Validity of strategies was tested relying on num_edges() which might be smaller than the edge_number * spot/twaalgos/game.cc: Fix here * tests/python/game.py: Test here
524 lines
No EOL
18 KiB
Python
524 lines
No EOL
18 KiB
Python
#!/usr/bin/python3
|
|
# -*- mode: python; coding: utf-8 -*-
|
|
# Copyright (C) 2020, 2022 Laboratoire de Recherche et Développement de
|
|
# l'EPITA.
|
|
#
|
|
# This file is part of Spot, a model checking library.
|
|
#
|
|
# Spot is free software; you can redistribute it and/or modify it
|
|
# under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
# License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
import spot, buddy
|
|
from unittest import TestCase
|
|
tc = TestCase()
|
|
|
|
g = spot.automaton("""HOA: v1 States: 9 Start: 0 AP: 2 "a" "b"
|
|
acc-name: Streett 1 Acceptance: 2 Fin(0) | Inf(1) properties:
|
|
trans-labels explicit-labels state-acc spot-state-player: 0 1 0 1 0 1
|
|
0 1 1 --BODY-- State: 0 {1} [1] 1 [1] 3 State: 1 {1} [1] 2 State: 2
|
|
{1} [0] 8 State: 3 {1} [1] 4 State: 4 {1} [0] 5 State: 5 {1} [0] 6
|
|
State: 6 {1} [1] 7 State: 7 State: 8 {1} [0] 2 --END--""")
|
|
|
|
tc.assertFalse(spot.solve_parity_game(g))
|
|
|
|
s = spot.highlight_strategy(g).to_str("HOA", "1.1")
|
|
tc.assertEqual(s, """HOA: v1.1
|
|
States: 9
|
|
Start: 0
|
|
AP: 2 "a" "b"
|
|
acc-name: Streett 1
|
|
Acceptance: 2 Fin(0) | Inf(1)
|
|
properties: trans-labels explicit-labels state-acc !complete
|
|
properties: !deterministic exist-branch
|
|
spot.highlight.states: 0 5 1 4 2 4 3 5 4 5 5 5 6 5 7 5 8 4
|
|
spot.highlight.edges: 2 5 3 4 6 5 8 5 9 4
|
|
spot.state-player: 0 1 0 1 0 1 0 1 1
|
|
--BODY--
|
|
State: 0 {1}
|
|
[1] 1
|
|
[1] 3
|
|
State: 1 {1}
|
|
[1] 2
|
|
State: 2 {1}
|
|
[0] 8
|
|
State: 3 {1}
|
|
[1] 4
|
|
State: 4 {1}
|
|
[0] 5
|
|
State: 5 {1}
|
|
[0] 6
|
|
State: 6 {1}
|
|
[1] 7
|
|
State: 7
|
|
State: 8 {1}
|
|
[0] 2
|
|
--END--""")
|
|
|
|
# Testing case where parity_game optimization
|
|
# lead to wrong results
|
|
si = spot.synthesis_info()
|
|
|
|
game = spot.automaton("""HOA: v1
|
|
States: 27
|
|
Start: 7
|
|
AP: 11 "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k"
|
|
acc-name: parity max odd 3
|
|
Acceptance: 3 Fin(2) & (Inf(1) | Fin(0))
|
|
properties: trans-labels explicit-labels trans-acc colored
|
|
properties: deterministic
|
|
spot-state-player: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|
|
controllable-AP: 0 1 2 3 4 5 6 7
|
|
--BODY--
|
|
State: 0
|
|
[t] 8 {0}
|
|
State: 1
|
|
[8&9] 8 {0}
|
|
[!8&!10 | !9&!10] 9 {0}
|
|
[!8&10 | !9&10] 10 {0}
|
|
State: 2
|
|
[8&9] 8 {0}
|
|
[!8&!10 | !9&!10] 11 {0}
|
|
[!8&10 | !9&10] 12 {0}
|
|
State: 3
|
|
[8&9] 8 {0}
|
|
[!9&!10] 13 {0}
|
|
[!8&10 | !9&10] 14 {0}
|
|
[!8&9&!10] 15 {0}
|
|
State: 4
|
|
[8&9] 8 {0}
|
|
[!8&!10 | !9&!10] 16 {0}
|
|
[!8&!9&10] 17 {0}
|
|
[!8&9&10] 18 {0}
|
|
[8&!9&10] 19 {0}
|
|
State: 5
|
|
[8&9] 8 {0}
|
|
[!9&!10] 20 {0}
|
|
[!8&10 | !9&10] 21 {0}
|
|
[!8&9&!10] 22 {0}
|
|
State: 6
|
|
[8&9] 8 {0}
|
|
[!8&!10 | !9&!10] 23 {0}
|
|
[!8&!9&10] 24 {0}
|
|
[!8&9&10] 25 {0}
|
|
[8&!9&10] 26 {0}
|
|
State: 7
|
|
[8&9] 8 {0}
|
|
[!9&!10] 13 {0}
|
|
[!8&9&!10] 15 {0}
|
|
[!8&!9&10] 17 {0}
|
|
[!8&9&10] 18 {0}
|
|
[8&!9&10] 19 {0}
|
|
State: 8
|
|
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 |
|
|
!0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 |
|
|
!0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 | !0&1&!2&!3&4&!5&!6&7 |
|
|
!0&1&!2&!3&4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 |
|
|
0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 |
|
|
0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 0 {1}
|
|
State: 9
|
|
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 |
|
|
!0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 |
|
|
!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 |
|
|
0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 1 {2}
|
|
[!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 |
|
|
!0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {2}
|
|
State: 10
|
|
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 |
|
|
!0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 |
|
|
!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 |
|
|
0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 0 {1}
|
|
[!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 |
|
|
!0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {2}
|
|
State: 11
|
|
[!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 |
|
|
!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 |
|
|
!0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 |
|
|
0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 0 {1}
|
|
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 |
|
|
!0&1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {2}
|
|
State: 12
|
|
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 |
|
|
!0&1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {2}
|
|
[!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 |
|
|
!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 |
|
|
!0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 |
|
|
0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {2}
|
|
State: 13
|
|
[!0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 |
|
|
!0&1&!2&!3&!4&5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 |
|
|
0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 |
|
|
0&!1&!2&!3&4&!5&6&!7] 1 {1}
|
|
[!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 |
|
|
0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1}
|
|
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&4&!5&!6&7] 3 {1}
|
|
[!0&!1&2&3&!4&!5&!6&7] 5 {1}
|
|
State: 14
|
|
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 |
|
|
!0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 |
|
|
!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 |
|
|
0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 0 {1}
|
|
[!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 |
|
|
!0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1}
|
|
State: 15
|
|
[!0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 |
|
|
!0&1&!2&!3&!4&5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 |
|
|
0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 |
|
|
0&!1&!2&!3&4&!5&6&!7] 1 {1}
|
|
[!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 |
|
|
0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1}
|
|
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&4&!5&!6&7] 4 {1}
|
|
[!0&!1&2&3&!4&!5&!6&7] 6 {1}
|
|
State: 16
|
|
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 |
|
|
!0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 |
|
|
!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 |
|
|
0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 1 {1}
|
|
[!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 |
|
|
!0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1}
|
|
State: 17
|
|
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 |
|
|
!0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 |
|
|
!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 |
|
|
0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 0 {1}
|
|
[!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&6&!7 |
|
|
0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1}
|
|
[!0&1&!2&3&!4&!5&!6&7] 6 {1}
|
|
State: 18
|
|
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 |
|
|
!0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 |
|
|
!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 |
|
|
0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 0 {1}
|
|
[!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&6&!7 |
|
|
0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1}
|
|
[!0&1&!2&3&!4&!5&!6&7] 5 {1}
|
|
State: 19
|
|
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&!1&2&!3&4&!5&!6&7 |
|
|
!0&!1&2&!3&4&!5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 |
|
|
!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 |
|
|
0&!1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7] 0 {1}
|
|
[!0&!1&2&3&!4&!5&!6&7 | !0&!1&2&3&!4&!5&6&!7 | !0&1&!2&3&!4&!5&!6&7 |
|
|
0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1}
|
|
[!0&1&!2&3&!4&!5&6&!7] 6 {1}
|
|
State: 20
|
|
[!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 |
|
|
!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 |
|
|
!0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 |
|
|
0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 0 {1}
|
|
[!0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 |
|
|
0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1}
|
|
[!0&!1&2&!3&!4&5&!6&7] 3 {1}
|
|
State: 21
|
|
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 |
|
|
!0&1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1}
|
|
[!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 |
|
|
!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 |
|
|
!0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 |
|
|
0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 2 {1}
|
|
State: 22
|
|
[!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 |
|
|
!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 |
|
|
!0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 |
|
|
0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 0 {1}
|
|
[!0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 | !0&1&!2&!3&!4&5&6&!7 |
|
|
0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1}
|
|
[!0&!1&2&!3&!4&5&!6&7] 4 {1}
|
|
State: 23
|
|
[!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 |
|
|
!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&!3&4&!5&6&!7 |
|
|
!0&1&!2&3&!4&!5&!6&7 | !0&1&!2&3&!4&!5&6&!7 | 0&!1&!2&!3&4&!5&!6&7 |
|
|
0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 | 0&!1&!2&3&!4&!5&6&!7] 0 {1}
|
|
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 |
|
|
!0&1&!2&!3&!4&5&6&!7 | 0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1}
|
|
State: 24
|
|
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&6&!7 |
|
|
0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1}
|
|
[!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 |
|
|
!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&6&!7 | !0&1&!2&3&!4&!5&6&!7 |
|
|
0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 |
|
|
0&!1&!2&3&!4&!5&6&!7] 2 {1}
|
|
[!0&1&!2&!3&!4&5&!6&7] 4 {1}
|
|
[!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&3&!4&!5&!6&7] 6 {1}
|
|
State: 25
|
|
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&6&!7 |
|
|
0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1}
|
|
[!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 |
|
|
!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&6&!7 | !0&1&!2&3&!4&!5&6&!7 |
|
|
0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 |
|
|
0&!1&!2&3&!4&!5&6&!7] 2 {1}
|
|
[!0&1&!2&!3&!4&5&!6&7] 3 {1}
|
|
[!0&1&!2&!3&4&!5&!6&7 | !0&1&!2&3&!4&!5&!6&7] 5 {1}
|
|
State: 26
|
|
[!0&!1&2&!3&!4&5&!6&7 | !0&!1&2&!3&!4&5&6&!7 | !0&1&!2&!3&!4&5&!6&7 |
|
|
0&!1&!2&!3&!4&5&!6&7 | 0&!1&!2&!3&!4&5&6&!7] 1 {1}
|
|
[!0&!1&2&!3&4&!5&!6&7 | !0&!1&2&!3&4&!5&6&!7 | !0&!1&2&3&!4&!5&!6&7 |
|
|
!0&!1&2&3&!4&!5&6&!7 | !0&1&!2&!3&4&!5&!6&7 | !0&1&!2&3&!4&!5&!6&7 |
|
|
0&!1&!2&!3&4&!5&!6&7 | 0&!1&!2&!3&4&!5&6&!7 | 0&!1&!2&3&!4&!5&!6&7 |
|
|
0&!1&!2&3&!4&!5&6&!7] 2 {1}
|
|
[!0&1&!2&!3&!4&5&6&!7] 4 {1}
|
|
[!0&1&!2&!3&4&!5&6&!7 | !0&1&!2&3&!4&!5&6&!7] 6 {1}
|
|
--END--""")
|
|
|
|
tc.assertTrue(spot.solve_game(game, si))
|
|
|
|
games = spot.split_edges(game)
|
|
spot.set_state_players(games, spot.get_state_players(game))
|
|
tc.assertTrue(spot.solve_game(games, si))
|
|
|
|
g = spot.translate("GF(a&X(a)) -> GFb")
|
|
a = buddy.bdd_ithvar(g.register_ap("a"))
|
|
b = buddy.bdd_ithvar(g.register_ap("b"))
|
|
gdpa = spot.tgba_determinize(spot.degeneralize_tba(g),
|
|
False, True, True, False)
|
|
spot.change_parity_here(gdpa, spot.parity_kind_max, spot.parity_style_odd)
|
|
gsdpa = spot.split_2step(gdpa, b, True)
|
|
spot.colorize_parity_here(gsdpa, True)
|
|
tc.assertTrue(spot.solve_parity_game(gsdpa))
|
|
tc.assertEqual(spot.highlight_strategy(gsdpa).to_str("HOA", "1.1"),
|
|
"""HOA: v1.1
|
|
States: 18
|
|
Start: 0
|
|
AP: 2 "a" "b"
|
|
acc-name: parity max odd 5
|
|
Acceptance: 5 Fin(4) & (Inf(3) | (Fin(2) & (Inf(1) | Fin(0))))
|
|
properties: trans-labels explicit-labels trans-acc colored complete
|
|
properties: deterministic
|
|
spot.highlight.states: 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 """
|
|
+"""10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4
|
|
spot.highlight.edges: 15 4 17 4 20 4 22 4 24 4 26 4 28 4 30 4 31 4 32 4 33 4
|
|
spot.state-player: 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
|
|
controllable-AP: 1
|
|
--BODY--
|
|
State: 0
|
|
[!0] 7 {0}
|
|
[0] 8 {0}
|
|
State: 1
|
|
[!0] 9 {3}
|
|
[0] 10 {3}
|
|
State: 2
|
|
[!0] 11 {1}
|
|
[0] 12 {1}
|
|
State: 3
|
|
[!0] 9 {3}
|
|
[0] 13 {4}
|
|
State: 4
|
|
[!0] 11 {1}
|
|
[0] 14 {2}
|
|
State: 5
|
|
[!0] 15 {3}
|
|
[0] 16 {3}
|
|
State: 6
|
|
[!0] 15 {3}
|
|
[0] 17 {4}
|
|
State: 7
|
|
[!1] 1 {0}
|
|
[1] 2 {0}
|
|
State: 8
|
|
[!1] 3 {0}
|
|
[1] 4 {0}
|
|
State: 9
|
|
[!1] 1 {3}
|
|
[1] 5 {3}
|
|
State: 10
|
|
[!1] 3 {3}
|
|
[1] 6 {3}
|
|
State: 11
|
|
[!1] 2 {1}
|
|
[1] 2 {3}
|
|
State: 12
|
|
[!1] 4 {1}
|
|
[1] 4 {3}
|
|
State: 13
|
|
[!1] 3 {4}
|
|
[1] 4 {4}
|
|
State: 14
|
|
[!1] 4 {2}
|
|
[1] 4 {3}
|
|
State: 15
|
|
[t] 5 {3}
|
|
State: 16
|
|
[t] 6 {3}
|
|
State: 17
|
|
[t] 4 {4}
|
|
--END--"""
|
|
)
|
|
|
|
# Test the different parity conditions
|
|
gdpa = spot.tgba_determinize(spot.degeneralize_tba(g),
|
|
False, True, True, False)
|
|
|
|
g_test = spot.change_parity(gdpa, spot.parity_kind_max, spot.parity_style_odd)
|
|
g_test_split = spot.split_2step(g_test, b, True)
|
|
sp = spot.get_state_players(g_test_split)
|
|
g_test_split_c = spot.colorize_parity(g_test_split)
|
|
spot.set_state_players(g_test_split_c, sp)
|
|
tc.assertTrue(spot.solve_parity_game(g_test_split_c))
|
|
c_strat = spot.get_strategy(g_test_split_c)
|
|
# All versions of parity need to result in the same strategy
|
|
for kind in [spot.parity_kind_min, spot.parity_kind_max]:
|
|
for style in [spot.parity_style_even, spot.parity_style_odd]:
|
|
g_test_split1 = spot.change_parity(g_test_split, kind, style)
|
|
spot.set_state_players(g_test_split1, sp)
|
|
tc.assertTrue(spot.solve_parity_game(g_test_split1))
|
|
c_strat1 = spot.get_strategy(g_test_split1)
|
|
tc.assertTrue(c_strat == c_strat1)
|
|
|
|
# Test that strategies are not appended
|
|
# if solve is called multiple times
|
|
aut = spot.make_twa_graph()
|
|
aut.set_buchi()
|
|
aut.new_states(2)
|
|
aut.new_edge(0,1,buddy.bddtrue, [0])
|
|
aut.new_edge(1,0,buddy.bddtrue, [])
|
|
spot.set_state_players(aut, [False, True])
|
|
spot.solve_game(aut)
|
|
S1 = list(spot.get_strategy(aut))
|
|
spot.solve_game(aut)
|
|
S2 = list(spot.get_strategy(aut))
|
|
tc.assertEqual(S1, S2)
|
|
|
|
|
|
# Finite games
|
|
alive = "__alive__"
|
|
def finite_existential(auts):
|
|
# 1 Accepting state -> selfloop
|
|
# 2 Prune
|
|
acc_state = set()
|
|
sp = list(spot.get_state_players(auts))
|
|
for e in auts.edges():
|
|
if e.acc:
|
|
acc_state.add(e.src)
|
|
for s in acc_state:
|
|
e_kill = auts.out_iteraser(s)
|
|
while (e_kill):
|
|
e_kill.erase()
|
|
for s in acc_state:
|
|
sprime = auts.new_state()
|
|
sp.append(not sp[s])
|
|
auts.new_edge(s, sprime, buddy.bddtrue, [0])
|
|
auts.new_edge(sprime, s, buddy.bddtrue, [0])
|
|
spot.set_state_players(auts, sp)
|
|
auts.purge_dead_states()
|
|
spot.alternate_players(auts, False, False)
|
|
return auts
|
|
|
|
def is_input_complete(auts):
|
|
sp = spot.get_state_players(auts)
|
|
for s in range(auts.num_states()):
|
|
if sp[s]:
|
|
continue # Player
|
|
cumul = buddy.bddfalse
|
|
for e in auts.out(s):
|
|
cumul |= e.cond
|
|
if cumul != buddy.bddtrue:
|
|
return False
|
|
|
|
return True
|
|
|
|
def synt_from_ltlf(f:str, outs):
|
|
ff = spot.from_ltlf(f, alive)
|
|
aut = ff.translate("buchi", "sbacc")
|
|
outbdd = buddy.bddtrue
|
|
for out in outs:
|
|
outbdd &= buddy.bdd_ithvar(aut.register_ap(out))
|
|
alive_bdd = buddy.bdd_ithvar(aut.register_ap(alive))
|
|
auts = spot.split_2step(aut, outbdd & alive_bdd, False)
|
|
auts = spot.to_finite(auts, alive)
|
|
spot.alternate_players(auts, False, False)
|
|
spot.set_synthesis_outputs(auts, outbdd)
|
|
if not is_input_complete(auts):
|
|
print("Not synthesizable")
|
|
return None
|
|
auts = finite_existential(auts)
|
|
|
|
return auts
|
|
|
|
def synt_ltlf(f:str, outs, res:str = "aut"):
|
|
auts = synt_from_ltlf(f, outs)
|
|
|
|
succ = spot.solve_parity_game(auts)
|
|
if not succ:
|
|
if res == "aut":
|
|
return False, auts
|
|
else:
|
|
return False, None
|
|
|
|
mealy_cc = spot.solved_game_to_split_mealy(auts)
|
|
|
|
if res == "aut":
|
|
return True, mealy_cc
|
|
elif res == "aig":
|
|
return True, spot.mealy_machine_to_aig(mealy_cc, "isop")
|
|
else:
|
|
raise RuntimeError("Unknown option")
|
|
|
|
|
|
sink_player = None
|
|
|
|
def negate_ltlf(f:str, outs, opt = "buchi"):
|
|
|
|
global sink_player
|
|
sink_player = None
|
|
|
|
aut = synt_from_ltlf(f, outs)
|
|
# Implies input completeness
|
|
# We need output completeness
|
|
acc = []
|
|
|
|
sp = list(spot.get_state_players(aut))
|
|
|
|
def get_sink():
|
|
global sink_player
|
|
if sink_player is None:
|
|
sink_player = aut.new_states(2)
|
|
aut.new_edge(sink_player, sink_player + 1, buddy.bddtrue, acc)
|
|
aut.new_edge(sink_player + 1, sink_player, buddy.bddtrue, acc)
|
|
sp.append(False)
|
|
sp.append(True)
|
|
spot.set_state_players(aut, sp)
|
|
return sink_player
|
|
|
|
for s in range(aut.num_states()):
|
|
if not sp[s]:
|
|
continue
|
|
rem = buddy.bddtrue
|
|
for e in aut.out(s):
|
|
rem -= e.cond
|
|
if rem != buddy.bddfalse:
|
|
aut.new_edge(s, get_sink(), rem)
|
|
|
|
# Better to invert colors or condition?
|
|
if opt == "buchi":
|
|
for e in aut.edges():
|
|
if e.acc:
|
|
e.acc = spot.mark_t()
|
|
else:
|
|
e.acc = spot.mark_t([0])
|
|
elif opt == "cobuchi":
|
|
aut.set_co_buchi()
|
|
else:
|
|
raise RuntimeError("Unknown opt")
|
|
return aut
|
|
|
|
# Game where the edge_vector is larger
|
|
# than the number of transitions
|
|
f1 = "((((G (F (idle))) && (G (((idle) && (X ((! (grant_0)) \
|
|
&& (! (grant_1))))) -> (X (idle))))) && (G ((X (! (grant_0))) \
|
|
|| (X (((! (request_0)) && (! (idle))) U ((! (request_0)) \
|
|
&& (idle))))))) -> (((G (((((X (((! (grant_0)) && (true)) \
|
|
|| ((true) && (! (grant_1))))) && ((X (grant_0)) -> (request_0))) \
|
|
&& ((X (grant_1)) -> (request_1))) && ((request_0) -> (grant_1))) \
|
|
&& ((! (idle)) -> (X ((! (grant_0)) && (! (grant_1))))))) \
|
|
&& (! (F (G ((request_0) && (X (! (grant_0)))))))) \
|
|
&& (! (F (G ((request_1) && (X (! (grant_1)))))))))"
|
|
outs = ["grant_0", "grant1"]
|
|
tc.assertEqual(synt_ltlf(f1, outs)[0], False) |