spot/spot/twa/twagraph.hh
Jérôme Dubois 81f146f648 build: fix multiple Clang13 warnings
* spot/kripke/kripkegraph.hh, spot/misc/hash.hh, spot/twa/taatgba.cc,
  spot/twa/twagraph.hh, tests/core/ngraph.cc: Replace subtraction of
  pointeur minus nullptr by an explicit cast to size_t.
* spot/twa/acc.hh: Add explicit default copy assignment operator for
  rs_pair.
2021-11-22 10:29:15 +01:00

830 lines
24 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) 2014-2021 Laboratoire de Recherche et Développement
// de l'Epita.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#pragma once
#include <spot/twa/fwd.hh>
#include <spot/graph/graph.hh>
#include <spot/graph/ngraph.hh>
#include <spot/twa/bdddict.hh>
#include <spot/twa/twa.hh>
#include <spot/tl/formula.hh>
#include <sstream>
namespace spot
{
/// \ingroup twa_representation
/// \brief Graph-based representation of a TωA
///
/// In a twa_graph, states are usually denoted by their number. However
/// if the on-the-fly interface is used, it returns pointer to instances
/// of the twa_graph_state class.
struct SPOT_API twa_graph_state: public spot::state
{
public:
twa_graph_state() noexcept
{
}
twa_graph_state(const twa_graph_state&) noexcept
{
}
twa_graph_state& operator=(const twa_graph_state&) noexcept
{
return *this;
}
virtual ~twa_graph_state() noexcept
{
}
virtual int compare(const spot::state* other) const override
{
auto o = down_cast<const twa_graph_state*>(other);
// Do not simply return "other - this", it might not fit in an int.
if (o < this)
return -1;
if (o > this)
return 1;
return 0;
}
virtual size_t hash() const override
{
return reinterpret_cast<size_t>(this);
}
virtual twa_graph_state*
clone() const override
{
return const_cast<twa_graph_state*>(this);
}
virtual void destroy() const override
{
}
};
/// \ingroup twa_representation
/// \brief Data attached to edges of a twa_graph
///
/// Each edge of the graph has to additional data that are \a cond
/// (a BDD representing the Boolean formula labeling the edge), and
/// \a acc a set of acceptance marks representing the membership of
/// the each to each acceptance set.
struct SPOT_API twa_graph_edge_data
{
bdd cond;
acc_cond::mark_t acc;
explicit twa_graph_edge_data() noexcept
: cond(bddfalse), acc({})
{
}
twa_graph_edge_data(
bdd cond,
acc_cond::mark_t acc = {}) noexcept
: cond(cond), acc(acc)
{
}
bool operator<(const twa_graph_edge_data& other) const
{
if (cond.id() < other.cond.id())
return true;
if (cond.id() > other.cond.id())
return false;
return acc < other.acc;
}
bool operator==(const twa_graph_edge_data& other) const
{
return cond.id() == other.cond.id() &&
acc == other.acc;
}
};
/// \ingroup twa_representation
/// \brief Iterator used by the on-the-fly interface of twa_graph.
///
/// Instances of this class are returned by twa_graph::succ_iter().
template<class Graph>
class SPOT_API twa_graph_succ_iterator final:
public twa_succ_iterator
{
private:
typedef typename Graph::edge edge;
typedef typename Graph::state_data_t state;
const Graph* g_;
edge t_;
edge p_;
public:
twa_graph_succ_iterator(const Graph* g, edge t)
: g_(g), t_(t)
{
}
void recycle(edge t)
{
t_ = t;
}
virtual bool first() override
{
p_ = t_;
return p_;
}
virtual bool next() override
{
p_ = g_->edge_storage(p_).next_succ;
return p_;
}
virtual bool done() const override
{
return !p_;
}
virtual const twa_graph_state* dst() const override
{
SPOT_ASSERT(!done());
return &g_->state_data(g_->edge_storage(p_).dst);
}
virtual bdd cond() const override
{
SPOT_ASSERT(!done());
return g_->edge_data(p_).cond;
}
virtual acc_cond::mark_t acc() const override
{
SPOT_ASSERT(!done());
return g_->edge_data(p_).acc;
}
edge pos() const
{
return p_;
}
};
/// \ingroup twa_representation
/// \brief Graph-based representation of a TωA
class SPOT_API twa_graph final: public twa
{
public:
typedef digraph<twa_graph_state, twa_graph_edge_data> graph_t;
// We avoid using graph_t::edge_storage_t because graph_t is not
// instantiated in the SWIG bindings, and SWIG would therefore
// handle graph_t::edge_storage_t as an abstract type.
typedef spot::internal::edge_storage<unsigned, unsigned, unsigned,
internal::boxed_label
<twa_graph_edge_data, false>>
edge_storage_t;
static_assert(std::is_same<typename graph_t::edge_storage_t,
edge_storage_t>::value, "type mismatch");
// We avoid using graph_t::state for the very same reason.
typedef unsigned state_num;
static_assert(std::is_same<typename graph_t::state, state_num>::value,
"type mismatch");
protected:
graph_t g_;
mutable unsigned init_number_;
public:
void apply_permutation(std::vector<unsigned> permut);
twa_graph(const bdd_dict_ptr& dict)
: twa(dict),
init_number_(0)
{
}
explicit twa_graph(const const_twa_graph_ptr& other, prop_set p)
: twa(other->get_dict()),
g_(other->g_), init_number_(other->init_number_)
{
copy_acceptance_of(other);
copy_ap_of(other);
prop_copy(other, p);
}
virtual ~twa_graph()
{
}
#ifndef SWIG
template <typename State_Name,
typename Name_Hash = std::hash<State_Name>,
typename Name_Equal = std::equal_to<State_Name>>
using namer = named_graph<graph_t, State_Name, Name_Hash, Name_Equal>;
template <typename State_Name,
typename Name_Hash = std::hash<State_Name>,
typename Name_Equal = std::equal_to<State_Name>>
namer<State_Name, Name_Hash, Name_Equal>*
create_namer()
{
return new named_graph<graph_t, State_Name, Name_Hash, Name_Equal>(g_);
}
namer<formula>*
create_formula_namer()
{
return create_namer<formula>();
}
void
release_formula_namer(namer<formula>* namer, bool keep_names);
#endif
graph_t& get_graph()
{
return g_;
}
const graph_t& get_graph() const
{
return g_;
}
unsigned num_states() const
{
return g_.num_states();
}
unsigned num_edges() const
{
return g_.num_edges();
}
void set_init_state(state_num s)
{
bool univ = is_univ_dest(s);
if (SPOT_UNLIKELY((!univ && s >= num_states())
// univ destinations have at least length 2.
|| (univ && 2 + ~s >= g_.dests_vector().size())))
throw std::invalid_argument
("set_init_state() called with nonexisting state");
init_number_ = s;
}
template<class I>
void set_univ_init_state(I dst_begin, I dst_end)
{
auto ns = num_states();
for (I i = dst_begin; i != dst_end; ++i)
if (SPOT_UNLIKELY(*i >= ns))
throw std::invalid_argument
("set_univ_init_state() called with nonexisting state");
init_number_ = g_.new_univ_dests(dst_begin, dst_end);
}
void set_univ_init_state(const std::initializer_list<state_num>& il)
{
set_univ_init_state(il.begin(), il.end());
}
state_num get_init_state_number() const
{
// If the automaton has no state, it has no initial state.
if (num_states() == 0)
throw std::runtime_error("automaton has no state at all");
return init_number_;
}
virtual const twa_graph_state* get_init_state() const override
{
unsigned n = get_init_state_number();
if (SPOT_UNLIKELY(!is_existential()))
throw std::runtime_error
("the abstract interface does not support alternating automata");
return state_from_number(n);
}
virtual twa_succ_iterator*
succ_iter(const state* st) const override
{
auto s = down_cast<const typename graph_t::state_storage_t*>(st);
SPOT_ASSERT(!s->succ || g_.is_valid_edge(s->succ));
if (this->iter_cache_)
{
auto it =
down_cast<twa_graph_succ_iterator<graph_t>*>(this->iter_cache_);
it->recycle(s->succ);
this->iter_cache_ = nullptr;
return it;
}
return new twa_graph_succ_iterator<graph_t>(&g_, s->succ);
}
static constexpr bool is_univ_dest(const edge_storage_t& e)
{
return is_univ_dest(e.dst);
}
static constexpr bool is_univ_dest(unsigned s)
{
// Universal destinations are stored with their most-significant
// bit set.
return (int) s < 0;
}
state_num
state_number(const state* st) const
{
auto s = down_cast<const typename graph_t::state_storage_t*>(st);
return s - &g_.state_storage(0);
}
const twa_graph_state*
state_from_number(state_num n) const
{
return &g_.state_data(n);
}
std::string format_state(unsigned n) const;
virtual std::string format_state(const state* st) const override
{
return format_state(state_number(st));
}
unsigned edge_number(const twa_succ_iterator* it) const
{
auto* i = down_cast<const twa_graph_succ_iterator<graph_t>*>(it);
return i->pos();
}
unsigned edge_number(const edge_storage_t& e) const
{
return g_.index_of_edge(e);
}
twa_graph_edge_data& edge_data(const twa_succ_iterator* it)
{
return g_.edge_data(edge_number(it));
}
twa_graph_edge_data& edge_data(unsigned t)
{
return g_.edge_data(t);
}
const twa_graph_edge_data& edge_data(const twa_succ_iterator* it) const
{
return g_.edge_data(edge_number(it));
}
const twa_graph_edge_data& edge_data(unsigned t) const
{
return g_.edge_data(t);
}
edge_storage_t& edge_storage(const twa_succ_iterator* it)
{
return g_.edge_storage(edge_number(it));
}
edge_storage_t& edge_storage(unsigned t)
{
return g_.edge_storage(t);
}
const edge_storage_t
edge_storage(const twa_succ_iterator* it) const
{
return g_.edge_storage(edge_number(it));
}
const edge_storage_t edge_storage(unsigned t) const
{
return g_.edge_storage(t);
}
unsigned new_state()
{
return g_.new_state();
}
unsigned new_states(unsigned n)
{
return g_.new_states(n);
}
unsigned new_edge(unsigned src, unsigned dst,
bdd cond,
acc_cond::mark_t acc = {})
{
return g_.new_edge(src, dst, cond, acc);
}
unsigned new_acc_edge(unsigned src, unsigned dst,
bdd cond, bool acc = true)
{
if (acc)
return g_.new_edge(src, dst, cond, this->acc().all_sets());
else
return g_.new_edge(src, dst, cond);
}
template<class I>
unsigned new_univ_edge(unsigned src, I begin, I end,
bdd cond,
acc_cond::mark_t acc = {})
{
return g_.new_univ_edge(src, begin, end, cond, acc);
}
unsigned new_univ_edge(unsigned src, std::initializer_list<unsigned> dst,
bdd cond,
acc_cond::mark_t acc = {})
{
return g_.new_univ_edge(src, dst.begin(), dst.end(), cond, acc);
}
#ifndef SWIG
internal::state_out<const graph_t>
out(unsigned src) const
{
return g_.out(src);
}
#endif
internal::state_out<graph_t>
out(unsigned src)
{
return g_.out(src);
}
internal::killer_edge_iterator<graph_t>
out_iteraser(unsigned src)
{
return g_.out_iteraser(src);
}
internal::const_universal_dests
univ_dests(unsigned d) const noexcept
{
return g_.univ_dests(d);
}
internal::const_universal_dests
univ_dests(const edge_storage_t& e) const noexcept
{
return g_.univ_dests(e);
}
/// Whether the automaton uses only existential branching.
bool is_existential() const
{
return g_.is_existential();
}
#ifndef SWIG
auto states() const
SPOT_RETURN(g_.states());
auto states()
SPOT_RETURN(g_.states());
internal::all_trans<const graph_t>
edges() const noexcept
{
return g_.edges();
}
#endif
internal::all_trans<graph_t>
edges() noexcept
{
return g_.edges();
}
#ifndef SWIG
auto edge_vector() const
SPOT_RETURN(g_.edge_vector());
auto edge_vector()
SPOT_RETURN(g_.edge_vector());
#endif
bool is_dead_edge(unsigned t) const
{
return g_.is_dead_edge(t);
}
bool is_dead_edge(const graph_t::edge_storage_t& t) const
{
return g_.is_dead_edge(t);
}
/// \brief Merge edges that can be merged.
///
/// This makes two passes over the automaton to reduce the number
/// of edges with an identical pair of source and destination.
///
/// In the first pass, which is performed only on automata with
/// Fin-less acceptance, edges with the same source, destination,
/// and conditions are merged into a single edge whose set of
/// acceptance marks is the intersection of the sets of the edges.
///
/// In the second pass, edges that share their source, destination,
/// and acceptance marks are merged into a single edge whose condition
/// is the disjunction of the conditions of the original edges.
///
/// If the automaton uses some universal edges, the method
/// merge_univ_dests() is also called.
void merge_edges();
/// \brief Merge common universal destinations.
///
/// This is already called by merge_edges().
void merge_univ_dests();
/// \brief Merge states that can be merged.
///
/// Two states can be merged if the set of outgoing transitions
/// is identical, i.e., same condition, same colors, same destination.
/// Two self-loops with the same condition and colors are considered
/// identical even if they do not actually have the same destination.
///
/// The implementation will sort the edges of the automaton to
/// ease the comparison between two states. This may miss some
/// self-loop equivalences in non-deterministic automata.
///
/// States whose input have been redirected as a consequence of a
/// merge are removed from the automaton. This procedure
/// therefore renumber states.
///
/// Merging states might create duplicate transitions in the
/// automaton. For instance (1)-a->(2) and (1)-a->(3) will become
/// (1)-a->(1) and (1)-a->(1) if (1), (2) and (3) are merged into
/// (1).
///
/// \return the number of states that have been merged and removed.
unsigned merge_states();
/// \brief Like merge states, but one can chose which states are
/// candidates for merging.
///
/// \param stable Determines whether or not a stable sorting is used for
/// the edges
/// \param to_merge_ptr Determines which states are candidates.
/// If null, all states are considered
/// The actual implementation differd from merge_states().
/// It is more costly, but is more precise, in the sense that
/// more states are merged.
unsigned merge_states_of(bool stable = true,
const std::vector<bool>* to_merge_ptr = nullptr);
/// \brief Remove all dead states
///
/// Dead states are all the states that cannot be part of
/// an infinite run of the automaton. This includes
/// states without successors, unreachable states, and states
/// that only have dead successors. Transition labeled
/// by bddfalse are also removed.
///
/// This function runs in linear time on non-alternating automata,
/// but its current implementation can be quadratic when removing
/// dead states from alternating automata. (In the latter case, a
/// universal edge has to be remove when any of its destination is
/// dead, but this might cause the other destinations to become
/// dead or unreachable themselves.)
///
/// \see purge_unreachable_states
void purge_dead_states();
/// \brief Remove all unreachable states.
///
/// A state is unreachable if it cannot be reached from the
/// initial state.
///
/// Use this function if you have declared more states than you
/// actually need in the automaton. It runs in linear time.
///
/// purge_dead_states() will remove more states than
/// purge_unreachable_states(), but it is more costly.
///
/// You can pass a function to this method, which will be invoked
/// with a vector indicating the renumbering of states.
/// newst[i] == -1U means that state i is unreachable and thus deleted.
/// Otherwise, state i is renumbered newst[i].
///
/// \see purge_dead_states
typedef void (*shift_action)(const std::vector<unsigned>& newst,
void* action_data);
void purge_unreachable_states(shift_action* f = nullptr,
void* action_data = nullptr);
/// \brief Remove unused atomic propositions
///
/// Remove, from the list of atomic propositions registered by the
/// automaton, those that are not actually used by its labels.
void remove_unused_ap();
/// \brief Define the state names of this automaton using
/// the names from \a other.
///
/// If the "original-states" named property is set, it is used to
/// map the state numbers, otherwise an identity mapping is
/// assumed.
void copy_state_names_from(const const_twa_graph_ptr& other);
/// \brief Return the marks associated to a state if the
/// acceptance is state-based.
acc_cond::mark_t state_acc_sets(unsigned s) const
{
if (SPOT_UNLIKELY(!(bool)prop_state_acc()))
throw std::runtime_error
("state_acc_sets() should only be called on "
"automata with state-based acceptance");
for (auto& t: g_.out(s))
// Stop at the first edge, since the remaining should be
// labeled identically.
return t.acc;
return {};
}
/// \brief Tell if a state is accepting.
///
/// This makes only sense for automata using state-based
/// acceptance, and a simple acceptance condition like Büchi or
/// co-Büchi.
///@{
bool state_is_accepting(unsigned s) const
{
if (SPOT_UNLIKELY(!(bool)prop_state_acc()))
throw std::runtime_error
("state_is_accepting() should only be called on "
"automata with state-based acceptance");
for (auto& t: g_.out(s))
// Stop at the first edge, since the remaining should be
// labeled identically.
return acc().accepting(t.acc);
return false;
}
bool state_is_accepting(const state* s) const
{
return state_is_accepting(state_number(s));
}
///@}
bool operator==(const twa_graph& aut) const
{
auto& dests1 = g_.dests_vector();
auto& dests2 = aut.get_graph().dests_vector();
if (num_states() != aut.num_states() ||
num_edges() != aut.num_edges() ||
num_sets() != aut.num_sets() ||
dests1.size() != dests2.size())
return false;
auto& trans1 = edge_vector();
auto& trans2 = aut.edge_vector();
if (!std::equal(trans1.begin() + 1, trans1.end(),
trans2.begin() + 1))
return false;
return std::equal(dests1.begin(), dests1.end(),
dests2.begin());
}
#ifndef SWIG
/// \brief Renumber all states, and drop some.
///
/// This semi-internal function is a wrapper around
/// digraph::defrag_state() that additionally deals with universal
/// branching.
///
/// This method is used to remove some states that have been
/// previously detected to be unreachable in order to "defragment"
/// the state vector. When a state is removed, all its outgoing
/// transition are removed as well. Removing reachable states
/// should NOT be attempted, because the incoming edges will be
/// dangling.
///
/// \param newst A vector indicating how each state should be
/// renumbered. Use -1U to mark an unreachable state for removal.
/// Ignoring the occurrences of -1U, the renumbering is expected
/// to satisfy newst[i] ≤ i for all i. If the automaton contains
/// universal branching, this vector is likely to be modified by
/// this function, so do not reuse it afterwards.
///
/// \param used_states the number of states used after
/// renumbering.
///@{
void defrag_states(std::vector<unsigned>& newst,
unsigned used_states);
// prototype was changed in Spot 2.10
SPOT_DEPRECATED("use reference version of this method")
void defrag_states(std::vector<unsigned>&& newst,
unsigned used_states)
{
return defrag_states(newst, used_states);
}
///@}
#endif // SWIG
/// \brief Make a state dead.
///
/// A state is dead if it has no successors. So this function
/// simply erases all edges leaving \a state.
///
/// It can be used together with purge_dead_states() to remove a
/// set of states from an automaton.
void kill_state(unsigned state);
/// \brief Print the data structures used to represent the
/// automaton in dot's format.
///
/// \a opt should be a substring of "vdp" if you want to print
/// only the vectors, data, or properties.
void dump_storage_as_dot(std::ostream& out,
const char* opt = nullptr) const;
};
// This is a workaround for
#if __GNUC__ == 8 && __GNUC_MINOR__ == 2
# define SPOT_make_twa_graph__(...) \
std::shared_ptr<twa_graph>(new twa_graph(__VA_ARGS__))
#else
# define SPOT_make_twa_graph__(...) \
std::make_shared<twa_graph>(__VA_ARGS__)
#endif
/// \ingroup twa_representation
/// \brief Build an explicit automaton from all states of \a aut,
inline twa_graph_ptr make_twa_graph(const bdd_dict_ptr& dict)
{
return SPOT_make_shared_enabled__(twa_graph, dict);
}
/// \ingroup twa_representation
/// \brief Build an explicit automaton from all states of \a aut,
inline twa_graph_ptr make_twa_graph(const twa_graph_ptr& aut,
twa::prop_set p)
{
return SPOT_make_shared_enabled__(twa_graph, aut, p);
}
/// \ingroup twa_representation
/// \brief Clone a twa_graph
///
/// The \a p and \a preserve_name_properties argument are used to
/// select what automata properties should be preserved by the copy.
///
inline twa_graph_ptr make_twa_graph(const const_twa_graph_ptr& aut,
twa::prop_set p,
bool preserve_name_properties = false)
{
twa_graph_ptr res = SPOT_make_shared_enabled__(twa_graph, aut, p);
if (preserve_name_properties)
res->copy_named_properties_of(aut);
return res;
}
/// \ingroup twa_representation
/// \brief Build an explicit automaton from all states of \a aut,
///
/// This overload works using the abstract interface for automata.
///
/// Set \a preserve_names to preserve state names, and set \a max_states
/// to a maximum number of states to keep. States with successors that
/// have not been kept will be marked as incomplete; this is mostly useful
/// to display a subset of a large state space.
SPOT_API twa_graph_ptr
make_twa_graph(const const_twa_ptr& aut, twa::prop_set p,
bool preserve_names = false,
// parentheses for SWIG, see
// https://github.com/swig/swig/issues/993
unsigned max_states = -(1U));
}