spot/spot/twaalgos/complement.cc
Alexandre Duret-Lutz 852abc770f complement: fix a regression with 2.9.8
Reported by Reuben Rowe.

* spot/twaalgos/complement.cc (complement): Remove the hard-coded
simul=0 option on automata with >32 states.  In 2.10 simul=0 now
implies det-simul=0, causing the regression, and most importantly it
is not needed anymore, because we have other threashold like simul-max
and simul-trans-pruning in place.
* tests/core/complement.test: Add Reuben's automaton as test case.
* NEWS: Mention the fix.
2022-01-14 20:26:44 +01:00

538 lines
16 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) 2013-2015, 2017-2021 Laboratoire de Recherche et
// Développement de l'Epita.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "config.h"
#include <deque>
#include <map>
#include <spot/twaalgos/complement.hh>
#include <spot/twaalgos/dualize.hh>
#include <spot/twaalgos/isdet.hh>
#include <spot/twaalgos/alternation.hh>
#include <spot/twaalgos/postproc.hh>
#include <spot/twaalgos/strength.hh>
#include <spot/twaalgos/sccinfo.hh>
namespace spot
{
twa_graph_ptr
dtwa_complement(const const_twa_graph_ptr& aut)
{
if (!is_deterministic(aut))
throw
std::runtime_error("dtwa_complement() requires a deterministic input");
return dualize(aut);
}
namespace
{
enum ncsb
{
ncsb_n = 0, // non deterministic
ncsb_c = 2, // needs check
ncsb_cb = 3, // needs check AND in breakpoint
ncsb_s = 4, // safe
ncsb_m = 1, // missing
};
typedef std::vector<ncsb> mstate;
typedef std::vector<std::pair<unsigned, ncsb>> small_mstate;
struct small_mstate_hash
{
size_t
operator()(small_mstate s) const noexcept
{
size_t hash = 0;
for (const auto& p: s)
{
hash = wang32_hash(hash ^ ((p.first<<2) | p.second));
}
return hash;
}
};
class ncsb_complementation
{
private:
// The source automaton.
const const_twa_graph_ptr aut_;
// SCCs information of the source automaton.
scc_info si_;
// Number of states in the input automaton.
unsigned nb_states_;
// The complement being built.
twa_graph_ptr res_;
// Association between NCSB states and state numbers of the
// complement.
std::unordered_map<small_mstate, unsigned, small_mstate_hash> ncsb2n_;
// States to process.
std::deque<std::pair<mstate, unsigned>> todo_;
// Support for each state of the source automaton.
std::vector<bdd> support_;
// Propositions compatible with all transitions of a state.
std::vector<bdd> compat_;
// Whether a SCC is deterministic or not
std::vector<bool> is_deter_;
// Whether a state only has accepting transitions
std::vector<bool> is_accepting_;
// State names for graphviz display
std::vector<std::string>* names_;
// Show NCSB states in state name to help debug
bool show_names_;
std::string
get_name(const small_mstate& ms)
{
std::string res = "{";
bool first_state = true;
for (const auto& p: ms)
if (p.second == ncsb_n)
{
if (!first_state)
res += ",";
first_state = false;
res += std::to_string(p.first);
}
res += "},{";
first_state = true;
for (const auto& p: ms)
if (p.second & ncsb_c)
{
if (!first_state)
res += ",";
first_state = false;
res += std::to_string(p.first);
}
res += "},{";
first_state = true;
for (const auto& p: ms)
if (p.second == ncsb_s)
{
if (!first_state)
res += ",";
first_state = false;
res += std::to_string(p.first);
}
res += "},{";
first_state = true;
for (const auto& p: ms)
if (p.second == ncsb_cb)
{
if (!first_state)
res += ",";
first_state = false;
res += std::to_string(p.first);
}
return res + "}";
}
small_mstate
to_small_mstate(const mstate& ms)
{
unsigned count = 0;
for (unsigned i = 0; i < nb_states_; ++i)
count+= (ms[i] != ncsb_m);
small_mstate small;
small.reserve(count);
for (unsigned i = 0; i < nb_states_; ++i)
if (ms[i] != ncsb_m)
small.emplace_back(i, ms[i]);
return small;
}
// From a NCSB state, looks for a duplicate in the map before
// creating a new state if needed.
unsigned
new_state(mstate&& s)
{
auto p = ncsb2n_.emplace(to_small_mstate(s), 0);
if (p.second) // This is a new state
{
p.first->second = res_->new_state();
if (show_names_)
names_->push_back(get_name(p.first->first));
todo_.emplace_back(std::move(s), p.first->second);
}
return p.first->second;
}
void
ncsb_successors(mstate&& ms, unsigned origin, bdd letter)
{
std::vector<mstate> succs;
succs.emplace_back(nb_states_, ncsb_m);
// Handle S states.
//
// Treated first because we can escape early if the letter
// leads to an accepting transition for a Safe state.
for (unsigned i = 0; i < nb_states_; ++i)
{
if (ms[i] != ncsb_s)
continue;
for (const auto& t: aut_->out(i))
{
if (!bdd_implies(letter, t.cond))
continue;
if (t.acc || is_accepting_[t.dst])
// Exit early; transition is forbidden for safe
// state.
return;
succs[0][t.dst] = ncsb_s;
// No need to look for other compatible transitions
// for this state; it's in the deterministic part of
// the automaton
break;
}
}
// Handle C states.
for (unsigned i = 0; i < nb_states_; ++i)
{
if (!(ms[i] & ncsb_c))
continue;
bool has_succ = false;
for (const auto& t: aut_->out(i))
{
if (!bdd_implies(letter, t.cond))
continue;
has_succ = true;
// state can become safe, if transition is accepting
// and destination isn't an accepting state
if (t.acc)
{
// double all the current possible states
unsigned length = succs.size();
for (unsigned j = 0; j < length; ++j)
{
if (succs[j][t.dst] == ncsb_m)
{
if (!is_accepting_[t.dst])
{
succs.push_back(succs[j]);
succs.back()[t.dst] = ncsb_s;
}
succs[j][t.dst] = ncsb_c;
}
}
}
else // state stays in check
{
// remove states that should stay in s (ncsb_s),
// and mark the other as ncsb_c.
// The first two loops form a kind of remove_if()
// that set the non-removed states to ncsb_c.
auto it = succs.begin();
auto end = succs.end();
for (; it != end; ++it)
if ((*it)[t.dst] != ncsb_s)
(*it)[t.dst] = ncsb_c;
else
break;
if (it != end)
for (auto it2 = it; ++it2 != end;)
if ((*it2)[t.dst] != ncsb_s)
*it++ = std::move(*it2);
succs.erase(it, end);
}
// No need to look for other compatible transitions
// for this state; it's in the deterministic part of
// the automaton
break;
}
if (!has_succ && !is_accepting_[i])
return;
}
// Handle N states.
for (unsigned i = 0; i < nb_states_; ++i)
{
if (ms[i] != ncsb_n)
continue;
for (const auto& t: aut_->out(i))
{
if (!bdd_implies(letter, t.cond))
continue;
if (is_deter_[si_.scc_of(t.dst)])
{
// double all the current possible states
unsigned length = succs.size();
for (unsigned j = 0; j < length; ++j)
{
if (succs[j][t.dst] == ncsb_m)
{
// Can become safe if the destination is
// not an accepting state.
if (!is_accepting_[t.dst])
{
succs.push_back(succs[j]);
succs.back()[t.dst] = ncsb_s;
}
succs[j][t.dst] = ncsb_c;
}
}
}
else
for (auto& succ: succs)
succ[t.dst] = ncsb_n;
}
}
// Revisit B states to see if they still exist in successors.
// This is done at the end because we need to know all of the
// states present in C before this stage
bool b_empty = true;
for (unsigned i = 0; i < nb_states_; ++i)
{
if (ms[i] != ncsb_cb)
continue;
// The original B set wasn't empty
b_empty = false;
for (const auto& t: aut_->out(i))
{
if (!bdd_implies(letter, t.cond))
continue;
for (auto& succ: succs)
{
if (succ[t.dst] == ncsb_c)
succ[t.dst] = ncsb_cb;
}
// No need to look for other compatible transitions
// for this state; it's in the deterministic part of
// the automaton
break;
}
}
// If B was empty, then set every c_not_b to cb in successors
if (b_empty)
for (auto& succ: succs)
for (unsigned i = 0; i < succ.size(); ++i)
if (succ[i] == ncsb_c)
succ[i] = ncsb_cb;
// create the automaton states
for (auto& succ: succs)
{
bool b_empty = true;
for (const auto& state: succ)
if (state == ncsb_cb)
{
b_empty = false;
break;
}
if (b_empty) // becomes accepting
{
for (unsigned i = 0; i < succ.size(); ++i)
if (succ[i] == ncsb_c)
succ[i] = ncsb_cb;
unsigned dst = new_state(std::move(succ));
res_->new_edge(origin, dst, letter, {0});
}
else
{
unsigned dst = new_state(std::move(succ));
res_->new_edge(origin, dst, letter);
}
}
}
public:
ncsb_complementation(const const_twa_graph_ptr& aut, bool show_names)
: aut_(aut),
si_(aut),
nb_states_(aut->num_states()),
support_(nb_states_),
compat_(nb_states_),
is_accepting_(nb_states_),
show_names_(show_names)
{
res_ = make_twa_graph(aut->get_dict());
res_->copy_ap_of(aut);
res_->set_buchi();
// Generate bdd supports and compatible options for each state.
// Also check if all its transitions are accepting.
for (unsigned i = 0; i < nb_states_; ++i)
{
bdd res_support = bddtrue;
bdd res_compat = bddfalse;
bool accepting = true;
bool has_transitions = false;
for (const auto& out: aut->out(i))
{
has_transitions = true;
res_support &= bdd_support(out.cond);
res_compat |= out.cond;
if (!out.acc)
accepting = false;
}
support_[i] = res_support;
compat_[i] = res_compat;
is_accepting_[i] = accepting && has_transitions;
}
// Compute which SCCs are part of the deterministic set.
is_deter_ = semidet_sccs(si_);
if (show_names_)
{
names_ = new std::vector<std::string>();
res_->set_named_prop("state-names", names_);
}
// Because we only handle one initial state, we assume it
// belongs to the N set. (otherwise the automaton would be
// deterministic)
unsigned init_state = aut->get_init_state_number();
mstate new_init_state(nb_states_, ncsb_m);
new_init_state[init_state] = ncsb_n;
res_->set_init_state(new_state(std::move(new_init_state)));
}
twa_graph_ptr
run()
{
// Main stuff happens here
while (!todo_.empty())
{
auto top = todo_.front();
todo_.pop_front();
mstate ms = top.first;
// Compute support of all available states.
bdd msupport = bddtrue;
bdd n_s_compat = bddfalse;
bdd c_compat = bddtrue;
bool c_empty = true;
for (unsigned i = 0; i < nb_states_; ++i)
if (ms[i] != ncsb_m)
{
msupport &= support_[i];
if (ms[i] == ncsb_n || ms[i] == ncsb_s || is_accepting_[i])
n_s_compat |= compat_[i];
else
{
c_empty = false;
c_compat &= compat_[i];
}
}
bdd all;
if (!c_empty)
all = c_compat;
else
{
all = n_s_compat;
if (all != bddtrue)
{
mstate empty_state(nb_states_, ncsb_m);
res_->new_edge(top.second,
new_state(std::move(empty_state)),
!all,
{0});
}
}
for (bdd one: minterms_of(all, msupport))
// Compute all new states available from the generated
// letter.
ncsb_successors(std::move(ms), top.second, one);
}
res_->merge_edges();
return res_;
}
};
}
twa_graph_ptr
complement_semidet(const const_twa_graph_ptr& aut, bool show_names)
{
if (!is_semi_deterministic(aut))
throw std::runtime_error
("complement_semidet() requires a semi-deterministic input");
auto ncsb = ncsb_complementation(aut, show_names);
return ncsb.run();
}
twa_graph_ptr
complement(const const_twa_graph_ptr& aut, const output_aborter* aborter)
{
if (!aut->is_existential() || is_universal(aut))
return dualize(aut);
if (is_very_weak_automaton(aut))
return remove_alternation(dualize(aut), aborter);
// Determinize
spot::option_map m;
if (aborter)
{
m.set("det-max-states", aborter->max_states());
m.set("det-max-edges", aborter->max_edges());
}
// In addition to the above options, the simulation-based
// optimization of the determinization is already restricted by
// the default values of simul-max and simul-trans-pruning.
// (See spot-x(7) for details.)
spot::postprocessor p(&m);
p.set_type(spot::postprocessor::Generic);
p.set_pref(spot::postprocessor::Deterministic);
p.set_level(spot::postprocessor::Low);
auto det = p.run(std::const_pointer_cast<twa_graph>(aut));
if (!det || !is_universal(det))
return nullptr;
return dualize(det);
}
}