spot/src/ltlvisit/snf.cc
Alexandre Duret-Lutz 139f7b49b4 snf: Fix the handling of bounded repetition.
star_normal_form() used to be called under bounded
repetitions like [*0..4], but some of these rewritings
are only correct for [*0..].  For instance
     (a*|1)[*]      can be rewritten to    1[*]
but  (a*|1)[*0..1]  cannot be rewritten to 1[*0..1]
it would be correct to rewrite the latter as (a[+]|1)[*0..1],
canceling the empty word in a*.

Also (a*;b*)[*]     can be rewritten to    (a|b)[*]
but  (a*;b*)[*0..1]  cannot be rewritten to (a|b)[*0..1]
and it cannot either be rewritten to (a[+]|b[+])[*0..1].

This patch introduces a new function to implement
rewritings under bounded repetition.

* src/ltlvisit/snf.hh, src/ltlvisit/snf.cc (star_normal_form_unbounded):
New function.
* src/ltlvisit/simplify.cc: Use it.
* src/ltltest/reduccmp.test: Add tests.
* doc/tl/tl.tex: Document the rewritings implemented.
2014-05-17 12:56:37 +02:00

210 lines
4.4 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) 2012, 2014 Laboratoire de Recherche et Developpement
// de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "snf.hh"
#include "ltlast/allnodes.hh"
#include "ltlast/visitor.hh"
#include "ltlvisit/tostring.hh"
namespace spot
{
namespace ltl
{
namespace
{
// E°
class snf_visitor: public visitor
{
protected:
const formula* result_;
snf_cache* cache_;
public:
snf_visitor(snf_cache* c): cache_(c)
{
}
const formula*
result() const
{
return result_;
}
void
visit(const atomic_prop*)
{
assert(!"unexpected operator");
}
void
visit(const constant* c)
{
assert(c == constant::empty_word_instance());
result_ = constant::false_instance();
}
void
visit(const bunop* bo)
{
bunop::type op = bo->op();
switch (op)
{
case bunop::Star:
assert(bo->accepts_eword());
// Strip the star.
result_ = recurse(bo->child());
break;
}
}
void
visit(const unop*)
{
assert(!"unexpected operator");
}
void
visit(const binop*)
{
assert(!"unexpected operator");
}
void
visit(const automatop*)
{
assert(!"unexpected operator");
}
void
visit(const multop* mo)
{
multop::type op = mo->op();
switch (op)
{
case multop::And:
case multop::Or:
case multop::Fusion:
assert(!"unexpected operator");
break;
case multop::Concat:
case multop::AndNLM:
// Let F designate expressions that accept [*0],
// and G designate expressions that do not.
// (G₁;G₂;G₃)° = G₁;G₂;G₃
// (G₁;F₂;G₃)° = (G₁°);F₂;(G₃°) = G₁;F₂;G₃
// because there is nothing to do recursively on a G.
//
// AndNLM can be dealt with similarly.
//
// This case is already handled in recurse().
// if we reach this switch, we only have to
// deal with...
//
// (F₁;F₂;F₃)° = (F₁°)|(F₂°)|(F₃°)
// (F₁&F₂&F₃)° = (F₁°)|(F₂°)|(F₃°)
// so we fall through to the OrRat case...
case multop::OrRat:
assert(mo->accepts_eword());
{
unsigned s = mo->size();
multop::vec* v = new multop::vec;
v->reserve(s);
for (unsigned pos = 0; pos < s; ++pos)
v->push_back(recurse(mo->nth(pos)));
result_ = multop::instance(multop::OrRat, v);
}
break;
case multop::AndRat:
// FIXME: Can we deal with AndRat in a better way
// when it accepts [*0]?
result_ = mo->clone();
break;
}
}
const formula*
recurse(const formula* f)
{
if (!f->accepts_eword())
return f->clone();
snf_cache::const_iterator i = cache_->find(f);
if (i != cache_->end())
return i->second->clone();
f->accept(*this);
(*cache_)[f->clone()] = result_->clone();
return result_;
}
};
// E^□
class snf_visitor_bounded: public snf_visitor
{
public:
snf_visitor_bounded(snf_cache* c): snf_visitor(c)
{
}
void
visit(const bunop* bo)
{
bunop::type op = bo->op();
switch (op)
{
case bunop::Star:
assert(bo->accepts_eword());
result_ = bunop::instance(bunop::Star,
recurse(bo->child()),
std::max(bo->min(), 1U),
bo->max());
break;
}
}
void
visit(const multop* mo)
{
if (mo->op() == multop::Concat)
result_ = mo->clone();
else
this->snf_visitor::visit(mo);
}
};
}
const formula*
star_normal_form(const formula* sere, snf_cache* cache)
{
snf_visitor v(cache);
return v.recurse(sere);
}
const formula*
star_normal_form_bounded(const formula* sere, snf_cache* cache)
{
snf_visitor_bounded v(cache);
return v.recurse(sere);
}
}
}