spot/bricks/brick-bitlevel
Etienne Renault bb9fa4e910 bricks: update and move to c++14
* Makefile.am, bricks/brick-assert,
bricks/brick-assert.h, spot/ltsmin/ltsmin.cc,
spot/mc/ec.hh: here.

* bricks/brick-bitlevel.h, bricks/brick-hash.h,
bricks/brick-hashset.h, bricks/brick-shmem.h,
bricks/brick-types.h: Rename as ...
* bricks/brick-bitlevel, bricks/brick-hash,
bricks/brick-hashset, bricks/brick-shmem,
bricks/brick-types: ... these
2020-06-03 10:33:53 +02:00

807 lines
25 KiB
C++

// -*- mode: C++; indent-tabs-mode: nil; c-basic-offset: 4 -*-
/*
* Utilities and data structures for bit-level manipulation and data packing.
*/
/*
* (c) 2013-2014 Jiří Weiser <xweiser1@fi.muni.cz>
* (c) 2013 Petr Ročkai <me@mornfall.net>
* (c) 2015 Vladimír Štill <xstill@fi.muni.cz>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "brick-assert"
#include <type_traits>
#include <limits>
#ifdef __linux
#include <asm/byteorder.h>
#include <byteswap.h>
#elif !defined LITTLE_ENDIAN // if defined _WIN32
#define BYTE_ORDER 1234
#define LITTLE_ENDIAN 1234
#endif
#include <atomic>
#include <cstring>
#ifndef BRICK_BITLEVEL_H
#define BRICK_BITLEVEL_H
namespace brick {
namespace bitlevel {
template< typename T1, typename T2 >
constexpr inline T1 align( T1 v, T2 a ) {
return (v % T1(a)) ? (v + T1(a) - (v % T1(a))) : v;
}
template< typename T1, typename T2 >
constexpr inline T1 downalign( T1 v, T2 a ) {
return v - (v % T1(a));
}
namespace compiletime {
template< typename T >
constexpr unsigned MSB( T x ) {
return x > 1 ? 1 + MSB( x >> 1 ) : 0;
}
template< typename T >
constexpr T fill( T x ) {
return x ? x | compiletime::fill( x >> 1 ) : x;
}
template< typename T >
constexpr size_t sizeOf() {
return std::is_empty< T >::value ? 0 : sizeof( T );
}
template< typename T >
constexpr T ones( int bits )
{
return bits ? ( T(1) << ( bits - 1 ) ) | compiletime::ones< T >( bits - 1 ) : 0;
}
}
using compiletime::ones;
template< typename L, typename H >
struct bvpair
{
L low; H high;
constexpr bvpair( L l, H h = 0 ) : low( l ), high( h ) {}
constexpr bvpair() = default;
explicit constexpr operator bool() const { return low || high; }
constexpr bvpair operator<<( int s ) const
{
int rem = 8 * sizeof( low ) - s;
int unshift = std::max( rem, 0 );
int shift = rem < 0 ? -rem : 0;
H carry = ( low & ~ones< L >( unshift ) ) >> unshift;
return bvpair( low << s, ( high << s ) | ( carry << shift ) );
}
constexpr bvpair operator>>( int s ) const
{
int rem = 8 * sizeof( low ) - s;
int unshift = std::max( rem, 0 );
int shift = rem < 0 ? -rem : 0;
L carry = L( high & ones< H >( s ) ) << unshift;
return bvpair( ( low >> s ) | ( carry >> shift ), high >> s );
}
constexpr bvpair operator&( bvpair o ) const { return bvpair( o.low & low, o.high & high ); }
constexpr bvpair operator|( bvpair o ) const { return bvpair( o.low | low, o.high | high ); }
bvpair &operator|=( bvpair o ) { return *this = *this | o; }
constexpr bool operator==( bvpair o ) const { return o.low == low && o.high == high; }
constexpr bool operator!=( bvpair o ) const { return o.low != low || o.high != high; }
constexpr bvpair operator+() const { return *this; }
friend std::ostream &operator<<( std::ostream &o, bvpair p ) {
return o << p.high << "_" << p.low; }
} __attribute__((packed));
template< int i > struct _bitvec { using T = typename _bitvec< i + 1 >::T; };
template<> struct _bitvec< 8 > { using T = uint8_t; };
template<> struct _bitvec< 16 > { using T = uint16_t; };
template<> struct _bitvec< 32 > { using T = uint32_t; };
template<> struct _bitvec< 64 > { using T = uint64_t; };
template<> struct _bitvec< 80 > { using T = bvpair< uint64_t, uint16_t >; };
template<> struct _bitvec< 128 > { using T = bvpair< uint64_t, uint64_t >; };
template< int i > using bitvec = typename _bitvec< i >::T;
namespace {
uint32_t mixdown( uint64_t i ) /* due to Thomas Wang */
{
i = (~i) + (i << 18);
i = i ^ (i >> 31);
i = i * 21;
i = i ^ (i >> 11);
i = i + (i << 6);
i = i ^ (i >> 22);
return i;
}
__attribute__((unused)) uint32_t mixdown( uint32_t a, uint32_t b )
{
return mixdown( ( uint64_t( a ) << 32 ) | uint64_t( b ) );
}
}
/*
* Fills `x` by bits up to the most si significant bit.
* Comlexity is O(log n), n is sizeof(x)*8
*/
template< typename number >
static inline number fill( number x ) {
static const unsigned m = sizeof( number ) * 8;
unsigned r = 1;
if ( !x )
return 0;
while ( m != r ) {
x |= x >> r;
r <<= 1;
}
return x;
}
// get index of Most Significant Bit
// templated by argument to int, long, long long (all unsigned)
template< typename T >
static inline unsigned MSB( T x ) {
unsigned position = 0;
while ( x ) {
x >>= 1;
++position;
}
return position - 1;
}
template<>
inline unsigned MSB< unsigned int >( unsigned int x ) {
static const unsigned long bits = sizeof( unsigned int ) * 8 - 1;
return bits - __builtin_clz( x );
}
template<>
inline unsigned MSB< unsigned long >( unsigned long x ) {
static const unsigned bits = sizeof( unsigned long ) * 8 - 1;
return bits - __builtin_clzl( x );
}
template<>
inline unsigned MSB< unsigned long long >( unsigned long long x ) {
static const unsigned bits = sizeof( unsigned long long ) * 8 - 1;
return bits - __builtin_clzll( x );
}
// gets only Most Significant Bit
template< typename number >
static inline number onlyMSB( number x ) {
return number(1) << MSB( x );
}
// gets number without Most Significant Bit
template< typename number >
static inline number withoutMSB( number x ) {
return x & ~onlyMSB( x );
}
inline constexpr uint64_t bitshift( uint64_t t, int shift ) {
return shift < 0 ? ( t << -shift ) : ( t >> shift );
}
inline constexpr uint64_t mask( int first, int count ) {
return (uint64_t(-1) << first) & (uint64_t(-1) >> (64 - first - count));
}
struct BitPointer {
using Storage = uint32_t;
static constexpr int storageBits = sizeof( Storage ) * 8;
BitPointer() : base( nullptr ), _bitoffset( 0 ) {}
template< typename T > BitPointer( T *t, int offset = 0 )
: base( static_cast< void * >( t ) ), _bitoffset( offset )
{
normalize();
}
template< typename T >
T &ref() { ASSERT( valid() ); return *static_cast< T * >( base ); }
uint32_t &word() { return ref< uint32_t >(); }
uint64_t &dword() { return ref< uint64_t >(); }
// unsafe version does not cross word boundary
uint32_t getUnsafe( int bits ) { return _get< uint32_t >( bits ); }
uint32_t get( int bits ) {
return bits + _bitoffset <= 32 ? _get< uint32_t >( bits ) : _get< uint64_t >( bits );
}
void setUnsafe( uint32_t val, int bits ) { return _set< uint32_t >( val, bits ); }
void set( uint32_t val, int bits ) {
return bits + _bitoffset <= 32 ? _set< uint32_t >( val, bits ) : _set< uint64_t >( val, bits );
}
void normalize() {
int shift = downalign( _bitoffset, storageBits );
_bitoffset -= shift;
ASSERT_EQ( shift % 8, 0 );
base = static_cast< Storage * >( base ) + shift / storageBits;
}
void shift( int bits ) { _bitoffset += bits; normalize(); }
void fromReference( BitPointer r ) { *this = r; }
int bitoffset() { return _bitoffset; }
bool valid() { return base; }
private:
void *base;
int _bitoffset;
template< typename T >
uint32_t _get( int bits ) {
static_assert( std::is_unsigned< T >::value, "T has to be unsigned numeric type" );
ASSERT( valid() );
ASSERT_LEQ( 0, bits );
ASSERT_LEQ( bits, 32 );
ASSERT_LEQ( bits + _bitoffset, int( sizeof( T ) * 8 ) );
return (ref< T >() >> _bitoffset) & mask( 0, bits );
}
template< typename T >
void _set( uint32_t val, int bits ) {
static_assert( std::is_unsigned< T >::value, "T has to be unsigned numeric type" );
ASSERT_EQ( val & ~mask( 0, bits ), 0u );
ASSERT_LEQ( bits, 32 );
ASSERT_LEQ( bits + _bitoffset, int( sizeof( T ) * 8 ) );
ref< T >() = (ref< T >() & ~mask( _bitoffset, bits )) | (T(val) << _bitoffset);
}
};
/*
* NB. This function will alias whatever "to" points to with an uint64_t. With
* aggressive optimisations, this might break code that passes an address of a
* variable of different type. When "to" points to a stack variable, take
* precautions to avoid breaking strict aliasing rules (the violation is not
* detected by GCC as of 4.7.3).
*/
inline void bitcopy( BitPointer from, BitPointer to, int bitcount )
{
while ( bitcount ) {
if ( from.bitoffset() == 0 && to.bitoffset() == 0
&& bitcount >= BitPointer::storageBits )
{
const int cnt = bitcount / BitPointer::storageBits;
std::copy( &from.word(), &from.word() + cnt, &to.word() );
const int bitcnt = cnt * BitPointer::storageBits;
from.shift( bitcnt );
to.shift( bitcnt );
bitcount -= bitcnt;
} else {
int w = std::min( BitPointer::storageBits - from.bitoffset(), bitcount );
to.set( from.getUnsafe( w ), w );
from.shift( w ); to.shift( w ); bitcount -= w; // slide
}
}
}
template< typename T, int width = sizeof( T ) * 8 >
struct BitField
{
static const int bitwidth = width;
struct Virtual : BitPointer
{
T set( T t ) { bitcopy( BitPointer( &t ), *this, bitwidth ); return t; }
Virtual operator=( T t ) {
set( t );
return *this;
}
Virtual operator=( Virtual v ) {
set( v.get() );
return *this;
}
operator T() const { return get(); }
T get() const {
union U {
uint64_t x;
T t;
U() : t() { }
} u;
bitcopy( *this, BitPointer( &u.x ), bitwidth );
return u.t;
}
Virtual &operator++() {
T value( get() );
set( ++value );
return *this;
}
T operator++(int) {
T value( get() );
T result( value++ );
set( value );
return result;
}
Virtual &operator--() {
T value( get() );
set( --value );
return *this;
}
T operator--(int) {
T value( get() );
T result( value-- );
set( value );
return result;
}
#define OP(__op) \
template< typename U > \
Virtual operator __op( U value ) { \
T t( get() ); \
t __op value; \
set( t ); \
return *this; \
}
OP(+=);
OP(-=);
OP(*=);
OP(/=);
OP(%=);
OP(|=);
OP(&=);
#undef OP
};
};
struct BitLock
{
static const int bitwidth = 1;
struct Virtual : BitPointer {
using Atomic = std::atomic< uint32_t >;
Atomic &atomic() { return *reinterpret_cast< Atomic * >( &word() ); }
uint32_t bit() {
ASSERT_LEQ( bitoffset(), 31 );
return uint32_t( 1 ) << bitoffset();
}
void lock() {
uint32_t l = word();
do { l &= ~bit(); } while ( !atomic().compare_exchange_weak( l, l | bit() ) );
}
void unlock() { atomic().exchange( word() & ~bit() ); }
bool locked() { return atomic().load() & bit(); }
};
};
template< int O, typename... Args > struct BitAccess;
template< int O >
struct BitAccess< O > { static const int total = 0; };
template< int O, typename T, typename... Args >
struct BitAccess< O, T, Args... > {
static const int offset = O;
static const int width = T::bitwidth;
typedef typename T::Virtual Head;
typedef BitAccess< offset + T::bitwidth, Args... > Tail;
static const int total = width + Tail::total;
};
template< typename BA, int I >
struct _AccessAt : _AccessAt< typename BA::Tail, I - 1 > {};
template< typename BA >
struct _AccessAt< BA, 0 > { using T = BA; };
template< typename... Args >
struct _BitTuple
{
using Access = BitAccess< 0, Args... >;
static const int bitwidth = Access::total;
template< int I > using AccessAt = _AccessAt< Access, I >;
template< int I > static int offset() { return AccessAt< I >::T::offset; }
};
template< typename... Args > struct BitTuple : _BitTuple< Args... >
{
struct Virtual : BitPointer, _BitTuple< Args... > {};
char storage[ align( Virtual::bitwidth, 32 ) / 8 ];
BitTuple() { std::fill( storage, storage + sizeof( storage ), 0 ); }
operator BitPointer() { return BitPointer( storage ); }
bool operator<( const BitTuple &o ) const
{
return std::lexicographical_compare( storage, storage + sizeof( storage ),
o.storage, o.storage + sizeof( storage ) );
}
bool operator==( const BitTuple &o ) const
{
return std::equal( storage, storage + sizeof( storage ),
o.storage, o.storage + sizeof( storage ) );
}
};
template< int I, typename BT >
typename BT::template AccessAt< I >::T::Head get( BT &bt )
{
typename BT::template AccessAt< I >::T::Head t;
t.fromReference( bt );
t.shift( BT::template offset< I >() );
return t;
}
}
namespace t_bitlevel {
using namespace ::brick::bitlevel;
struct BitTupleTest {
using U10 = BitField< unsigned, 10 >;
using T10_10 = BitTuple< U10, U10 >;
int bitcount( uint32_t word ) {
int i = 0;
while ( word ) {
if ( word & 1 )
++i;
word >>= 1;
}
return i;
}
TEST(mask) {
/* only works on little endian machines ... */
ASSERT_EQ( 0xFF00u, bitlevel::mask( 8, 8 ) );
ASSERT_EQ( 0xF000u, bitlevel::mask( 12, 4 ) );
ASSERT_EQ( 0x0F00u, bitlevel::mask( 8, 4 ) );
ASSERT_EQ( 60u, bitlevel::mask( 2, 4 ) );// 0b111100
ASSERT_EQ( 28u, bitlevel::mask( 2, 3 ) );// 0b11100
}
TEST(bitcopy) {
uint32_t a = 42, b = 11;
bitlevel::bitcopy( BitPointer( &a ), BitPointer( &b ), 32 );
ASSERT_EQ( a, b );
a = 0xFF00;
bitlevel::bitcopy( BitPointer( &a ), BitPointer( &b, 8 ), 24 );
ASSERT_EQ( b, 0xFF0000u | 42u );
a = 0;
bitlevel::bitcopy( BitPointer( &b, 8 ), BitPointer( &a ), 24 );
ASSERT_EQ( a, 0xFF00u );
bitlevel::bitcopy( BitPointer( &a, 8 ), BitPointer( &b, 8 ), 8 );
a = 0x3FF;
b = 0;
bitlevel::bitcopy( BitPointer( &a, 0 ), BitPointer( &b, 0 ), 10 );
ASSERT_EQ( b, 0x3FFu );
unsigned char from[32], to[32];
std::memset( from, 0, 32 );
std::memset( to, 0, 32 );
from[0] = 1 << 7;
bitlevel::bitcopy( BitPointer( from, 7 ), BitPointer( to, 7 ), 1 );
ASSERT_EQ( int( to[0] ), int( from[ 0 ] ) );
from[0] = 1;
to[0] = 0;
bitlevel::bitcopy( BitPointer( from, 0 ), BitPointer( to, 7 ), 1 );
ASSERT_EQ( int( to[0] ), 1 << 7 );
from[0] = 13;
from[1] = 63;
bitlevel::bitcopy( BitPointer( from, 0 ), BitPointer( to, 32 ), 16 );
ASSERT_EQ( int( to[4] ), int( from[0] ) );
ASSERT_EQ( int( to[5] ), int( from[1] ) );
from[0] = 2;
from[1] = 2;
std::memset( to, 0, 32 );
bitlevel::bitcopy( BitPointer( from, 1 ), BitPointer( to, 32 ), 16 );
ASSERT_EQ( int( to[4] ), 1 );
ASSERT_EQ( int( to[5] ), 1 );
from[0] = 1;
from[1] = 1;
std::memset( to, 0, 32 );
bitlevel::bitcopy( BitPointer( from, 0 ), BitPointer( to, 33 ), 16 );
ASSERT_EQ( int( to[4] ), 2 );
ASSERT_EQ( int( to[5] ), 2 );
from[0] = 1;
from[1] = 1;
std::memset( to, 0, 32 );
for ( int i = 0; i < 16; ++i )
bitlevel::bitcopy( BitPointer( from, i ), BitPointer( to, 33 + i ), 1 );
ASSERT_EQ( int( to[4] ), 2 );
ASSERT_EQ( int( to[5] ), 2 );
for ( int i = 0; i < 16; ++i )
from[i] = 2;
std::memset( to, 0, 32 );
bitlevel::bitcopy( BitPointer( from, 1 ), BitPointer( to, 3 ), 128 );
for ( int i = 0; i < 16; ++i )
ASSERT_EQ( int( to[i] ), 8 );
}
TEST(field) {
int a = 42, b = 0;
typedef BitField< int, 10 > F;
F::Virtual f;
f.fromReference( BitPointer( &b ) );
f.set( a );
ASSERT_EQ( a, 42 );
ASSERT_EQ( a, f );
}
TEST(basic) {
T10_10 x;
ASSERT_EQ( T10_10::bitwidth, 20 );
ASSERT_EQ( T10_10::offset< 0 >(), 0 );
ASSERT_EQ( T10_10::offset< 1 >(), 10 );
auto a = get< 0 >( x );
auto b = get< 1 >( x );
a.set( 5 );
b.set( 7 );
ASSERT_EQ( a, 5u );
ASSERT_EQ( b, 7u );
}
TEST(big) {
bitlevel::BitTuple< BitField< uint64_t, 63 >, BitField< uint64_t, 63 > > x;
ASSERT_EQ( x.bitwidth, 126 );
ASSERT_EQ( x.offset< 0 >(), 0 );
ASSERT_EQ( x.offset< 1 >(), 63 );
get< 0 >( x ).set( (1ull << 62) + 7 );
ASSERT_EQ( get< 0 >( x ), (1ull << 62) + 7 );
ASSERT_EQ( get< 1 >( x ), 0u );
get< 0 >( x ).set( 0 );
get< 1 >( x ).set( (1ull << 62) + 7 );
ASSERT_EQ( get< 0 >( x ), 0u );
ASSERT_EQ( get< 1 >( x ), (1ull << 62) + 7 );
get< 0 >( x ).set( (1ull << 62) + 11 );
ASSERT_EQ( get< 0 >( x ), (1ull << 62) + 11 );
ASSERT_EQ( get< 1 >( x ), (1ull << 62) + 7 );
}
TEST(structure) {
bitlevel::BitTuple< BitField< std::pair< uint64_t, uint64_t >, 120 >, BitField< uint64_t, 63 > > x;
auto v = std::make_pair( (uint64_t( 1 ) << 62) + 7, uint64_t( 33 ) );
ASSERT_EQ( x.bitwidth, 183 );
ASSERT_EQ( x.offset< 0 >(), 0 );
ASSERT_EQ( x.offset< 1 >(), 120 );
get< 1 >( x ).set( 333 );
ASSERT_EQ( get< 1 >( x ), 333u );
get< 0 >( x ).set( v );
ASSERT_EQ( get< 1 >( x ), 333u );
ASSERT( get< 0 >( x ).get() == v );
}
TEST(nested) {
typedef bitlevel::BitTuple< T10_10, T10_10, BitField< unsigned, 3 > > X;
X x;
ASSERT_EQ( X::bitwidth, 43 );
ASSERT_EQ( X::offset< 0 >(), 0 );
ASSERT_EQ( X::offset< 1 >(), 20 );
ASSERT_EQ( X::offset< 2 >(), 40 );
auto a = get< 0 >( x );
auto b = get< 1 >( x );
get< 0 >( a ).set( 5 );
get< 1 >( a ).set( 7 );
get< 0 >( b ).set( 13 );
get< 1 >( b ).set( 533 );
get< 2 >( x ).set( 15 ); /* we expect to lose the MSB */
ASSERT_EQ( get< 0 >( a ), 5u );
ASSERT_EQ( get< 1 >( a ), 7u );
ASSERT_EQ( get< 0 >( b ), 13u );
ASSERT_EQ( get< 1 >( b ), 533u );
ASSERT_EQ( get< 2 >( x ), 7u );
}
TEST(locked) {
bitlevel::BitTuple<
BitField< int, 15 >,
BitLock,
BitField< int, 16 >
> bt;
get< 1 >( bt ).lock();
ASSERT_EQ( get< 0 >( bt ), 0 );
ASSERT_EQ( get< 2 >( bt ), 0 );
ASSERT( get< 1 >( bt ).locked() );
ASSERT( get< 0 >( bt ).word() );
get< 0 >( bt ) = 1;
get< 2 >( bt ) = 1;
ASSERT_EQ( get< 0 >( bt ), 1 );
ASSERT_EQ( get< 2 >( bt ), 1 );
ASSERT_EQ( bitcount( get< 0 >( bt ).word() ), 3 );
get< 1 >( bt ).unlock();
ASSERT_EQ( get< 0 >( bt ), 1 );
ASSERT_EQ( get< 2 >( bt ), 1 );
ASSERT( !get< 1 >( bt ).locked() );
ASSERT_EQ( bitcount( get< 0 >( bt ).word() ), 2 );
get< 0 >( bt ) = 0;
get< 2 >( bt ) = 0;
ASSERT( !get< 0 >( bt ).word() );
}
TEST(assign) {
bitlevel::BitTuple<
BitField< bool, 1 >,
BitField< int, 6 >,
BitField< bool, 1 >
> tuple;
get< 0 >( tuple ) = true;
get< 2 >( tuple ) = get< 0 >( tuple );
ASSERT( get< 2 >( tuple ).get() );
}
struct OperatorTester {
int value;
int expected;
OperatorTester &operator++() { UNREACHABLE( "fell through" ); return *this; }
OperatorTester operator++( int ) { UNREACHABLE( "fell through" ); return *this; }
OperatorTester &operator--() { UNREACHABLE( "fell through" ); return *this; }
OperatorTester &operator--( int ) { UNREACHABLE( "fell through" ); return *this; }
OperatorTester &operator+=( int ) { UNREACHABLE( "fell through" ); return *this; }
OperatorTester &operator-=( int ) { UNREACHABLE( "fell through" ); return *this; }
OperatorTester &operator*=( int ) { UNREACHABLE( "fell through" ); return *this; }
OperatorTester &operator/=( int ) { UNREACHABLE( "fell through" ); return *this; }
OperatorTester &operator%=( int ) { UNREACHABLE( "fell through" ); return *this; }
void test() { ASSERT_EQ( value, expected ); }
void set( int v, int e ) { value = v; expected = e; }
};
struct TPrI : OperatorTester {
TPrI &operator++() { ++value; return *this; }
};
struct TPoI : OperatorTester {
TPoI operator++( int ) { auto r = *this; value++; return r; }
};
struct TPrD : OperatorTester {
TPrD &operator--() { --value; return *this; }
};
struct TPoD : OperatorTester {
TPoD operator--( int ) { auto r = *this; value--; return r; }
};
struct TPlO : OperatorTester {
TPlO &operator+=( int v ) { value += v; return *this; }
};
struct TMO : OperatorTester {
TMO &operator-=( int v ) { value -= v; return *this; }
};
struct TPoO : OperatorTester {
TPoO &operator*=( int v ) { value *= v; return *this; }
};
struct TSO : OperatorTester {
TSO &operator/=( int v ) { value /= v; return *this; }
};
struct TPrO : OperatorTester {
TPrO &operator%=( int v ) { value %= v; return *this; }
};
template< int N, typename BT, typename L >
void checkOperator( BT &bt, int v, int e, L l ) {
auto t = get< N >( bt ).get();
t.set( v, e );
get< N >( bt ) = t;
l( get< N >( bt ) );
get< N >( bt ).get().test();
}
#define CHECK( N, bt, v, e, test ) checkOperator< N >( bt, v, e, []( decltype( get< N >( bt ) ) item ) { test; } )
TEST(operators) {
bitlevel::BitTuple<
BitField< bool, 4 >,
BitField< TPrI >,// ++v
BitField< TPoI >,// v++
BitField< TPrD >,// --v
BitField< TPoD >,// v--
BitField< TPlO >,// v+=
BitField< TMO >,// v-=
BitField< TPoO >,// v*=
BitField< TSO >,// v/=
BitField< TPrO >,// v%=
BitField< bool, 4 >
> bt;
CHECK( 1, bt, 0, 1, ++item );
CHECK( 2, bt, 0, 1, item++ );
CHECK( 3, bt, 0, -1, --item );
CHECK( 4, bt, 0, -1, item-- );
CHECK( 5, bt, 0, 5, item += 5 );
CHECK( 6, bt, 0, -5, item -= 5 );
CHECK( 7, bt, 2, 14, item *= 7 );
CHECK( 8, bt, 42, 6, item /= 7 );
CHECK( 9, bt, 42, 9, item %= 11 );
}
#undef CHECK
TEST(ones)
{
ASSERT_EQ( bitlevel::ones< uint32_t >( 0 ), 0 );
ASSERT_EQ( bitlevel::ones< uint32_t >( 1 ), 1 );
ASSERT_EQ( bitlevel::ones< uint32_t >( 2 ), 3 );
ASSERT_EQ( bitlevel::ones< uint32_t >( 31 ), std::numeric_limits< uint32_t >::max() >> 1 );
ASSERT_EQ( bitlevel::ones< uint32_t >( 32 ), std::numeric_limits< uint32_t >::max() );
ASSERT_EQ( bitlevel::ones< uint32_t >( 33 ), std::numeric_limits< uint32_t >::max() );
}
};
struct BitVecTest
{
TEST(bvpair_shiftl)
{
using bvp32 = bitlevel::bvpair< uint16_t, uint16_t >;
union {
bvp32 bvp;
uint32_t val;
};
bvp = bvp32( 23, 13 );
uint32_t check = ( 13u << 16 ) | 23u;
ASSERT_EQ( val, check );
bvp = bvp << 7;
check = check << 7;
ASSERT_EQ( val, check );
bvp = bvp << 18;
check = check << 18;
ASSERT_EQ( val, check );
bvp = bvp32( 0xFF, 0xFF );
check = (0xFF << 16) | 0xFF;
bvp = bvp << 20;
check = check << 20;
ASSERT_EQ( val, check );
}
TEST(bvpair_shiftr)
{
using bvp32 = bitlevel::bvpair< uint16_t, uint16_t >;
union {
bvp32 bvp;
uint32_t val;
};
bvp = bvp32( 23, 13 );
uint32_t check = ( 13u << 16 ) | 23u;
ASSERT_EQ( val, check );
bvp = bvp >> 7;
check = check >> 7;
ASSERT_EQ( val, check );
bvp = bvp >> 18;
check = check >> 18;
ASSERT_EQ( val, check );
bvp = bvp32( 0xFF, 0xFF );
check = (0xFF << 16) | 0xFF;
bvp = bvp >> 20;
check = check >> 20;
ASSERT_EQ( val, check );
}
};
}
}
#endif
// vim: syntax=cpp tabstop=4 shiftwidth=4 expandtab