spot/spot/twa/twagraph.cc
Alexandre Duret-Lutz 7a56ae958e defrag_states: do not take the argument by rvalue ref
Reported by Michaël Cadilhac.

* spot/graph/graph.hh, spot/twa/twagraph.hh: Take the renaming vector
by reference, not rvalue reference.  Document that
twa_graph::defrag_states may modify the vector.  Keep a deprecated
version of the old prototype just in case.  While there, also hide
this method from Swig.
* spot/twa/twagraph.cc: Simplify all calls to defrag_states().
* NEWS: Mention the change.
2021-02-19 16:01:07 +01:00

1096 lines
34 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) 2014-2021 Laboratoire de Recherche et Développement
// de l'Epita.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "config.h"
#include <spot/twa/twagraph.hh>
#include <spot/tl/print.hh>
#include <spot/misc/bddlt.hh>
#include <spot/twa/bddprint.hh>
#include <spot/misc/escape.hh>
#include <vector>
#include <deque>
using namespace std::string_literals;
namespace spot
{
void
twa_graph::apply_permutation(std::vector<unsigned> permut)
{
for (auto& e : edges())
{
e.acc.apply_permutation(permut);
}
}
std::string twa_graph::format_state(unsigned n) const
{
if (is_univ_dest(n))
{
std::stringstream ss;
bool notfirst = false;
for (unsigned d: univ_dests(n))
{
if (notfirst)
ss << '&';
notfirst = true;
ss << format_state(d);
}
return ss.str();
}
auto named = get_named_prop<std::vector<std::string>>("state-names");
if (named && n < named->size())
return (*named)[n];
auto prod = get_named_prop
<std::vector<std::pair<unsigned, unsigned>>>("product-states");
if (prod && n < prod->size())
{
auto& p = (*prod)[n];
std::stringstream ss;
ss << p.first << ',' << p.second;
return ss.str();
}
return std::to_string(n);
}
void
twa_graph::release_formula_namer(namer<formula>* namer,
bool keep_names)
{
if (keep_names)
{
auto v = new std::vector<std::string>(num_states());
auto& n = namer->names();
unsigned ns = n.size();
assert(n.size() <= v->size());
for (unsigned i = 0; i < ns; ++i)
{
auto f = n[i];
if (f)
(*v)[i] = str_psl(f);
}
set_named_prop("state-names", v);
}
delete namer;
}
/// \brief Merge universal destinations
///
/// If several states have the same universal destination, merge
/// them all. Also remove unused destination, and any redundant
/// state in each destination.
void twa_graph::merge_univ_dests()
{
auto& g = get_graph();
auto& dests = g.dests_vector();
auto& edges = g.edge_vector();
std::vector<unsigned> old_dests;
std::swap(dests, old_dests);
std::vector<unsigned> seen(old_dests.size(), -1U);
internal::univ_dest_mapper<twa_graph::graph_t> uniq(g);
auto fixup = [&](unsigned& in_dst)
{
unsigned dst = in_dst;
if ((int) dst >= 0) // not a universal edge
return;
dst = ~dst;
unsigned& nd = seen[dst];
if (nd == -1U)
nd = uniq.new_univ_dests(old_dests.data() + dst + 1,
old_dests.data() + dst + 1 + old_dests[dst]);
in_dst = nd;
};
unsigned tend = edges.size();
for (unsigned t = 1; t < tend; t++)
{
if (g.is_dead_edge(t))
continue;
fixup(edges[t].dst);
}
fixup(init_number_);
}
void twa_graph::merge_edges()
{
set_named_prop("highlight-edges", nullptr);
g_.remove_dead_edges_();
if (!is_existential())
merge_univ_dests();
auto& trans = this->edge_vector();
unsigned orig_size = trans.size();
unsigned tend = orig_size;
// When two transitions have the same (src,colors,dst),
// we can marge their conds.
auto merge_conds_and_remove_false = [&]()
{
typedef graph_t::edge_storage_t tr_t;
g_.sort_edges_([](const tr_t& lhs, const tr_t& rhs)
{
if (lhs.src < rhs.src)
return true;
if (lhs.src > rhs.src)
return false;
if (lhs.dst < rhs.dst)
return true;
if (lhs.dst > rhs.dst)
return false;
return lhs.acc < rhs.acc;
// Do not sort on conditions, we'll merge
// them.
});
unsigned out = 0;
unsigned in = 1;
// Skip any leading false edge.
while (in < tend && trans[in].cond == bddfalse)
++in;
if (in < tend)
{
++out;
if (out != in)
trans[out] = trans[in];
for (++in; in < tend; ++in)
{
if (trans[in].cond == bddfalse) // Unusable edge
continue;
// Merge edges with the same source, destination, and
// colors. (We test the source last, because this is the
// most likely test to be true as edges are ordered by
// sources and then destinations.)
if (trans[out].dst == trans[in].dst
&& trans[out].acc == trans[in].acc
&& trans[out].src == trans[in].src)
{
trans[out].cond |= trans[in].cond;
}
else
{
++out;
if (in != out)
trans[out] = trans[in];
}
}
}
if (++out != tend)
{
tend = out;
trans.resize(tend);
}
};
// When two transitions have the same (src,cond,dst), we can marge
// their colors. This only works for Fin-less acceptance.
//
// FIXME: We could should also merge edges when using
// fin_acceptance, but the rule for Fin sets are different than
// those for Inf sets, (and we need to be careful if a set is used
// both as Inf and Fin)
auto merge_colors = [&]()
{
if (tend < 2 || acc().uses_fin_acceptance())
return;
typedef graph_t::edge_storage_t tr_t;
g_.sort_edges_([](const tr_t& lhs, const tr_t& rhs)
{
if (lhs.src < rhs.src)
return true;
if (lhs.src > rhs.src)
return false;
if (lhs.dst < rhs.dst)
return true;
if (lhs.dst > rhs.dst)
return false;
bdd_less_than_stable lt;
return lt(lhs.cond, rhs.cond);
// Do not sort on acceptance, we'll merge them.
});
// Start on the second position and try to merge it into the
// first one
unsigned out = 1;
unsigned in = 2;
for (; in < tend; ++in)
{
// Merge edges with the same source, destination,
// and conditions. (We test the source last, for the
// same reason as above.)
if (trans[out].dst == trans[in].dst
&& trans[out].cond.id() == trans[in].cond.id()
&& trans[out].src == trans[in].src)
{
trans[out].acc |= trans[in].acc;
}
else
{
++out;
if (in != out)
trans[out] = trans[in];
}
}
if (++out != tend)
{
tend = out;
trans.resize(tend);
}
};
// These next two lines used to be done in the opposite order in
// 2.9.x and before.
//
// However merging colors first is more likely to
// make parallel non-deterministic transition disappear.
//
// Consider:
// (1)--a-{1}--->(2)
// (1)--a-{2}--->(2)
// (1)--!a-{1}-->(2)
// If colors are merged first, the first two transitions become one,
// and the result is more deterministic:
// (1)--a-{1,2}->(2)
// (1)--!a-{1}-->(2)
// If conditions were merged first, we would get the following
// non-deterministic transitions instead:
// (1)--1-{1}--->(2)
// (1)--a-{2}--->(2)
merge_colors();
merge_conds_and_remove_false();
// Merging some edges may turn a non-deterministic automaton
// into a deterministic one.
if (prop_universal().is_false() && tend != orig_size)
prop_universal(trival::maybe());
g_.chain_edges_();
}
void twa_graph::merge_states()
{
if (!is_existential())
throw std::runtime_error(
"twa_graph::merge_states() does not work on alternating automata");
const unsigned nb_states = num_states();
std::vector<unsigned> remap(nb_states, -1U);
for (unsigned i = 0; i != nb_states; ++i)
{
auto out1 = out(i);
for (unsigned j = 0; j != i; ++j)
{
auto out2 = out(j);
if (std::equal(out1.begin(), out1.end(), out2.begin(), out2.end(),
[](const edge_storage_t& a,
const edge_storage_t& b)
{ return a.dst == b.dst && a.data() == b.data(); }))
{
remap[i] = j;
break;
}
}
}
for (auto& e: edges())
if (remap[e.dst] != -1U)
e.dst = remap[e.dst];
if (remap[get_init_state_number()] != -1U)
set_init_state(remap[get_init_state_number()]);
unsigned st = 0;
for (auto& s: remap)
if (s == -1U)
s = st++;
else
s = -1U;
defrag_states(remap, st);
}
void twa_graph::purge_unreachable_states(shift_action* f, void* action_data)
{
unsigned num_states = g_.num_states();
// The TODO vector serves two purposes:
// - it is a stack of state to process,
// - it is a set of processed states.
// The lower 31 bits of each entry is a state on the stack. (The
// next usable entry on the stack is indicated by todo_pos.) The
// 32th bit (i.e., the sign bit) of todo[x] indicates whether
// states number x has been seen.
std::vector<unsigned> todo(num_states, 0);
const unsigned seen = 1U << (sizeof(unsigned)*8-1);
const unsigned mask = seen - 1;
unsigned todo_pos = 0;
for (unsigned i: univ_dests(get_init_state_number()))
{
todo[i] |= seen;
todo[todo_pos++] |= i;
}
do
{
unsigned cur = todo[--todo_pos] & mask;
todo[todo_pos] ^= cur; // Zero the state
for (auto& t: g_.out(cur))
for (unsigned dst: univ_dests(t.dst))
if (!(todo[dst] & seen))
{
todo[dst] |= seen;
todo[todo_pos++] |= dst;
}
}
while (todo_pos > 0);
// Now renumber each used state.
unsigned current = 0;
for (auto& v: todo)
if (!(v & seen))
v = -1U;
else
v = current++;
if (current == todo.size())
return; // No unreachable state.
// Removing some non-deterministic dead state could make the
// automaton universal.
if (prop_universal().is_false())
prop_universal(trival::maybe());
if (prop_complete().is_false())
prop_complete(trival::maybe());
if (f)
(*f)(todo, action_data);
defrag_states(todo, current);
}
void twa_graph::purge_dead_states()
{
unsigned num_states = g_.num_states();
std::vector<unsigned> useful(num_states, 0);
// Make a DFS to compute a topological order.
std::vector<unsigned> order;
order.reserve(num_states);
bool purge_unreachable_needed = false;
if (is_existential())
{
std::vector<std::pair<unsigned, unsigned>> todo; // state, edge
useful[get_init_state_number()] = 1;
todo.emplace_back(init_number_, g_.state_storage(init_number_).succ);
do
{
unsigned src;
unsigned tid;
std::tie(src, tid) = todo.back();
if (tid == 0U)
{
todo.pop_back();
order.emplace_back(src);
continue;
}
auto& t = g_.edge_storage(tid);
todo.back().second = t.next_succ;
unsigned dst = t.dst;
if (useful[dst] != 1)
{
todo.emplace_back(dst, g_.state_storage(dst).succ);
useful[dst] = 1;
}
}
while (!todo.empty());
}
else
{
// state, edge, begin, end
std::vector<std::tuple<unsigned, unsigned,
const unsigned*, const unsigned*>> todo;
auto& dests = g_.dests_vector();
auto beginend = [&](const unsigned& dst,
const unsigned*& begin, const unsigned*& end)
{
if ((int)dst < 0)
{
begin = dests.data() + ~dst + 1;
end = begin + dests[~dst];
}
else
{
begin = &dst;
end = begin + 1;
}
};
{
const unsigned* begin;
const unsigned* end;
beginend(init_number_, begin, end);
todo.emplace_back(init_number_, 0U, begin, end);
}
for (;;)
{
unsigned& tid = std::get<1>(todo.back());
const unsigned*& begin = std::get<2>(todo.back());
const unsigned*& end = std::get<3>(todo.back());
if (tid == 0U && begin == end)
{
unsigned src = std::get<0>(todo.back());
todo.pop_back();
// Last transition from a state?
if ((int)src >= 0 && (todo.empty()
|| src != std::get<0>(todo.back())))
order.emplace_back(src);
if (todo.empty())
break;
else
continue;
}
unsigned dst = *begin++;
if (begin == end)
{
if (tid != 0)
tid = g_.edge_storage(tid).next_succ;
if (tid != 0)
beginend(g_.edge_storage(tid).dst, begin, end);
}
if (useful[dst] != 1)
{
auto& ss = g_.state_storage(dst);
unsigned succ = ss.succ;
if (succ == 0U)
continue;
useful[dst] = 1;
const unsigned* begin;
const unsigned* end;
beginend(g_.edge_storage(succ).dst, begin, end);
todo.emplace_back(dst, succ, begin, end);
}
}
}
// At this point, all reachable states with successors are marked
// as useful.
for (;;)
{
bool univ_edge_erased = false;
// Process states in topological order to mark those without
// successors as useless.
for (auto s: order)
{
auto t = g_.out_iteraser(s);
bool useless = true;
while (t)
{
// An edge is useful if all its
// destinations are useful.
bool usefuledge = true;
for (unsigned d: univ_dests(t->dst))
if (!useful[d])
{
usefuledge = false;
break;
}
// Erase any useless edge
if (!usefuledge)
{
if (is_univ_dest(t->dst))
univ_edge_erased = true;
t.erase();
continue;
}
// if we have a edge to a useful state, then the
// state is useful.
useless = false;
++t;
}
if (useless)
useful[s] = 0;
}
// If we have erased any universal destination, it is possible
// that we have have created some new dead states, so we
// actually need to redo the whole thing again until there is
// no more universal edge to remove. Also we might have
// created some unreachable states, so we will simply call
// purge_unreachable_states() later to clean this.
if (!univ_edge_erased)
break;
else
purge_unreachable_needed = true;
}
// Is the initial state actually useful? If not, make this an
// empty automaton by resetting the graph.
bool usefulinit = true;
for (unsigned d: univ_dests(init_number_))
if (!useful[d])
{
usefulinit = false;
break;
}
if (!usefulinit)
{
g_ = graph_t();
init_number_ = new_state();
prop_universal(true);
prop_complete(false);
prop_stutter_invariant(true);
prop_weak(true);
return;
}
// Renumber each used state.
unsigned current = 0;
for (unsigned s = 0; s < num_states; ++s)
if (useful[s])
useful[s] = current++;
else
useful[s] = -1U;
if (current == num_states)
return; // No useless state.
// Removing some non-deterministic dead state could make the
// automaton universal. Likewise for non-complete.
if (prop_universal().is_false())
prop_universal(trival::maybe());
if (prop_complete().is_false())
prop_complete(trival::maybe());
defrag_states(useful, current);
if (purge_unreachable_needed)
purge_unreachable_states();
}
void twa_graph::defrag_states(std::vector<unsigned>& newst,
unsigned used_states)
{
if (!is_existential())
{
// Running defrag_states() on alternating automata is tricky,
// because we want to
// #1 rename the regular states
// #2 rename the states in universal destinations
// #3 get rid of the unused universal destinations
// #4 merge identical universal destinations
//
// graph::degrag_states() actually does only #1. It could
// do #2, but that would prevent us from doing #3 and #4. It
// cannot do #3 and #4 because the graph object does not know
// what an initial state is, and our initial state might be
// universal.
//
// As a consequence this code preforms #2, #3, and #4 before
// calling graph::degrag_states() to finish with #1. We clear
// the "dests vector" of the current automaton, recreate all
// the new destination groups using a univ_dest_mapper to
// simplify and unify them, and extend newst with some new
// entries that will point the those new universal destination
// so that graph::defrag_states() does not have to deal with
// universal destination in any way.
auto& g = get_graph();
auto& dests = g.dests_vector();
// Clear the destination vector, saving the old one.
std::vector<unsigned> old_dests;
std::swap(dests, old_dests);
// dests will be updated as a side effect of declaring new
// destination groups to uniq.
internal::univ_dest_mapper<twa_graph::graph_t> uniq(g);
// The newst entry associated to each of the old destination
// group.
std::vector<unsigned> seen(old_dests.size(), -1U);
// Rename a state if it denotes a universal destination. This
// function has to be applied to the destination of each edge,
// as well as to the initial state. The need to work on the
// initial state is the reason it cannot be implemented in
// graph::defrag_states().
auto fixup = [&](unsigned& in_dst)
{
unsigned dst = in_dst;
if ((int) dst >= 0) // not a universal edge
return;
dst = ~dst;
unsigned& nd = seen[dst];
if (nd == -1U) // An unprocessed destination group
{
// store all renamed destination states in tmp
std::vector<unsigned> tmp;
auto begin = old_dests.data() + dst + 1;
auto end = begin + old_dests[dst];
while (begin != end)
{
unsigned n = newst[*begin++];
if (n == -1U)
continue;
tmp.emplace_back(n);
}
if (tmp.empty())
{
// All destinations of this group were marked for
// removal. Mark this universal transition for
// removal as well. Is this really what we expect?
nd = -1U;
}
else
{
// register this new destination group, add it to
// newst, and use the index in newst to relabel
// the state so that graph::degrag_states() will
// eventually update it to the correct value.
nd = newst.size();
newst.emplace_back(uniq.new_univ_dests(tmp.begin(),
tmp.end()));
}
}
in_dst = nd;
};
fixup(init_number_);
for (auto& e: edges())
fixup(e.dst);
}
if (auto* names = get_named_prop<std::vector<std::string>>("state-names"))
{
unsigned size = names->size();
for (unsigned s = 0; s < size; ++s)
{
unsigned dst = newst[s];
if (dst == s || dst == -1U)
continue;
assert(dst < s);
(*names)[dst] = std::move((*names)[s]);
}
names->resize(used_states);
}
if (auto hs = get_named_prop<std::map<unsigned, unsigned>>
("highlight-states"))
{
std::map<unsigned, unsigned> hs2;
for (auto p: *hs)
{
unsigned dst = newst[p.first];
if (dst != -1U)
hs2[dst] = p.second;
}
std::swap(*hs, hs2);
}
if (auto os = get_named_prop<std::vector<unsigned>>("original-states"))
{
unsigned size = os->size();
for (unsigned s = 0; s < size; ++s)
{
unsigned dst = newst[s];
if (dst == s || dst == -1U)
continue;
assert(dst < s);
(*os)[dst] = (*os)[s];
}
os->resize(used_states);
}
if (auto dl = get_named_prop<std::vector<unsigned>>("degen-levels"))
{
unsigned size = dl->size();
for (unsigned s = 0; s < size; ++s)
{
unsigned dst = newst[s];
if (dst == s || dst == -1U)
continue;
assert(dst < s);
(*dl)[dst] = (*dl)[s];
}
dl->resize(used_states);
}
if (auto ss = get_named_prop<std::vector<unsigned>>("simulated-states"))
{
for (auto& s : *ss)
{
if (s >= newst.size())
s = -1U;
else
s = newst[s];
}
}
init_number_ = newst[init_number_];
g_.defrag_states(newst, used_states);
}
void twa_graph::remove_unused_ap()
{
if (ap().empty())
return;
std::set<bdd> conds;
bdd all = ap_vars();
for (auto& e: g_.edges())
{
all = bdd_exist(all, bdd_support(e.cond));
if (all == bddtrue) // All APs are used.
return;
}
auto d = get_dict();
while (all != bddtrue)
{
unregister_ap(bdd_var(all));
all = bdd_high(all);
}
}
void twa_graph::copy_state_names_from(const const_twa_graph_ptr& other)
{
if (other == shared_from_this())
return;
auto orig = get_named_prop<std::vector<unsigned>>("original-states");
auto lvl = get_named_prop<std::vector<unsigned>>("degen-levels");
auto sims = get_named_prop<std::vector<unsigned>>("simulated-states");
assert(!lvl || orig);
if (orig && sims)
throw std::runtime_error("copy_state_names_from(): original-states and "
"simulated-states are both set");
if (orig && orig->size() != num_states())
throw std::runtime_error("copy_state_names_from(): unexpected size "
"for original-states");
if (lvl && lvl->size() != num_states())
throw std::runtime_error("copy_state_names_from(): unexpected size "
"for degen-levels");
if (sims && sims->size() != other->num_states())
throw std::runtime_error("copy_state_names_from(): unexpected size "
"for simulated-states");
auto names = std::unique_ptr<std::vector<std::string>>
(new std::vector<std::string>);
unsigned ns = num_states();
unsigned ons = other->num_states();
for (unsigned s = 0; s < ns; ++s)
{
std::string newname = "";
if (sims)
{
for (unsigned t = 0; t < ons; ++t)
{
if (s == (*sims)[t])
newname += other->format_state(t) + ',';
}
assert(!newname.empty());
newname.pop_back(); // remove trailing comma
newname = '[' + newname + ']';
}
else
{
unsigned other_s = orig ? (*orig)[s] : s;
if (other_s >= ons)
throw std::runtime_error("copy_state_names_from(): state does not"
" exist in source automaton");
newname = other->format_state(other_s);
if (lvl)
newname += '#' + std::to_string((*lvl)[s]);
}
names->emplace_back(newname);
}
set_named_prop("state-names", names.release());
}
void twa_graph::dump_storage_as_dot(std::ostream& out,
const char* opt) const
{
bool want_vectors = false;
bool want_data = false;
bool want_properties = false;
if (!opt || !*opt)
{
want_vectors = want_data = want_properties = true;
}
else
{
while (*opt)
switch (*opt++)
{
case 'v':
want_vectors = true;
break;
case 'd':
want_data = true;
break;
case 'p':
want_properties = true;
break;
default:
throw std::runtime_error
("dump_storage_as_dow(): unsupported option '"s + opt[-1] +"'");
}
}
const graph_t& g = get_graph();
g.dump_storage_as_dot(out, graph_t::DSI_GraphHeader);
out << "rankdir=BT\n";
if (want_vectors)
{
out << "{rank=same;\n";
g.dump_storage_as_dot(out, graph_t::DSI_States |
graph_t::DSI_EdgesHeader);
auto edges = g.edge_vector();
unsigned eend = edges.size();
out << "<tr><td>cond</td>\n";
for (unsigned e = 1; e < eend; ++e)
{
out << "<td>";
std::string f = bdd_format_formula(get_dict(), edges[e].cond);
escape_html(out, f);
out << "</td>\n";
}
out << "</tr>\n<tr><td>acc</td>\n";
for (unsigned e = 1; e < eend; ++e)
out << "<td>" << edges[e].acc << "</td>\n";
out << "</tr>\n";
g.dump_storage_as_dot(out, graph_t::DSI_EdgesBody
| graph_t::DSI_EdgesFooter
| graph_t::DSI_Dests);
out << "}\n";
}
if (want_data || want_properties)
{
out << "{rank=same;\n";
if (want_data)
{
out << ("meta [label=<\n"
"<table border='0' cellborder='0' cellspacing='0'>\n");
unsigned d = get_init_state_number();
out << ("<tr><td align='left'>init_state:</td>"
"<td align='left' bgcolor='");
if ((int)d < 0)
out << "pink'>~" << ~d;
else
out << "yellow'>" << d;
out << ("</td></tr><tr><td align='left'>num_sets:</td>"
"<td align='left' >")
<< num_sets()
<< ("</td></tr><tr><td align='left'>acceptance:</td>"
"<td align='left' >");
get_acceptance().to_html(out);
out << ("</td></tr><tr><td align='left'>ap_vars:</td>"
"<td align='left'>");
escape_html(out, bdd_format_sat(get_dict(), ap_vars()));
out << "</td></tr></table>>]\n";
}
if (want_properties)
{
out << ("props [label=<\n"
"<table border='0' cellborder='0' cellspacing='0'>\n");
#define print_prop(name) \
out << ("<tr><td align='left'>" #name ":</td>" \
"<td align='left' >") << name() << "</td></tr>\n";
print_prop(prop_state_acc);
print_prop(prop_inherently_weak);
print_prop(prop_terminal);
print_prop(prop_weak);
print_prop(prop_very_weak);
print_prop(prop_complete);
print_prop(prop_universal);
print_prop(prop_unambiguous);
print_prop(prop_semi_deterministic);
print_prop(prop_stutter_invariant);
#undef print_prop
out << "</table>>]\n";
if (!named_prop_.empty())
{
// GraphiViz 2.46.0 has a bug where plain newlines in
// quoted strings are ignored. See
// https://gitlab.com/graphviz/graphviz/-/issues/1931
// A workaround is to use emit \n instead of the
// actual new line.
out << "namedprops [label=\"named properties:\\n";
for (auto p: named_prop_)
escape_html(out, p.first) << "\\n";
out << "\"]\n";
}
}
out << "}\n";
}
if (want_data && want_vectors)
out << "meta -> states [style=invis]\n";
if (want_properties && want_vectors)
{
out << "props -> edges [style=invis]\n";
if (!named_prop_.empty())
{
out << "namedprops -> edges [style=invis]\n";
if (!is_existential())
out << "namedprops -> dests [style=invis]\n";
}
}
g.dump_storage_as_dot(out, graph_t::DSI_GraphFooter);
}
namespace
{
twa_graph_ptr
copy(const const_twa_ptr& aut, twa::prop_set p,
bool preserve_names, unsigned max_states)
{
twa_graph_ptr out = make_twa_graph(aut->get_dict());
out->copy_acceptance_of(aut);
out->copy_ap_of(aut);
out->prop_copy(aut, p);
std::vector<std::string>* names = nullptr;
std::set<unsigned>* incomplete = nullptr;
// Old highlighting maps
typedef std::map<unsigned, unsigned> hmap;
hmap* ohstates = nullptr;
hmap* ohedges = nullptr;
const_twa_graph_ptr aut_g = nullptr;
// New highlighting maps
hmap* nhstates = nullptr;
hmap* nhedges = nullptr;
if (preserve_names)
{
names = new std::vector<std::string>;
out->set_named_prop("state-names", names);
// If the input is a twa_graph and we were asked to preserve
// names, also preserve highlights.
aut_g = std::dynamic_pointer_cast<const twa_graph>(aut);
if (aut_g)
{
ohstates = aut->get_named_prop<hmap>("highlight-states");
if (ohstates)
nhstates = out->get_or_set_named_prop<hmap>("highlight-states");
ohedges = aut->get_named_prop<hmap>("highlight-edges");
if (ohedges)
nhedges = out->get_or_set_named_prop<hmap>("highlight-edges");
}
}
// States already seen.
state_map<unsigned> seen;
// States to process
std::deque<state_map<unsigned>::value_type> todo;
auto new_state = [&](const state* s) -> unsigned
{
auto p = seen.emplace(s, 0);
if (p.second)
{
p.first->second = out->new_state();
todo.emplace_back(*p.first);
if (names)
names->emplace_back(aut->format_state(s));
if (ohstates)
{
auto q = ohstates->find(aut_g->state_number(s));
if (q != ohstates->end())
nhstates->emplace(p.first->second, q->second);
}
}
else
{
s->destroy();
}
return p.first->second;
};
out->set_init_state(new_state(aut->get_init_state()));
while (!todo.empty())
{
const state* src1;
unsigned src2;
std::tie(src1, src2) = todo.front();
todo.pop_front();
for (auto* t: aut->succ(src1))
{
unsigned edgenum = 0;
if (SPOT_UNLIKELY(max_states < out->num_states()))
{
// If we have reached the max number of state, never try
// to create a new one.
auto i = seen.find(t->dst());
if (i == seen.end())
{
if (!incomplete)
incomplete = new std::set<unsigned>;
incomplete->insert(src2);
continue;
}
edgenum = out->new_edge(src2, i->second, t->cond(), t->acc());
}
else
{
edgenum = out->new_edge(src2, new_state(t->dst()),
t->cond(), t->acc());
}
if (ohedges)
{
auto q = ohedges->find(aut_g->edge_number(t));
if (q != ohedges->end())
nhedges->emplace(edgenum, q->second);
}
}
}
auto s = seen.begin();
while (s != seen.end())
{
// Advance the iterator before deleting the "key" pointer.
const state* ptr = s->first;
++s;
ptr->destroy();
}
if (incomplete)
out->set_named_prop("incomplete-states", incomplete);
return out;
}
}
twa_graph_ptr make_twa_graph(const const_twa_ptr& aut, twa::prop_set p,
bool preserve_names, unsigned max_states)
{
if (max_states == -1U && !preserve_names)
if (auto a = std::dynamic_pointer_cast<const twa_graph>(aut))
return SPOT_make_shared_enabled__(twa_graph, a, p);
return copy(aut, p, preserve_names, max_states);
}
}