spot/spot/tl/randomltl.cc
Alexandre Duret-Lutz 844fb887d9 ltlmix: add support for the I/O variants
* bin/ltlmix.cc: Add options --ins, --outs, as well as the
two-argument form of -A/-P.
* bin/common_ioap.hh, bin/common_ioap.cc (is_output): New function.
* spot/tl/apcollect.cc, spot/tl/apcollect.hh (create_atomic_prop_set):
Allow the prefix string to be changed.
* spot/tl/randomltl.cc, spot/tl/randomltl.hh: Add support for an I/O
version with two set of atomic proposition, and a predicate to decide
if the original proposition was input or output.
* tests/core/ltlmix.test: More tests.
2024-08-26 11:42:09 +02:00

737 lines
21 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) by the Spot authors, see the AUTHORS file for details.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "config.h"
#include <cassert>
#include <spot/tl/randomltl.hh>
#include <spot/misc/random.hh>
#include <iostream>
#include <cstring>
#include <spot/misc/optionmap.hh>
namespace spot
{
namespace
{
// Rename atomic propositions in f using atomic propositions drawn
// randomly from \a ap. Avoid repetition if \a ap is large
// enough. If \a lit is true, change the polarity of the atomic
// proposition randomly.
//
// If \a out_ap is non-empty, use \a is_output to decide if an original
// atomic proposition should be replaced by an AP from ap or out_ap.
static formula
randomize_ap(formula f, const atomic_prop_set* ap,
const atomic_prop_set* out_ap,
std::function<bool(formula)> is_output,
bool lit)
{
std::vector<formula> randap(ap->begin(), ap->end());
std::vector<formula> randap_out;
if (out_ap && is_output != nullptr)
{
randap_out.reserve(out_ap->size());
randap_out.insert(randap_out.begin(), out_ap->begin(), out_ap->end());
}
if (randap_out.empty())
{
is_output = nullptr;
out_ap = nullptr;
}
unsigned current_range = randap.size();
unsigned current_out_range = randap_out.size();
std::map<formula, formula> mapping;
auto relabel = [&](formula f, auto self) -> formula
{
if (f.is(op::ap))
{
// Did we already rename this AP?
if (auto it = mapping.find(f); it != mapping.end())
return it->second;
bool is_out = false;
if (out_ap && is_output != nullptr)
is_out = is_output(f);
formula ap;
if (!is_out)
{
// If we exhausted all possible AP, start again
if (current_range == 0)
current_range = randap.size();
unsigned pos = mrand(current_range--);
ap = randap[pos];
std::swap(randap[current_range], randap[pos]);
}
else
{
// If we exhausted all possible AP, start again
if (current_out_range == 0)
current_out_range = randap_out.size();
unsigned pos = mrand(current_out_range--);
ap = randap_out[pos];
std::swap(randap_out[current_out_range], randap_out[pos]);
}
if (lit && drand() < 0.5)
ap = formula::Not(ap);
return mapping[f] = ap;
}
return f.map(self, self);
};
return relabel(f, relabel);
}
static formula
ap_builder(const random_formula* rl, int n)
{
assert(n == 1);
(void) n;
atomic_prop_set::const_iterator i = rl->ap()->begin();
std::advance(i, mrand(rl->ap()->size()));
return *i;
}
static formula
pattern_builder(const random_formula* rl, int n)
{
assert(n == 1);
(void) n;
atomic_prop_set::const_iterator i = rl->patterns()->begin();
std::advance(i, mrand(rl->patterns()->size()));
formula f = *i;
const atomic_prop_set* ap = rl->ap();
const atomic_prop_set* out_ap = rl->output_ap();
auto is_output = rl->is_output_fun();
if (ap && ap->size() > 0)
f = randomize_ap(f, ap, out_ap, is_output,
rl->draw_literals());
return f;
}
static formula
true_builder(const random_formula*, int n)
{
assert(n == 1);
(void) n;
return formula::tt();
}
static formula
false_builder(const random_formula*, int n)
{
assert(n == 1);
(void) n;
return formula::ff();
}
static formula
eword_builder(const random_formula*, int n)
{
assert(n == 1);
(void) n;
return formula::eword();
}
static formula
boolform_builder(const random_formula* rl, int n)
{
assert(n >= 1);
const random_sere* rs = static_cast<const random_sere*>(rl);
return rs->rb.generate(n);
}
template <op Op>
static formula
unop_builder(const random_formula* rl, int n)
{
assert(n >= 2);
return formula::unop(Op, rl->generate(n - 1));
}
static formula
closure_builder(const random_formula* rl, int n)
{
assert(n >= 2);
const random_psl* rp = static_cast<const random_psl*>(rl);
return formula::Closure(rp->rs.generate(n - 1));
}
template <op Op>
static formula
binop_builder(const random_formula* rl, int n)
{
assert(n >= 3);
--n;
int l; // size of left
if ((n & 1) | rl->has_unary_ops())
l = rrand(1, n - 1);
else
// if we do not have unary ops, we must split n in two odd sizes
l = rrand(0, n/2 - 1)*2 + 1;
// Force the order of generation of operands to be right, then
// left. This is historical, because gcc evaluates argument
// from right to left and we used to make the two calls to
// generate() inside of the call to instance() before
// discovering that clang would perform the nested calls from
// left to right.
formula right = rl->generate(n - l);
return formula::binop(Op, rl->generate(l), right);
}
template <op Op>
static formula
binop_SERELTL_builder(const random_formula* rl, int n)
{
assert(n >= 3);
--n;
const random_psl* rp = static_cast<const random_psl*>(rl);
int l; // size of left
bool left_must_be_odd = !rp->rs.has_unary_ops();
bool right_must_be_odd = !rl->has_unary_ops();
if (n & 1)
{
if (left_must_be_odd && !right_must_be_odd)
l = rrand(0, n/2 - 1) * 2 + 1;
else if (!left_must_be_odd && right_must_be_odd)
l = rrand(1, n/2) * 2;
else
l = rrand(1, n - 1);
}
else
{
if (left_must_be_odd || right_must_be_odd)
l = rrand(0, n/2 - 1) * 2 + 1;
else
l = rrand(1, n - 1);
}
// See comment in binop_builder.
auto right = rl->generate(n - l);
return formula::binop(Op, rp->rs.generate(l), right);
}
template <op Op>
static formula
bunop_unbounded_builder(const random_formula* rl, int n)
{
assert(n >= 2);
return formula::bunop(Op, rl->generate(n - 1));
}
template <op Op>
static formula
bunop_bounded_builder(const random_formula* rl, int n)
{
assert(n >= 2);
int min = rrand(0, 2);
int max = rrand(min, 3);
return formula::bunop(Op, rl->generate(n - 1), min, max);
}
template <op Op>
static formula
bunop_bool_bounded_builder(const random_formula* rl, int n)
{
assert(n >= 2);
int min = rrand(0, 2);
int max = rrand(min, 3);
const random_sere* rp = static_cast<const random_sere*>(rl);
return formula::bunop(Op, rp->rb.generate(n - 1), min, max);
}
template <op Op>
static formula
multop_builder(const random_formula* rl, int n)
{
assert(n >= 3);
--n;
// See comment in binop_builder.
int l; // size of left
if ((n & 1) | rl->has_unary_ops())
l = rrand(1, n - 1);
else
l = rrand(0, n/2 - 1)*2 + 1;
formula right = rl->generate(n - l);
return formula::multop(Op, {rl->generate(l), right});
}
} // anonymous
void
random_formula::op_proba::setup(const char* name, int min_n, builder build)
{
this->name = name;
this->min_n = min_n;
this->proba = 1.0;
this->build = build;
}
void
random_formula::update_sums()
{
total_1_ = 0.0;
total_2_ = 0.0;
total_2_and_more_ = 0.0;
for (unsigned i = 0; i < proba_size_; ++i)
{
if (proba_[i].min_n == 1)
{
total_1_ += proba_[i].proba;
if (proba_ + i >= proba_2_)
total_2_ += proba_[i].proba;
if (proba_ + i >= proba_2_or_more_)
total_2_and_more_ += proba_[i].proba;
}
else if (proba_[i].min_n == 2)
{
total_2_ += proba_[i].proba;
if (proba_ + i >= proba_2_or_more_)
total_2_and_more_ += proba_[i].proba;
}
else if (proba_[i].min_n > 2)
total_2_and_more_ += proba_[i].proba;
else
SPOT_UNREACHABLE(); // unexpected max_n
}
assert(total_2_and_more_ >= total_2_);
}
formula
random_formula::generate(int n) const
{
assert(n > 0);
double r = drand();
op_proba* p;
// Approximate impossible cases.
if (n == 1 && total_1_ == 0.0)
{
if (total_2_ != 0.0)
n = 2;
else
n = 3;
}
else if (n == 2 && total_2_ == 0.0)
{
if (total_1_ != 0.0)
n = 1;
else
n = 3;
}
else if (n > 2 && total_2_and_more_ == 0.0)
{
if (total_1_ != 0.0)
n = 1;
else
assert(total_2_ == 0.0);
}
if (n == 1)
{
r *= total_1_;
p = proba_;
}
else if (n == 2)
{
r *= total_2_;
p = proba_2_;
}
else
{
r *= total_2_and_more_;
p = proba_2_or_more_;
}
double s = p->proba;
while (s < r)
{
++p;
s += p->proba;
}
return p->build(this, n);
}
const char*
random_formula::parse_options(char* options)
{
if (!options)
return nullptr;
char* key = strtok(options, "=\t, :;");
while (key)
{
char* value = strtok(nullptr, "=\t, :;");
if (!value)
return key;
char* endptr;
double res = strtod(value, &endptr);
if (*endptr)
return value;
unsigned i;
for (i = 0; i < proba_size_; ++i)
{
if (('a' <= *proba_[i].name && *proba_[i].name <= 'z'
&& !strcasecmp(proba_[i].name, key))
|| !strcmp(proba_[i].name, key))
{
proba_[i].proba = res;
break;
}
}
if (i == proba_size_)
return key;
key = strtok(nullptr, "=\t, :;");
}
update_sums();
return nullptr;
}
std::ostream&
random_formula::dump_priorities(std::ostream& os) const
{
for (unsigned i = 0; i < proba_size_; ++i)
os << proba_[i].name << '\t' << proba_[i].proba << '\n';
return os;
}
// SEREs
random_sere::random_sere(const atomic_prop_set* ap)
: random_formula(12, ap), rb(ap)
{
proba_[0].setup("eword", 1, eword_builder);
proba_2_ = proba_ + 1;
proba_2_or_more_ = proba_ + 1;
proba_[1].setup("boolform", 1, boolform_builder);
proba_[2].setup("star", 2, bunop_unbounded_builder<op::Star>);
proba_[3].setup("star_b", 2, bunop_bounded_builder<op::Star>);
proba_[4].setup("fstar", 2, bunop_unbounded_builder<op::FStar>);
proba_[5].setup("fstar_b", 2, bunop_bounded_builder<op::FStar>);
proba_[6].setup("first_match", 2, unop_builder<op::first_match>);
proba_[7].setup("and", 3, multop_builder<op::AndRat>);
proba_[8].setup("andNLM", 3, multop_builder<op::AndNLM>);
proba_[9].setup("or", 3, multop_builder<op::OrRat>);
proba_[10].setup("concat", 3, multop_builder<op::Concat>);
proba_[11].setup("fusion", 3, multop_builder<op::Fusion>);
update_sums();
}
// Boolean formulae
random_boolean::random_boolean(const atomic_prop_set* ap,
const atomic_prop_set* output_ap,
std::function<bool(formula)> is_output,
const atomic_prop_set* patterns)
: random_formula(9, ap, output_ap, is_output)
{
if (patterns)
{
proba_[0].setup("sub", 1, pattern_builder);
patterns_ = patterns;
proba_[0].proba = patterns_->size();
}
else
{
proba_[0].setup("ap", 1, ap_builder);
proba_[0].proba = ap_->size();
}
proba_[1].setup("false", 1, false_builder);
proba_[2].setup("true", 1, true_builder);
if (patterns)
{
proba_[1].proba = 0.0;
proba_[2].proba = 0.0;
}
proba_2_or_more_ = proba_2_ = proba_ + 3;
proba_[3].setup("not", 2, unop_builder<op::Not>);
proba_[4].setup("equiv", 3, binop_builder<op::Equiv>);
proba_[5].setup("implies", 3, binop_builder<op::Implies>);
proba_[6].setup("xor", 3, binop_builder<op::Xor>);
proba_[7].setup("and", 3, multop_builder<op::And>);
proba_[8].setup("or", 3, multop_builder<op::Or>);
update_sums();
}
// LTL formulae
void
random_ltl::setup_proba_(const atomic_prop_set* patterns)
{
if (patterns)
{
proba_[0].setup("sub", 1, pattern_builder);
patterns_ = patterns;
proba_[0].proba = patterns_->size();
}
else
{
proba_[0].setup("ap", 1, ap_builder);
proba_[0].proba = ap_->size();
}
proba_[1].setup("false", 1, false_builder);
proba_[2].setup("true", 1, true_builder);
proba_2_or_more_ = proba_2_ = proba_ + 3;
proba_[3].setup("not", 2, unop_builder<op::Not>);
proba_[4].setup("F", 2, unop_builder<op::F>);
proba_[5].setup("G", 2, unop_builder<op::G>);
proba_[6].setup("X", 2, unop_builder<op::X>);
proba_[7].setup("equiv", 3, binop_builder<op::Equiv>);
proba_[8].setup("implies", 3, binop_builder<op::Implies>);
proba_[9].setup("xor", 3, binop_builder<op::Xor>);
proba_[10].setup("R", 3, binop_builder<op::R>);
proba_[11].setup("U", 3, binop_builder<op::U>);
proba_[12].setup("W", 3, binop_builder<op::W>);
proba_[13].setup("M", 3, binop_builder<op::M>);
proba_[14].setup("and", 3, multop_builder<op::And>);
proba_[15].setup("or", 3, multop_builder<op::Or>);
}
random_ltl::random_ltl(const atomic_prop_set* ap,
const atomic_prop_set* output_ap,
std::function<bool(formula)> is_output,
const atomic_prop_set* patterns)
: random_formula(16, ap, output_ap, is_output)
{
setup_proba_(patterns);
update_sums();
}
random_ltl::random_ltl(int size, const atomic_prop_set* ap,
const atomic_prop_set* output_ap,
std::function<bool(formula)> is_output)
: random_formula(size, ap, output_ap, is_output)
{
setup_proba_(nullptr);
// No call to update_sums(), this functions is always
// called by the random_psl constructor.
}
// PSL
random_psl::random_psl(const atomic_prop_set* ap)
: random_ltl(19, ap), rs(ap)
{
// FIXME: This looks very fragile.
memmove(proba_ + 8, proba_ + 7,
((proba_ + 16) - (proba_ + 7)) * sizeof(*proba_));
proba_[7].setup("Closure", 2, closure_builder);
proba_[17].setup("EConcat", 3, binop_SERELTL_builder<op::EConcat>);
proba_[18].setup("UConcat", 3, binop_SERELTL_builder<op::UConcat>);
update_sums();
}
randltlgenerator::randltlgenerator(atomic_prop_set aprops,
const option_map& opts,
char* opt_pL,
char* opt_pS,
char* opt_pB,
const atomic_prop_set* subs,
std::function<bool(formula)> is_output)
: opt_simpl_level_(opts.get("simplification_level", 3)),
simpl_(tl_simplifier_options{opt_simpl_level_})
{
aprops_ = aprops;
output_ = opts.get("output", randltlgenerator::LTL);
opt_seed_ = opts.get("seed", 0);
opt_tree_size_min_ = opts.get("tree_size_min", 15);
opt_tree_size_max_ = opts.get("tree_size_max", 15);
opt_unique_ = opts.get("unique", 1);
opt_wf_ = opts.get("wf", 0);
unsigned opt_output = opts.get("out_ap_size");
if (opt_output > 0)
aprops_out_ = create_atomic_prop_set(opt_output, "o");
bool lit = opts.get("literals", 0);
const char* tok_pL = nullptr;
const char* tok_pS = nullptr;
const char* tok_pB = nullptr;
switch (output_)
{
case randltlgenerator::LTL:
rf_ = new random_ltl(&aprops_, &aprops_out_, is_output, subs);
rf_->draw_literals(lit);
if (opt_pS)
throw std::invalid_argument("Cannot set SERE priorities with "
"LTL output");
if (opt_pB)
throw std::invalid_argument("Cannot set Boolean priorities with "
"LTL output");
tok_pL = rf_->parse_options(opt_pL);
break;
case randltlgenerator::Bool:
rf_ = new random_boolean(&aprops_, &aprops_out_, is_output, subs);
rf_->draw_literals(lit);
tok_pB = rf_->parse_options(opt_pB);
if (opt_pL)
throw std::invalid_argument("Cannot set LTL priorities with "
"Boolean output");
if (opt_pS)
throw std::invalid_argument("Cannot set SERE priorities "
"with Boolean output");
break;
case randltlgenerator::SERE:
rf_ = rs_ = new random_sere(&aprops_);
tok_pS = rs_->parse_options(opt_pS);
tok_pB = rs_->rb.parse_options(opt_pB);
if (opt_pL)
throw std::invalid_argument("Cannot set LTL priorities "
"with SERE output");
break;
case randltlgenerator::PSL:
rf_ = rp_ = new random_psl(&aprops_);
rs_ = &rp_->rs;
tok_pL = rp_->parse_options(opt_pL);
tok_pS = rs_->parse_options(opt_pS);
tok_pB = rs_->rb.parse_options(opt_pB);
break;
}
if (tok_pL)
throw std::invalid_argument("failed to parse LTL priorities near "
+ std::string(tok_pL));
if (tok_pS)
throw std::invalid_argument("failed to parse SERE priorities near "
+ std::string(tok_pS));
if (tok_pB)
throw std::invalid_argument("failed to parse Boolean priorities near "
+ std::string(tok_pB));
spot::srand(opt_seed_);
}
randltlgenerator::randltlgenerator(int aprops_n,
const option_map& opts,
char* opt_pL,
char* opt_pS,
char* opt_pB,
const atomic_prop_set* subs,
std::function<bool(formula)> is_output)
: randltlgenerator(create_atomic_prop_set(aprops_n,
is_output == nullptr ? "p" : "i"),
opts, opt_pL, opt_pS, opt_pB, subs, is_output)
{
}
randltlgenerator::~randltlgenerator()
{
delete rf_;
}
formula randltlgenerator::next()
{
unsigned trials = MAX_TRIALS;
bool ignore;
formula f = nullptr;
do
{
ignore = false;
int size = opt_tree_size_min_;
if (size != opt_tree_size_max_)
size = spot::rrand(size, opt_tree_size_max_);
f = rf_->generate(size);
if (opt_wf_)
{
atomic_prop_set s = aprops_;
remove_some_props(s);
f = formula::And({f, GF_n()});
}
if (opt_simpl_level_)
f = simpl_.simplify(f);
if (opt_unique_ && !unique_set_.insert(f).second)
ignore = true;
} while (ignore && --trials);
if (trials <= 0)
return nullptr;
return f;
}
void
randltlgenerator::remove_some_props(atomic_prop_set& s)
{
// How many propositions to remove from s?
// (We keep at least one.)
size_t n = spot::mrand(aprops_.size());
while (n--)
{
auto i = s.begin();
std::advance(i, spot::mrand(s.size()));
s.erase(i);
}
}
// GF(p_1) & GF(p_2) & ... & GF(p_n)
formula
randltlgenerator::GF_n()
{
formula res = nullptr;
for (auto v: aprops_)
{
formula f = formula::G(formula::F(v));
if (res)
res = formula::And({f, res});
else
res = f;
}
return res;
}
void
randltlgenerator::dump_ltl_priorities(std::ostream& os)
{
rf_->dump_priorities(os);
}
void
randltlgenerator::dump_bool_priorities(std::ostream& os)
{
rf_->dump_priorities(os);
}
void
randltlgenerator::dump_psl_priorities(std::ostream& os)
{
rp_->dump_priorities(os);
}
void
randltlgenerator::dump_sere_priorities(std::ostream& os)
{
rs_->dump_priorities(os);
}
void
randltlgenerator::dump_sere_bool_priorities(std::ostream& os)
{
rs_->rb.dump_priorities(os);
}
}