as start-end.
auto& edges = nodes_[n].edges;
unsigned nedges = edges.size();
bool lastval = false;
unsigned lastchange = 0;
const char* sep = "T: ";
for (unsigned n = 1; n <= nedges; ++n)
{
bool val = n < nedges && edges[n]
&& si_->scc_of(aut_->edge_storage(n).dst) == scc;
if (val != lastval)
{
if (lastval)
switch (n - lastchange)
{
case 1:
break;
case 2:
os << ',' << n - 1;
break;
default:
os << '-' << n - 1;
break;
}
else
os << sep << n;
lastval = val;
lastchange = n;
sep = ",";
}
if (val)
m |= aut_->edge_data(n).acc;
}
unsigned first_child = nodes_[n].first_child;
os << '\n' << m;
auto& states = nodes_[n].states;
unsigned nstates = states.size();
sep = "\nQ: ";
for (unsigned n = 0; n <= nstates; ++n)
{
bool val = n < nstates && states[n] && si_->scc_of(n) == scc;
if (val != lastval)
{
if (lastval)
switch (n - lastchange)
{
case 1:
break;
case 2:
os << ',' << n - 1;
break;
default:
os << '-' << n - 1;
break;
}
else
os << sep << n;
lastval = val;
lastchange = n;
sep = ",";
}
}
os << "\nlvl: " << nodes_[n].level;
if (!first_child)
os << "\n<" << n << '>';
// use a fillcolor so that the entire node is clickable
os << "\", shape="
<< (((nodes_[n].level & 1) ^ is_even_) ? "ellipse" : "box");
if (id)
{
os << " class=\"";
const char* sep = "";
for (unsigned n = 0; n < nstates; ++n)
if (states[n] && si_->scc_of(n) == scc)
{
os << sep << "acdS" << n << '\n';
sep = " ";
}
os << '\"';
}
os << "]\n";
if (first_child)
{
unsigned child = first_child;
do
{
os << " " << n << " -> " << child << '\n';
child = nodes_[child].next_sibling;
}
while (child != first_child);
}
}
os << "}\n";
}
bool acd::node_acceptance(unsigned n) const
{
if (SPOT_UNLIKELY(nodes_.size() < n))
throw std::runtime_error("acd::node_acceptance(): unknown node");
return (nodes_[n].level & 1) ^ is_even_;
}
std::vector<unsigned> acd::edges_of_node(unsigned n) const
{
if (SPOT_UNLIKELY(nodes_.size() < n))
throw std::runtime_error("acd::edges_of_node(): unknown node");
std::vector<unsigned> res;
unsigned scc = nodes_[n].scc;
auto& edges = nodes_[n].edges;
unsigned nedges = edges.size();
for (unsigned e = 1; e < nedges; ++e)
if (edges[e] && si_->scc_of(aut_->edge_storage(e).dst) == scc)
res.push_back(e);
return res;
}
twa_graph_ptr
acd_transform(const const_twa_graph_ptr& a, bool colored)
{
auto res = make_twa_graph(a->get_dict());
res->copy_ap_of(a);
scc_info si(a, scc_info_options::TRACK_STATES);
acd theacd(si);
// If we desire non-colored output, we can omit the maximal
// color of each SCC if it has the same parity as max_level.
unsigned max_level = 0;
if (!colored)
{
unsigned ns = si.scc_count();
for (unsigned n = 0; n < ns; ++n)
max_level = std::max(max_level, theacd.scc_max_level(n));
}
bool max_level_is_odd = max_level & 1;
// Preserve determinism, and stutter-invariance.
// state-based acceptance is lost,
// inherently-weak automata become weak.
res->prop_copy(a, { false, false, true, true, true, true });
auto orig_states = new std::vector<unsigned>();
auto branches = new std::vector<unsigned>();
unsigned ns = a->num_states();
orig_states->reserve(ns); // likely more are needed.
res->set_named_prop("original-states", orig_states);
res->set_named_prop("degen-levels", branches);
// Associate each zlk_state to its number.
typedef std::unordered_map<zlk_state, unsigned, zlk_state_hash> zs2num_map;
zs2num_map zs2num;
// Queue of states to be processed.
std::deque<zlk_state> todo;
auto new_state = [&](zlk_state zs)
{
if (auto i = zs2num.find(zs); i != zs2num.end())
return i->second;
unsigned ns = res->new_state();
zs2num[zs] = ns;
todo.emplace_back(zs);
unsigned orig = zs.first;
assert(ns == orig_states->size());
orig_states->emplace_back(orig);
branches->emplace_back(zs.second);
return ns;
};
unsigned init = a->get_init_state_number();
zlk_state s(init, theacd.first_branch(init));
new_state(s);
unsigned max_color = 0;
bool is_even = theacd.is_even();
while (!todo.empty())
{
s = todo.front();
todo.pop_front();
int src = zs2num[s];
unsigned branch = s.second;
unsigned src_scc = si.scc_of(s.first);
unsigned scc_max_lvl = theacd.scc_max_level(src_scc);
bool scc_max_lvl_can_be_omitted = (scc_max_lvl & 1) == max_level_is_odd;
for (auto& i: a->out(s.first))
{
unsigned newbranch;
unsigned prio;
unsigned dst_scc = si.scc_of(i.dst);
if (dst_scc != src_scc)
{
newbranch = theacd.first_branch(i.dst);
prio = 0;
}
else
{
std::tie(newbranch, prio) =
theacd.step(branch, a->edge_number(i));
}
zlk_state d(i.dst, newbranch);
unsigned dst = new_state(d);
if (!colored && ((dst_scc != src_scc)
|| (scc_max_lvl_can_be_omitted
&& scc_max_lvl == prio)))
{
res->new_edge(src, dst, i.cond);
}
else
{
max_color = std::max(max_color, prio);
res->new_edge(src, dst, i.cond, {prio});
}
}
}
if (!colored && max_level == 0)
res->set_acceptance(0, acc_cond::acc_code::t());
else
res->set_acceptance(max_color + 1,
acc_cond::acc_code::parity_min(!is_even,
max_color + 1));
// compose original-states with the any previously existing one.
if (auto old_orig_states =
a->get_named_prop<std::vector<unsigned>>("original-states"))
for (auto& s: *orig_states)
s = (*old_orig_states)[s];
// An inherently-weak input necessarily becomes weak.
if (a->prop_inherently_weak())
res->prop_weak(true);
return res;
}
}