spot/src/ltlvisit/syntimpl.cc
Alexandre Duret-Lutz 7d27fd3796 * iface/gspn/gspn.cc, src/ltlvisit/basicreduce.cc,
src/ltlvisit/destroy.cc, src/ltlvisit/dotty.cc,
src/ltlvisit/dump.cc, src/ltlvisit/length.cc,
src/ltlvisit/nenoform.cc, src/ltlvisit/reduce.cc,
src/ltlvisit/syntimpl.cc, src/ltlvisit/tostring.cc,
src/tgba/formula2bdd.cc, src/tgba/tgbabddconcreteproduct.cc,
src/tgba/tgbatba.cc, src/tgbaalgos/dotty.cc,
src/tgbaalgos/dupexp.cc, src/tgbaalgos/lbtt.cc,
src/tgbaalgos/ltl2tgba_lacim.cc, src/tgbaalgos/neverclaim.cc,
src/tgbaalgos/save.cc, src/tgbaalgos/stats.cc,
src/tgbaalgos/gtec/nsheap.cc, src/tgbaalgos/gtec/nsheap.hh:
Declare private classes and helper function in anonymous namespaces.
* HACKING, src/sanity/style.test: Document and check this.
Also check for trailing { after namespace or class.
* src/ltlast/predecl.hh, src/ltlast/visitor.hh,
src/tgba/tgbareduc.hh: Fix trailing {.
2004-10-18 13:56:31 +00:00

592 lines
12 KiB
C++

// Copyright (C) 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#include "syntimpl.hh"
#include "ltlast/allnodes.hh"
#include <cassert>
#include "lunabbrev.hh"
#include "simpfg.hh"
#include "nenoform.hh"
#include "ltlvisit/destroy.hh"
namespace spot
{
namespace ltl
{
namespace
{
class eventual_universal_visitor: public const_visitor
{
public:
eventual_universal_visitor()
: eventual(false), universal(false)
{
}
virtual
~eventual_universal_visitor()
{
}
bool
is_eventual() const
{
return eventual;
}
bool
is_universal() const
{
return universal;
}
void
visit(const atomic_prop*)
{
}
void
visit(const constant*)
{
}
void
visit(const unop* uo)
{
const formula* f1 = uo->child();
if (uo->op() == unop::F)
{
eventual = true;
universal = recurse_un(f1);
return;
}
if (uo->op() == unop::G)
{
universal = true;
eventual = recurse_ev(f1);
}
}
void
visit(const binop* bo)
{
const formula* f1 = bo->first();
const formula* f2 = bo->second();
switch (bo->op())
{
case binop::Xor:
case binop::Equiv:
case binop::Implies:
universal = recurse_un(f1) & recurse_un(f2);
eventual = recurse_ev(f1) & recurse_ev(f2);
return;
case binop::U:
universal = recurse_un(f1) & recurse_un(f2);
if ((f1 == constant::true_instance()) ||
(recurse_ev(f1)))
eventual = true;
return;
case binop::R:
eventual = recurse_ev(f1) & recurse_ev(f2);
if ((f1 == constant::false_instance()))
//||
//(recurse_un(f1)))
universal = true;
if (!universal)
universal = recurse_un(f1) & recurse_un(f2);
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const multop* mo)
{
unsigned mos = mo->size();
eventual = true;
universal = true;
for (unsigned i = 0; i < mos; ++i)
if (!recurse_ev(mo->nth(i)))
{
eventual = false;
break;
}
for (unsigned i = 0; i < mos; ++i)
if (!recurse_un(mo->nth(i)))
{
universal = false;
break;
}
}
bool
recurse_ev(const formula* f)
{
eventual_universal_visitor v;
const_cast<formula*>(f)->accept(v);
return v.is_eventual();
}
bool
recurse_un(const formula* f)
{
eventual_universal_visitor v;
const_cast<formula*>(f)->accept(v);
return v.is_universal();
}
protected:
bool eventual;
bool universal;
};
/////////////////////////////////////////////////////////////////////////
class inf_right_recurse_visitor: public const_visitor
{
public:
inf_right_recurse_visitor(const formula *f)
: result_(false), f(f)
{
}
virtual
~inf_right_recurse_visitor()
{
}
int
result() const
{
return result_;
}
void
visit(const atomic_prop* ap)
{
if (dynamic_cast<const atomic_prop*>(f) == ap)
result_ = true;
}
void
visit(const constant* c)
{
switch (c->val())
{
case constant::True:
result_ = true;
return;
case constant::False:
result_ = false;
return;
}
}
void
visit(const unop* uo)
{
const formula* f1 = uo->child();
switch (uo->op())
{
case unop::Not:
if (uo == f)
result_ = true;
return;
case unop::X:
{
const unop* op = dynamic_cast<const unop*>(f);
if (op && op->op() == unop::X)
result_ = syntactic_implication(op->child(), f1);
}
return;
case unop::F:
/* F(a) = true U a */
result_ = syntactic_implication(f, f1);
return;
case unop::G:
/* G(a) = false R a */
if (syntactic_implication(f, constant::false_instance()))
result_ = true;
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const binop* bo)
{
const formula* f1 = bo->first();
const formula* f2 = bo->second();
const binop* fb = dynamic_cast<const binop*>(f);
const unop* fu = dynamic_cast<const unop*>(f);
switch (bo->op())
{
case binop::Xor:
case binop::Equiv:
case binop::Implies:
return;
case binop::U:
if (syntactic_implication(f, f2))
result_ = true;
return;
case binop::R:
if (fb && fb->op() == binop::R)
if (syntactic_implication(fb->first(), f1) &&
syntactic_implication(fb->second(), f2))
{
result_ = true;
return;
}
if (fu && fu->op() == unop::G)
if (f1 == constant::false_instance() &&
syntactic_implication(fu->child(), f2))
{
result_ = true;
return;
}
if (syntactic_implication(f, f1)
&& syntactic_implication(f, f2))
result_ = true;
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const multop* mo)
{
multop::type op = mo->op();
unsigned mos = mo->size();
switch (op)
{
case multop::And:
for (unsigned i = 0; i < mos; ++i)
if (!syntactic_implication(f, mo->nth(i)))
return;
result_ = true;
break;
case multop::Or:
for (unsigned i = 0; i < mos && !result_; ++i)
if (syntactic_implication(f, mo->nth(i)))
result_ = true;
break;
}
}
bool
recurse(const formula* f1, const formula* f2)
{
if (f1 == f2)
return true;
inf_right_recurse_visitor v(f2);
const_cast<formula*>(f1)->accept(v);
return v.result();
}
protected:
bool result_; /* true if f < f1, false otherwise. */
const formula* f;
};
/////////////////////////////////////////////////////////////////////////
class inf_left_recurse_visitor: public const_visitor
{
public:
inf_left_recurse_visitor(const formula *f)
: result_(false), f(f)
{
}
virtual
~inf_left_recurse_visitor()
{
}
bool
special_case(const formula* f2)
{
const binop* fb = dynamic_cast<const binop*>(f);
const binop* f2b = dynamic_cast<const binop*>(f2);
if (fb && f2b && fb->op() == f2b->op()
&& syntactic_implication(f2b->first(), fb->first())
&& syntactic_implication(f2b->second(), fb->second()))
return true;
return false;
}
int
result() const
{
return result_;
}
void
visit(const atomic_prop* ap)
{
inf_right_recurse_visitor v(ap);
const_cast<formula*>(f)->accept(v);
result_ = v.result();
}
void
visit(const constant* c)
{
inf_right_recurse_visitor v(c);
switch (c->val())
{
case constant::True:
const_cast<formula*>(f)->accept(v);
result_ = v.result();
return;
case constant::False:
result_ = true;
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const unop* uo)
{
const formula* f1 = uo->child();
inf_right_recurse_visitor v(uo);
switch (uo->op())
{
case unop::Not:
if (uo == f)
result_ = true;
return;
case unop::X:
{
const unop* op = dynamic_cast<const unop*>(f);
if (op && op->op() == unop::X)
result_ = syntactic_implication(f1, op->child());
}
return;
case unop::F:
{
/* F(a) = true U a */
const formula* tmp = binop::instance(binop::U,
constant::true_instance(),
clone(f1));
if (special_case(tmp))
{
result_ = true;
destroy(tmp);
return;
}
if (syntactic_implication(tmp, f))
result_ = true;
destroy(tmp);
return;
}
case unop::G:
{
/* G(a) = false R a */
const formula* tmp = binop::instance(binop::R,
constant::false_instance(),
clone(f1));
if (special_case(tmp))
{
result_ = true;
destroy(tmp);
return;
}
if (syntactic_implication(tmp, f))
result_ = true;
destroy(tmp);
return;
}
}
/* Unreachable code. */
assert(0);
}
void
visit(const binop* bo)
{
if (special_case(bo))
{
result_ = true;
return;
}
const formula* f1 = bo->first();
const formula* f2 = bo->second();
const binop* fb = dynamic_cast<const binop*>(f);
const unop* fu = dynamic_cast<const unop*>(f);
switch (bo->op())
{
case binop::Xor:
case binop::Equiv:
case binop::Implies:
return;
case binop::U:
/* (a < c) && (c < d) => a U b < c U d */
if (fb && fb->op() == binop::U)
if (syntactic_implication(f1, fb->first()) &&
syntactic_implication(f2, fb->second()))
{
result_ = true;
return;
}
if (fu && fu->op() == unop::F)
if (f1 == constant::true_instance() &&
syntactic_implication(f2, fu->child()))
{
result_ = true;
return;
}
if (syntactic_implication(f1, f)
&& syntactic_implication(f2, f))
result_ = true;
return;
case binop::R:
if (fu && fu->op() == unop::G)
if (f1 == constant::false_instance() &&
syntactic_implication(f2, fu->child()))
{
result_ = true;
return;
}
if (syntactic_implication(f2, f))
result_ = true;
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(const multop* mo)
{
multop::type op = mo->op();
unsigned mos = mo->size();
switch (op)
{
case multop::And:
for (unsigned i = 0; (i < mos) && !result_; ++i)
if (syntactic_implication(mo->nth(i), f))
result_ = true;
break;
case multop::Or:
for (unsigned i = 0; i < mos; ++i)
if (!syntactic_implication(mo->nth(i), f))
return;
result_ = true;
break;
}
}
protected:
bool result_; /* true if f1 < f, 1 otherwise. */
const formula* f;
};
} // anonymous
bool
is_eventual(const formula* f)
{
eventual_universal_visitor v;
const_cast<formula*>(f)->accept(v);
return v.is_eventual();
}
bool
is_universal(const formula* f)
{
eventual_universal_visitor v;
const_cast<formula*>(f)->accept(v);
return v.is_universal();
}
// This is called by syntactic_implication() after the
// formulae have been normalized.
bool
syntactic_implication(const formula* f1, const formula* f2)
{
if (f1 == f2)
return true;
inf_left_recurse_visitor v1(f2);
inf_right_recurse_visitor v2(f1);
if (f2 == constant::true_instance()
|| f1 == constant::false_instance())
return true;
const_cast<formula*>(f1)->accept(v1);
if (v1.result())
return true;
const_cast<formula*>(f2)->accept(v2);
if (v2.result())
return true;
return false;
}
bool
syntactic_implication_neg(const formula* f1, const formula* f2, bool right)
{
formula* l = clone(f1);
formula* r = clone(f2);
if (right)
r = unop::instance(unop::Not, r);
else
l = unop::instance(unop::Not, l);
formula* tmp = unabbreviate_logic(l);
destroy(l);
l = simplify_f_g(tmp);
destroy(tmp);
tmp = negative_normal_form(l);
destroy(l);
l = tmp;
tmp = unabbreviate_logic(r);
destroy(r);
r = simplify_f_g(tmp);
destroy(tmp);
tmp = negative_normal_form(r);
destroy(r);
r = tmp;
bool result = syntactic_implication(l, r);
destroy(l);
destroy(r);
return result;
}
}
}