* spot/kripke/kripkegraph.hh, spot/misc/hash.hh, spot/twa/taatgba.cc, spot/twa/twagraph.hh, tests/core/ngraph.cc: Replace subtraction of pointeur minus nullptr by an explicit cast to size_t. * spot/twa/acc.hh: Add explicit default copy assignment operator for rs_pair.
830 lines
24 KiB
C++
830 lines
24 KiB
C++
// -*- coding: utf-8 -*-
|
|
// Copyright (C) 2014-2021 Laboratoire de Recherche et Développement
|
|
// de l'Epita.
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#pragma once
|
|
|
|
#include <spot/twa/fwd.hh>
|
|
#include <spot/graph/graph.hh>
|
|
#include <spot/graph/ngraph.hh>
|
|
#include <spot/twa/bdddict.hh>
|
|
#include <spot/twa/twa.hh>
|
|
#include <spot/tl/formula.hh>
|
|
#include <sstream>
|
|
|
|
namespace spot
|
|
{
|
|
|
|
/// \ingroup twa_representation
|
|
/// \brief Graph-based representation of a TωA
|
|
///
|
|
/// In a twa_graph, states are usually denoted by their number. However
|
|
/// if the on-the-fly interface is used, it returns pointer to instances
|
|
/// of the twa_graph_state class.
|
|
struct SPOT_API twa_graph_state: public spot::state
|
|
{
|
|
public:
|
|
twa_graph_state() noexcept
|
|
{
|
|
}
|
|
|
|
twa_graph_state(const twa_graph_state&) noexcept
|
|
{
|
|
}
|
|
|
|
twa_graph_state& operator=(const twa_graph_state&) noexcept
|
|
{
|
|
return *this;
|
|
}
|
|
|
|
virtual ~twa_graph_state() noexcept
|
|
{
|
|
}
|
|
|
|
virtual int compare(const spot::state* other) const override
|
|
{
|
|
auto o = down_cast<const twa_graph_state*>(other);
|
|
|
|
// Do not simply return "other - this", it might not fit in an int.
|
|
if (o < this)
|
|
return -1;
|
|
if (o > this)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
virtual size_t hash() const override
|
|
{
|
|
return reinterpret_cast<size_t>(this);
|
|
}
|
|
|
|
virtual twa_graph_state*
|
|
clone() const override
|
|
{
|
|
return const_cast<twa_graph_state*>(this);
|
|
}
|
|
|
|
virtual void destroy() const override
|
|
{
|
|
}
|
|
};
|
|
|
|
/// \ingroup twa_representation
|
|
/// \brief Data attached to edges of a twa_graph
|
|
///
|
|
/// Each edge of the graph has to additional data that are \a cond
|
|
/// (a BDD representing the Boolean formula labeling the edge), and
|
|
/// \a acc a set of acceptance marks representing the membership of
|
|
/// the each to each acceptance set.
|
|
struct SPOT_API twa_graph_edge_data
|
|
{
|
|
bdd cond;
|
|
acc_cond::mark_t acc;
|
|
|
|
explicit twa_graph_edge_data() noexcept
|
|
: cond(bddfalse), acc({})
|
|
{
|
|
}
|
|
|
|
twa_graph_edge_data(
|
|
bdd cond,
|
|
acc_cond::mark_t acc = {}) noexcept
|
|
: cond(cond), acc(acc)
|
|
{
|
|
}
|
|
|
|
bool operator<(const twa_graph_edge_data& other) const
|
|
{
|
|
if (cond.id() < other.cond.id())
|
|
return true;
|
|
if (cond.id() > other.cond.id())
|
|
return false;
|
|
return acc < other.acc;
|
|
}
|
|
|
|
bool operator==(const twa_graph_edge_data& other) const
|
|
{
|
|
return cond.id() == other.cond.id() &&
|
|
acc == other.acc;
|
|
}
|
|
};
|
|
|
|
|
|
|
|
/// \ingroup twa_representation
|
|
/// \brief Iterator used by the on-the-fly interface of twa_graph.
|
|
///
|
|
/// Instances of this class are returned by twa_graph::succ_iter().
|
|
template<class Graph>
|
|
class SPOT_API twa_graph_succ_iterator final:
|
|
public twa_succ_iterator
|
|
{
|
|
private:
|
|
typedef typename Graph::edge edge;
|
|
typedef typename Graph::state_data_t state;
|
|
const Graph* g_;
|
|
edge t_;
|
|
edge p_;
|
|
|
|
public:
|
|
twa_graph_succ_iterator(const Graph* g, edge t)
|
|
: g_(g), t_(t)
|
|
{
|
|
}
|
|
|
|
void recycle(edge t)
|
|
{
|
|
t_ = t;
|
|
}
|
|
|
|
virtual bool first() override
|
|
{
|
|
p_ = t_;
|
|
return p_;
|
|
}
|
|
|
|
virtual bool next() override
|
|
{
|
|
p_ = g_->edge_storage(p_).next_succ;
|
|
return p_;
|
|
}
|
|
|
|
virtual bool done() const override
|
|
{
|
|
return !p_;
|
|
}
|
|
|
|
virtual const twa_graph_state* dst() const override
|
|
{
|
|
SPOT_ASSERT(!done());
|
|
return &g_->state_data(g_->edge_storage(p_).dst);
|
|
}
|
|
|
|
virtual bdd cond() const override
|
|
{
|
|
SPOT_ASSERT(!done());
|
|
return g_->edge_data(p_).cond;
|
|
}
|
|
|
|
virtual acc_cond::mark_t acc() const override
|
|
{
|
|
SPOT_ASSERT(!done());
|
|
return g_->edge_data(p_).acc;
|
|
}
|
|
|
|
edge pos() const
|
|
{
|
|
return p_;
|
|
}
|
|
|
|
};
|
|
|
|
/// \ingroup twa_representation
|
|
/// \brief Graph-based representation of a TωA
|
|
class SPOT_API twa_graph final: public twa
|
|
{
|
|
public:
|
|
typedef digraph<twa_graph_state, twa_graph_edge_data> graph_t;
|
|
// We avoid using graph_t::edge_storage_t because graph_t is not
|
|
// instantiated in the SWIG bindings, and SWIG would therefore
|
|
// handle graph_t::edge_storage_t as an abstract type.
|
|
typedef spot::internal::edge_storage<unsigned, unsigned, unsigned,
|
|
internal::boxed_label
|
|
<twa_graph_edge_data, false>>
|
|
edge_storage_t;
|
|
static_assert(std::is_same<typename graph_t::edge_storage_t,
|
|
edge_storage_t>::value, "type mismatch");
|
|
// We avoid using graph_t::state for the very same reason.
|
|
typedef unsigned state_num;
|
|
static_assert(std::is_same<typename graph_t::state, state_num>::value,
|
|
"type mismatch");
|
|
|
|
protected:
|
|
graph_t g_;
|
|
mutable unsigned init_number_;
|
|
|
|
public:
|
|
|
|
void apply_permutation(std::vector<unsigned> permut);
|
|
|
|
twa_graph(const bdd_dict_ptr& dict)
|
|
: twa(dict),
|
|
init_number_(0)
|
|
{
|
|
}
|
|
|
|
explicit twa_graph(const const_twa_graph_ptr& other, prop_set p)
|
|
: twa(other->get_dict()),
|
|
g_(other->g_), init_number_(other->init_number_)
|
|
{
|
|
copy_acceptance_of(other);
|
|
copy_ap_of(other);
|
|
prop_copy(other, p);
|
|
}
|
|
|
|
virtual ~twa_graph()
|
|
{
|
|
}
|
|
|
|
#ifndef SWIG
|
|
template <typename State_Name,
|
|
typename Name_Hash = std::hash<State_Name>,
|
|
typename Name_Equal = std::equal_to<State_Name>>
|
|
using namer = named_graph<graph_t, State_Name, Name_Hash, Name_Equal>;
|
|
|
|
template <typename State_Name,
|
|
typename Name_Hash = std::hash<State_Name>,
|
|
typename Name_Equal = std::equal_to<State_Name>>
|
|
namer<State_Name, Name_Hash, Name_Equal>*
|
|
create_namer()
|
|
{
|
|
return new named_graph<graph_t, State_Name, Name_Hash, Name_Equal>(g_);
|
|
}
|
|
|
|
namer<formula>*
|
|
create_formula_namer()
|
|
{
|
|
return create_namer<formula>();
|
|
}
|
|
|
|
void
|
|
release_formula_namer(namer<formula>* namer, bool keep_names);
|
|
#endif
|
|
|
|
graph_t& get_graph()
|
|
{
|
|
return g_;
|
|
}
|
|
|
|
const graph_t& get_graph() const
|
|
{
|
|
return g_;
|
|
}
|
|
|
|
unsigned num_states() const
|
|
{
|
|
return g_.num_states();
|
|
}
|
|
|
|
unsigned num_edges() const
|
|
{
|
|
return g_.num_edges();
|
|
}
|
|
|
|
void set_init_state(state_num s)
|
|
{
|
|
bool univ = is_univ_dest(s);
|
|
if (SPOT_UNLIKELY((!univ && s >= num_states())
|
|
// univ destinations have at least length 2.
|
|
|| (univ && 2 + ~s >= g_.dests_vector().size())))
|
|
throw std::invalid_argument
|
|
("set_init_state() called with nonexisting state");
|
|
init_number_ = s;
|
|
}
|
|
|
|
template<class I>
|
|
void set_univ_init_state(I dst_begin, I dst_end)
|
|
{
|
|
auto ns = num_states();
|
|
for (I i = dst_begin; i != dst_end; ++i)
|
|
if (SPOT_UNLIKELY(*i >= ns))
|
|
throw std::invalid_argument
|
|
("set_univ_init_state() called with nonexisting state");
|
|
init_number_ = g_.new_univ_dests(dst_begin, dst_end);
|
|
}
|
|
|
|
void set_univ_init_state(const std::initializer_list<state_num>& il)
|
|
{
|
|
set_univ_init_state(il.begin(), il.end());
|
|
}
|
|
|
|
state_num get_init_state_number() const
|
|
{
|
|
// If the automaton has no state, it has no initial state.
|
|
if (num_states() == 0)
|
|
throw std::runtime_error("automaton has no state at all");
|
|
return init_number_;
|
|
}
|
|
|
|
virtual const twa_graph_state* get_init_state() const override
|
|
{
|
|
unsigned n = get_init_state_number();
|
|
if (SPOT_UNLIKELY(!is_existential()))
|
|
throw std::runtime_error
|
|
("the abstract interface does not support alternating automata");
|
|
return state_from_number(n);
|
|
}
|
|
|
|
virtual twa_succ_iterator*
|
|
succ_iter(const state* st) const override
|
|
{
|
|
auto s = down_cast<const typename graph_t::state_storage_t*>(st);
|
|
SPOT_ASSERT(!s->succ || g_.is_valid_edge(s->succ));
|
|
|
|
if (this->iter_cache_)
|
|
{
|
|
auto it =
|
|
down_cast<twa_graph_succ_iterator<graph_t>*>(this->iter_cache_);
|
|
it->recycle(s->succ);
|
|
this->iter_cache_ = nullptr;
|
|
return it;
|
|
}
|
|
return new twa_graph_succ_iterator<graph_t>(&g_, s->succ);
|
|
}
|
|
|
|
static constexpr bool is_univ_dest(const edge_storage_t& e)
|
|
{
|
|
return is_univ_dest(e.dst);
|
|
}
|
|
|
|
static constexpr bool is_univ_dest(unsigned s)
|
|
{
|
|
// Universal destinations are stored with their most-significant
|
|
// bit set.
|
|
return (int) s < 0;
|
|
}
|
|
|
|
state_num
|
|
state_number(const state* st) const
|
|
{
|
|
auto s = down_cast<const typename graph_t::state_storage_t*>(st);
|
|
return s - &g_.state_storage(0);
|
|
}
|
|
|
|
const twa_graph_state*
|
|
state_from_number(state_num n) const
|
|
{
|
|
return &g_.state_data(n);
|
|
}
|
|
|
|
std::string format_state(unsigned n) const;
|
|
|
|
virtual std::string format_state(const state* st) const override
|
|
{
|
|
return format_state(state_number(st));
|
|
}
|
|
|
|
unsigned edge_number(const twa_succ_iterator* it) const
|
|
{
|
|
auto* i = down_cast<const twa_graph_succ_iterator<graph_t>*>(it);
|
|
return i->pos();
|
|
}
|
|
|
|
unsigned edge_number(const edge_storage_t& e) const
|
|
{
|
|
return g_.index_of_edge(e);
|
|
}
|
|
|
|
twa_graph_edge_data& edge_data(const twa_succ_iterator* it)
|
|
{
|
|
return g_.edge_data(edge_number(it));
|
|
}
|
|
|
|
twa_graph_edge_data& edge_data(unsigned t)
|
|
{
|
|
return g_.edge_data(t);
|
|
}
|
|
|
|
const twa_graph_edge_data& edge_data(const twa_succ_iterator* it) const
|
|
{
|
|
return g_.edge_data(edge_number(it));
|
|
}
|
|
|
|
const twa_graph_edge_data& edge_data(unsigned t) const
|
|
{
|
|
return g_.edge_data(t);
|
|
}
|
|
|
|
edge_storage_t& edge_storage(const twa_succ_iterator* it)
|
|
{
|
|
return g_.edge_storage(edge_number(it));
|
|
}
|
|
|
|
edge_storage_t& edge_storage(unsigned t)
|
|
{
|
|
return g_.edge_storage(t);
|
|
}
|
|
|
|
const edge_storage_t
|
|
edge_storage(const twa_succ_iterator* it) const
|
|
{
|
|
return g_.edge_storage(edge_number(it));
|
|
}
|
|
|
|
const edge_storage_t edge_storage(unsigned t) const
|
|
{
|
|
return g_.edge_storage(t);
|
|
}
|
|
|
|
unsigned new_state()
|
|
{
|
|
return g_.new_state();
|
|
}
|
|
|
|
unsigned new_states(unsigned n)
|
|
{
|
|
return g_.new_states(n);
|
|
}
|
|
|
|
unsigned new_edge(unsigned src, unsigned dst,
|
|
bdd cond,
|
|
acc_cond::mark_t acc = {})
|
|
{
|
|
return g_.new_edge(src, dst, cond, acc);
|
|
}
|
|
|
|
unsigned new_acc_edge(unsigned src, unsigned dst,
|
|
bdd cond, bool acc = true)
|
|
{
|
|
if (acc)
|
|
return g_.new_edge(src, dst, cond, this->acc().all_sets());
|
|
else
|
|
return g_.new_edge(src, dst, cond);
|
|
}
|
|
|
|
template<class I>
|
|
unsigned new_univ_edge(unsigned src, I begin, I end,
|
|
bdd cond,
|
|
acc_cond::mark_t acc = {})
|
|
{
|
|
return g_.new_univ_edge(src, begin, end, cond, acc);
|
|
}
|
|
|
|
unsigned new_univ_edge(unsigned src, std::initializer_list<unsigned> dst,
|
|
bdd cond,
|
|
acc_cond::mark_t acc = {})
|
|
{
|
|
return g_.new_univ_edge(src, dst.begin(), dst.end(), cond, acc);
|
|
}
|
|
|
|
#ifndef SWIG
|
|
internal::state_out<const graph_t>
|
|
out(unsigned src) const
|
|
{
|
|
return g_.out(src);
|
|
}
|
|
#endif
|
|
|
|
internal::state_out<graph_t>
|
|
out(unsigned src)
|
|
{
|
|
return g_.out(src);
|
|
}
|
|
|
|
internal::killer_edge_iterator<graph_t>
|
|
out_iteraser(unsigned src)
|
|
{
|
|
return g_.out_iteraser(src);
|
|
}
|
|
|
|
internal::const_universal_dests
|
|
univ_dests(unsigned d) const noexcept
|
|
{
|
|
return g_.univ_dests(d);
|
|
}
|
|
|
|
internal::const_universal_dests
|
|
univ_dests(const edge_storage_t& e) const noexcept
|
|
{
|
|
return g_.univ_dests(e);
|
|
}
|
|
|
|
/// Whether the automaton uses only existential branching.
|
|
bool is_existential() const
|
|
{
|
|
return g_.is_existential();
|
|
}
|
|
|
|
#ifndef SWIG
|
|
auto states() const
|
|
SPOT_RETURN(g_.states());
|
|
auto states()
|
|
SPOT_RETURN(g_.states());
|
|
|
|
internal::all_trans<const graph_t>
|
|
edges() const noexcept
|
|
{
|
|
return g_.edges();
|
|
}
|
|
#endif
|
|
|
|
internal::all_trans<graph_t>
|
|
edges() noexcept
|
|
{
|
|
return g_.edges();
|
|
}
|
|
|
|
#ifndef SWIG
|
|
auto edge_vector() const
|
|
SPOT_RETURN(g_.edge_vector());
|
|
auto edge_vector()
|
|
SPOT_RETURN(g_.edge_vector());
|
|
#endif
|
|
|
|
bool is_dead_edge(unsigned t) const
|
|
{
|
|
return g_.is_dead_edge(t);
|
|
}
|
|
|
|
bool is_dead_edge(const graph_t::edge_storage_t& t) const
|
|
{
|
|
return g_.is_dead_edge(t);
|
|
}
|
|
|
|
/// \brief Merge edges that can be merged.
|
|
///
|
|
/// This makes two passes over the automaton to reduce the number
|
|
/// of edges with an identical pair of source and destination.
|
|
///
|
|
/// In the first pass, which is performed only on automata with
|
|
/// Fin-less acceptance, edges with the same source, destination,
|
|
/// and conditions are merged into a single edge whose set of
|
|
/// acceptance marks is the intersection of the sets of the edges.
|
|
///
|
|
/// In the second pass, edges that share their source, destination,
|
|
/// and acceptance marks are merged into a single edge whose condition
|
|
/// is the disjunction of the conditions of the original edges.
|
|
///
|
|
/// If the automaton uses some universal edges, the method
|
|
/// merge_univ_dests() is also called.
|
|
void merge_edges();
|
|
|
|
/// \brief Merge common universal destinations.
|
|
///
|
|
/// This is already called by merge_edges().
|
|
void merge_univ_dests();
|
|
|
|
/// \brief Merge states that can be merged.
|
|
///
|
|
/// Two states can be merged if the set of outgoing transitions
|
|
/// is identical, i.e., same condition, same colors, same destination.
|
|
/// Two self-loops with the same condition and colors are considered
|
|
/// identical even if they do not actually have the same destination.
|
|
///
|
|
/// The implementation will sort the edges of the automaton to
|
|
/// ease the comparison between two states. This may miss some
|
|
/// self-loop equivalences in non-deterministic automata.
|
|
///
|
|
/// States whose input have been redirected as a consequence of a
|
|
/// merge are removed from the automaton. This procedure
|
|
/// therefore renumber states.
|
|
///
|
|
/// Merging states might create duplicate transitions in the
|
|
/// automaton. For instance (1)-a->(2) and (1)-a->(3) will become
|
|
/// (1)-a->(1) and (1)-a->(1) if (1), (2) and (3) are merged into
|
|
/// (1).
|
|
///
|
|
/// \return the number of states that have been merged and removed.
|
|
unsigned merge_states();
|
|
|
|
/// \brief Like merge states, but one can chose which states are
|
|
/// candidates for merging.
|
|
///
|
|
/// \param stable Determines whether or not a stable sorting is used for
|
|
/// the edges
|
|
/// \param to_merge_ptr Determines which states are candidates.
|
|
/// If null, all states are considered
|
|
/// The actual implementation differd from merge_states().
|
|
/// It is more costly, but is more precise, in the sense that
|
|
/// more states are merged.
|
|
unsigned merge_states_of(bool stable = true,
|
|
const std::vector<bool>* to_merge_ptr = nullptr);
|
|
|
|
/// \brief Remove all dead states
|
|
///
|
|
/// Dead states are all the states that cannot be part of
|
|
/// an infinite run of the automaton. This includes
|
|
/// states without successors, unreachable states, and states
|
|
/// that only have dead successors. Transition labeled
|
|
/// by bddfalse are also removed.
|
|
///
|
|
/// This function runs in linear time on non-alternating automata,
|
|
/// but its current implementation can be quadratic when removing
|
|
/// dead states from alternating automata. (In the latter case, a
|
|
/// universal edge has to be remove when any of its destination is
|
|
/// dead, but this might cause the other destinations to become
|
|
/// dead or unreachable themselves.)
|
|
///
|
|
/// \see purge_unreachable_states
|
|
void purge_dead_states();
|
|
|
|
/// \brief Remove all unreachable states.
|
|
///
|
|
/// A state is unreachable if it cannot be reached from the
|
|
/// initial state.
|
|
///
|
|
/// Use this function if you have declared more states than you
|
|
/// actually need in the automaton. It runs in linear time.
|
|
///
|
|
/// purge_dead_states() will remove more states than
|
|
/// purge_unreachable_states(), but it is more costly.
|
|
///
|
|
/// You can pass a function to this method, which will be invoked
|
|
/// with a vector indicating the renumbering of states.
|
|
/// newst[i] == -1U means that state i is unreachable and thus deleted.
|
|
/// Otherwise, state i is renumbered newst[i].
|
|
///
|
|
/// \see purge_dead_states
|
|
typedef void (*shift_action)(const std::vector<unsigned>& newst,
|
|
void* action_data);
|
|
void purge_unreachable_states(shift_action* f = nullptr,
|
|
void* action_data = nullptr);
|
|
|
|
/// \brief Remove unused atomic propositions
|
|
///
|
|
/// Remove, from the list of atomic propositions registered by the
|
|
/// automaton, those that are not actually used by its labels.
|
|
void remove_unused_ap();
|
|
|
|
/// \brief Define the state names of this automaton using
|
|
/// the names from \a other.
|
|
///
|
|
/// If the "original-states" named property is set, it is used to
|
|
/// map the state numbers, otherwise an identity mapping is
|
|
/// assumed.
|
|
void copy_state_names_from(const const_twa_graph_ptr& other);
|
|
|
|
/// \brief Return the marks associated to a state if the
|
|
/// acceptance is state-based.
|
|
acc_cond::mark_t state_acc_sets(unsigned s) const
|
|
{
|
|
if (SPOT_UNLIKELY(!(bool)prop_state_acc()))
|
|
throw std::runtime_error
|
|
("state_acc_sets() should only be called on "
|
|
"automata with state-based acceptance");
|
|
for (auto& t: g_.out(s))
|
|
// Stop at the first edge, since the remaining should be
|
|
// labeled identically.
|
|
return t.acc;
|
|
return {};
|
|
}
|
|
|
|
/// \brief Tell if a state is accepting.
|
|
///
|
|
/// This makes only sense for automata using state-based
|
|
/// acceptance, and a simple acceptance condition like Büchi or
|
|
/// co-Büchi.
|
|
///@{
|
|
bool state_is_accepting(unsigned s) const
|
|
{
|
|
if (SPOT_UNLIKELY(!(bool)prop_state_acc()))
|
|
throw std::runtime_error
|
|
("state_is_accepting() should only be called on "
|
|
"automata with state-based acceptance");
|
|
for (auto& t: g_.out(s))
|
|
// Stop at the first edge, since the remaining should be
|
|
// labeled identically.
|
|
return acc().accepting(t.acc);
|
|
return false;
|
|
}
|
|
|
|
bool state_is_accepting(const state* s) const
|
|
{
|
|
return state_is_accepting(state_number(s));
|
|
}
|
|
///@}
|
|
|
|
bool operator==(const twa_graph& aut) const
|
|
{
|
|
auto& dests1 = g_.dests_vector();
|
|
auto& dests2 = aut.get_graph().dests_vector();
|
|
if (num_states() != aut.num_states() ||
|
|
num_edges() != aut.num_edges() ||
|
|
num_sets() != aut.num_sets() ||
|
|
dests1.size() != dests2.size())
|
|
return false;
|
|
auto& trans1 = edge_vector();
|
|
auto& trans2 = aut.edge_vector();
|
|
if (!std::equal(trans1.begin() + 1, trans1.end(),
|
|
trans2.begin() + 1))
|
|
return false;
|
|
return std::equal(dests1.begin(), dests1.end(),
|
|
dests2.begin());
|
|
}
|
|
|
|
#ifndef SWIG
|
|
/// \brief Renumber all states, and drop some.
|
|
///
|
|
/// This semi-internal function is a wrapper around
|
|
/// digraph::defrag_state() that additionally deals with universal
|
|
/// branching.
|
|
///
|
|
/// This method is used to remove some states that have been
|
|
/// previously detected to be unreachable in order to "defragment"
|
|
/// the state vector. When a state is removed, all its outgoing
|
|
/// transition are removed as well. Removing reachable states
|
|
/// should NOT be attempted, because the incoming edges will be
|
|
/// dangling.
|
|
///
|
|
/// \param newst A vector indicating how each state should be
|
|
/// renumbered. Use -1U to mark an unreachable state for removal.
|
|
/// Ignoring the occurrences of -1U, the renumbering is expected
|
|
/// to satisfy newst[i] ≤ i for all i. If the automaton contains
|
|
/// universal branching, this vector is likely to be modified by
|
|
/// this function, so do not reuse it afterwards.
|
|
///
|
|
/// \param used_states the number of states used after
|
|
/// renumbering.
|
|
///@{
|
|
void defrag_states(std::vector<unsigned>& newst,
|
|
unsigned used_states);
|
|
|
|
// prototype was changed in Spot 2.10
|
|
SPOT_DEPRECATED("use reference version of this method")
|
|
void defrag_states(std::vector<unsigned>&& newst,
|
|
unsigned used_states)
|
|
{
|
|
return defrag_states(newst, used_states);
|
|
}
|
|
///@}
|
|
#endif // SWIG
|
|
|
|
/// \brief Make a state dead.
|
|
///
|
|
/// A state is dead if it has no successors. So this function
|
|
/// simply erases all edges leaving \a state.
|
|
///
|
|
/// It can be used together with purge_dead_states() to remove a
|
|
/// set of states from an automaton.
|
|
void kill_state(unsigned state);
|
|
|
|
/// \brief Print the data structures used to represent the
|
|
/// automaton in dot's format.
|
|
///
|
|
/// \a opt should be a substring of "vdp" if you want to print
|
|
/// only the vectors, data, or properties.
|
|
void dump_storage_as_dot(std::ostream& out,
|
|
const char* opt = nullptr) const;
|
|
};
|
|
|
|
// This is a workaround for
|
|
#if __GNUC__ == 8 && __GNUC_MINOR__ == 2
|
|
# define SPOT_make_twa_graph__(...) \
|
|
std::shared_ptr<twa_graph>(new twa_graph(__VA_ARGS__))
|
|
#else
|
|
# define SPOT_make_twa_graph__(...) \
|
|
std::make_shared<twa_graph>(__VA_ARGS__)
|
|
#endif
|
|
|
|
/// \ingroup twa_representation
|
|
/// \brief Build an explicit automaton from all states of \a aut,
|
|
inline twa_graph_ptr make_twa_graph(const bdd_dict_ptr& dict)
|
|
{
|
|
return SPOT_make_shared_enabled__(twa_graph, dict);
|
|
}
|
|
|
|
/// \ingroup twa_representation
|
|
/// \brief Build an explicit automaton from all states of \a aut,
|
|
inline twa_graph_ptr make_twa_graph(const twa_graph_ptr& aut,
|
|
twa::prop_set p)
|
|
{
|
|
return SPOT_make_shared_enabled__(twa_graph, aut, p);
|
|
}
|
|
|
|
/// \ingroup twa_representation
|
|
/// \brief Clone a twa_graph
|
|
///
|
|
/// The \a p and \a preserve_name_properties argument are used to
|
|
/// select what automata properties should be preserved by the copy.
|
|
///
|
|
inline twa_graph_ptr make_twa_graph(const const_twa_graph_ptr& aut,
|
|
twa::prop_set p,
|
|
bool preserve_name_properties = false)
|
|
{
|
|
twa_graph_ptr res = SPOT_make_shared_enabled__(twa_graph, aut, p);
|
|
if (preserve_name_properties)
|
|
res->copy_named_properties_of(aut);
|
|
return res;
|
|
}
|
|
|
|
/// \ingroup twa_representation
|
|
/// \brief Build an explicit automaton from all states of \a aut,
|
|
///
|
|
/// This overload works using the abstract interface for automata.
|
|
///
|
|
/// Set \a preserve_names to preserve state names, and set \a max_states
|
|
/// to a maximum number of states to keep. States with successors that
|
|
/// have not been kept will be marked as incomplete; this is mostly useful
|
|
/// to display a subset of a large state space.
|
|
SPOT_API twa_graph_ptr
|
|
make_twa_graph(const const_twa_ptr& aut, twa::prop_set p,
|
|
bool preserve_names = false,
|
|
// parentheses for SWIG, see
|
|
// https://github.com/swig/swig/issues/993
|
|
unsigned max_states = -(1U));
|
|
}
|