* spot/twa/twagraph.cc: don't remove false-labeled edges if the automaton uses state-based acceptance and the edge is a self loop
1749 lines
57 KiB
C++
1749 lines
57 KiB
C++
// -*- coding: utf-8 -*-
|
|
// Copyright (C) by the Spot authors, see the AUTHORS file for details.
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "config.h"
|
|
#include <spot/twa/twagraph.hh>
|
|
#include <spot/tl/print.hh>
|
|
#include <spot/misc/bddlt.hh>
|
|
#include <spot/twa/bddprint.hh>
|
|
#include <spot/kripke/kripkegraph.hh>
|
|
#include <spot/misc/escape.hh>
|
|
#include <spot/priv/robin_hood.hh>
|
|
#include <vector>
|
|
#include <deque>
|
|
|
|
using namespace std::string_literals;
|
|
|
|
namespace
|
|
{
|
|
using namespace spot;
|
|
// If LAST is false,
|
|
// it is guaranteed that there will be another src state
|
|
template<bool LAST>
|
|
void treat(std::vector<std::array<unsigned, 4>>& e_idx,
|
|
const twa_graph::graph_t::edge_vector_t& e_vec,
|
|
std::vector<unsigned>& e_chain,
|
|
std::vector<unsigned>& hash_of_state,
|
|
unsigned& idx,
|
|
unsigned s,
|
|
unsigned n_e)
|
|
{
|
|
assert(s < e_idx.size());
|
|
assert(idx < e_vec.size());
|
|
assert(e_chain.size() == e_vec.size());
|
|
|
|
//std::cout << s << "; " << idx << std::endl;
|
|
|
|
// Check if this state has outgoing transitions
|
|
if (s != e_vec[idx].src)
|
|
// Nothing to do
|
|
{
|
|
assert(!LAST);
|
|
return;
|
|
}
|
|
|
|
auto& s_idx = e_idx[s];
|
|
s_idx[0] = idx;
|
|
|
|
// helper
|
|
unsigned sub_idx[] = {-1u, -1u};
|
|
|
|
// All transitions of this state
|
|
while (true)
|
|
{
|
|
assert(idx < e_vec.size() + LAST);
|
|
if constexpr (!LAST)
|
|
{
|
|
if (e_vec[idx].src != s)
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
if (idx == n_e)
|
|
break;
|
|
}
|
|
|
|
// Argh so many ifs
|
|
unsigned which = e_vec[idx].src == e_vec[idx].dst;
|
|
if (sub_idx[which] == -1u)
|
|
{
|
|
// First non-selflooping
|
|
sub_idx[which] = idx;
|
|
s_idx[1u+which] = idx;
|
|
}
|
|
else
|
|
{
|
|
// Continue the chained list
|
|
e_chain[sub_idx[which]] = idx;
|
|
sub_idx[which] = idx;
|
|
}
|
|
++idx;
|
|
}
|
|
s_idx[3] = idx;
|
|
|
|
// Check if self-loops appeared. We cannot hash
|
|
// states with self-loops.
|
|
if (s_idx[2] != -1u)
|
|
hash_of_state[s] = fnv<unsigned>::init;
|
|
}
|
|
}
|
|
|
|
namespace spot
|
|
{
|
|
|
|
std::string twa_graph::format_state(unsigned n) const
|
|
{
|
|
if (is_univ_dest(n))
|
|
{
|
|
std::stringstream ss;
|
|
bool notfirst = false;
|
|
for (unsigned d: univ_dests(n))
|
|
{
|
|
if (notfirst)
|
|
ss << '&';
|
|
notfirst = true;
|
|
ss << format_state(d);
|
|
}
|
|
return ss.str();
|
|
}
|
|
|
|
auto named = get_named_prop<std::vector<std::string>>("state-names");
|
|
if (named && n < named->size())
|
|
return (*named)[n];
|
|
|
|
auto prod = get_named_prop
|
|
<std::vector<std::pair<unsigned, unsigned>>>("product-states");
|
|
if (prod && n < prod->size())
|
|
{
|
|
auto& p = (*prod)[n];
|
|
std::stringstream ss;
|
|
ss << p.first << ',' << p.second;
|
|
return ss.str();
|
|
}
|
|
|
|
return std::to_string(n);
|
|
}
|
|
|
|
void
|
|
twa_graph::release_formula_namer(namer<formula>* namer,
|
|
bool keep_names)
|
|
{
|
|
if (keep_names)
|
|
{
|
|
auto v = new std::vector<std::string>(num_states());
|
|
auto& n = namer->names();
|
|
unsigned ns = n.size();
|
|
assert(n.size() <= v->size());
|
|
for (unsigned i = 0; i < ns; ++i)
|
|
{
|
|
auto f = n[i];
|
|
if (f)
|
|
(*v)[i] = str_psl(f);
|
|
}
|
|
set_named_prop("state-names", v);
|
|
}
|
|
delete namer;
|
|
}
|
|
|
|
/// \brief Merge universal destinations
|
|
///
|
|
/// If several states have the same universal destination, merge
|
|
/// them all. Also remove unused destination, and any redundant
|
|
/// state in each destination.
|
|
void twa_graph::merge_univ_dests()
|
|
{
|
|
auto& g = get_graph();
|
|
auto& dests = g.dests_vector();
|
|
auto& edges = g.edge_vector();
|
|
|
|
std::vector<unsigned> old_dests;
|
|
std::swap(dests, old_dests);
|
|
std::vector<unsigned> seen(old_dests.size(), -1U);
|
|
internal::univ_dest_mapper<twa_graph::graph_t> uniq(g);
|
|
|
|
auto fixup = [&](unsigned& in_dst)
|
|
{
|
|
unsigned dst = in_dst;
|
|
if ((int) dst >= 0) // not a universal edge
|
|
return;
|
|
dst = ~dst;
|
|
unsigned& nd = seen[dst];
|
|
if (nd == -1U)
|
|
nd = uniq.new_univ_dests(old_dests.data() + dst + 1,
|
|
old_dests.data() + dst + 1 + old_dests[dst]);
|
|
in_dst = nd;
|
|
};
|
|
|
|
unsigned tend = edges.size();
|
|
for (unsigned t = 1; t < tend; t++)
|
|
{
|
|
if (g.is_dead_edge(t))
|
|
continue;
|
|
fixup(edges[t].dst);
|
|
}
|
|
fixup(init_number_);
|
|
}
|
|
|
|
void twa_graph::merge_edges()
|
|
{
|
|
set_named_prop("highlight-edges", nullptr);
|
|
g_.remove_dead_edges_();
|
|
if (!is_existential())
|
|
merge_univ_dests();
|
|
|
|
auto& trans = this->edge_vector();
|
|
unsigned orig_size = trans.size();
|
|
unsigned tend = orig_size;
|
|
|
|
// When two transitions have the same (src,colors,dst),
|
|
// we can marge their conds.
|
|
auto merge_conds_and_remove_false = [&]()
|
|
{
|
|
typedef graph_t::edge_storage_t tr_t;
|
|
g_.sort_edges_([](const tr_t& lhs, const tr_t& rhs)
|
|
{
|
|
if (lhs.src < rhs.src)
|
|
return true;
|
|
if (lhs.src > rhs.src)
|
|
return false;
|
|
if (lhs.dst < rhs.dst)
|
|
return true;
|
|
if (lhs.dst > rhs.dst)
|
|
return false;
|
|
return lhs.acc < rhs.acc;
|
|
// Do not sort on conditions, we'll merge
|
|
// them.
|
|
});
|
|
|
|
bool is_state_acc = this->prop_state_acc().is_true();
|
|
|
|
unsigned out = 0;
|
|
unsigned in = 1;
|
|
|
|
// Skip any leading false edge.
|
|
while (in < tend
|
|
&& trans[in].cond == bddfalse
|
|
&& (!is_state_acc || trans[in].src != trans[in].dst))
|
|
++in;
|
|
if (in < tend)
|
|
{
|
|
++out;
|
|
if (out != in)
|
|
trans[out] = trans[in];
|
|
for (++in; in < tend; ++in)
|
|
{
|
|
if (trans[in].cond == bddfalse
|
|
&& (!is_state_acc
|
|
|| trans[in].src != trans[in].dst)) // Unusable edge
|
|
continue;
|
|
// Merge edges with the same source, destination, and
|
|
// colors. (We test the source last, because this is the
|
|
// most likely test to be true as edges are ordered by
|
|
// sources and then destinations.)
|
|
if (trans[out].dst == trans[in].dst
|
|
&& trans[out].acc == trans[in].acc
|
|
&& trans[out].src == trans[in].src)
|
|
{
|
|
trans[out].cond |= trans[in].cond;
|
|
}
|
|
else
|
|
{
|
|
++out;
|
|
if (in != out)
|
|
trans[out] = trans[in];
|
|
}
|
|
}
|
|
}
|
|
if (++out != tend)
|
|
{
|
|
tend = out;
|
|
trans.resize(tend);
|
|
}
|
|
};
|
|
|
|
// When two transitions have the same (src,cond,dst), we can marge
|
|
// their colors. This only works for Fin-less acceptance.
|
|
//
|
|
// FIXME: We could should also merge edges when using
|
|
// fin_acceptance, but the rule for Fin sets are different than
|
|
// those for Inf sets, (and we need to be careful if a set is used
|
|
// both as Inf and Fin)
|
|
auto merge_colors = [&]()
|
|
{
|
|
if (tend < 2 || acc().uses_fin_acceptance())
|
|
return;
|
|
typedef graph_t::edge_storage_t tr_t;
|
|
g_.sort_edges_([](const tr_t& lhs, const tr_t& rhs)
|
|
{
|
|
if (lhs.src < rhs.src)
|
|
return true;
|
|
if (lhs.src > rhs.src)
|
|
return false;
|
|
if (lhs.dst < rhs.dst)
|
|
return true;
|
|
if (lhs.dst > rhs.dst)
|
|
return false;
|
|
bdd_less_than_stable lt;
|
|
return lt(lhs.cond, rhs.cond);
|
|
// Do not sort on acceptance, we'll merge them.
|
|
});
|
|
|
|
// Start on the second position and try to merge it into the
|
|
// first one
|
|
unsigned out = 1;
|
|
unsigned in = 2;
|
|
|
|
for (; in < tend; ++in)
|
|
{
|
|
// Merge edges with the same source, destination,
|
|
// and conditions. (We test the source last, for the
|
|
// same reason as above.)
|
|
if (trans[out].dst == trans[in].dst
|
|
&& trans[out].cond.id() == trans[in].cond.id()
|
|
&& trans[out].src == trans[in].src)
|
|
{
|
|
trans[out].acc |= trans[in].acc;
|
|
}
|
|
else
|
|
{
|
|
++out;
|
|
if (in != out)
|
|
trans[out] = trans[in];
|
|
}
|
|
}
|
|
if (++out != tend)
|
|
{
|
|
tend = out;
|
|
trans.resize(tend);
|
|
}
|
|
};
|
|
|
|
// These next two lines used to be done in the opposite order in
|
|
// 2.9.x and before.
|
|
//
|
|
// However merging colors first is more likely to
|
|
// make parallel non-deterministic transition disappear.
|
|
//
|
|
// Consider:
|
|
// (1)--a-{1}--->(2)
|
|
// (1)--a-{2}--->(2)
|
|
// (1)--!a-{1}-->(2)
|
|
// If colors are merged first, the first two transitions become one,
|
|
// and the result is more deterministic:
|
|
// (1)--a-{1,2}->(2)
|
|
// (1)--!a-{1}-->(2)
|
|
// If conditions were merged first, we would get the following
|
|
// non-deterministic transitions instead:
|
|
// (1)--1-{1}--->(2)
|
|
// (1)--a-{2}--->(2)
|
|
merge_colors();
|
|
merge_conds_and_remove_false();
|
|
|
|
// Merging some edges may turn a non-deterministic automaton
|
|
// into a deterministic one.
|
|
if (prop_universal().is_false() && tend != orig_size)
|
|
prop_universal(trival::maybe());
|
|
g_.chain_edges_();
|
|
}
|
|
|
|
unsigned twa_graph::merge_states(parallel_policy ppolicy)
|
|
{
|
|
if (!is_existential())
|
|
throw std::runtime_error(
|
|
"twa_graph::merge_states() does not work on alternating automata");
|
|
|
|
const unsigned n_states = num_states();
|
|
|
|
const auto& e_vec = edge_vector();
|
|
unsigned n_edges = e_vec.size();
|
|
if (n_edges <= 1)
|
|
{
|
|
if (n_states <= 1)
|
|
return 0;
|
|
// We don't have a very convenient way to resize the state
|
|
// vector.
|
|
std::vector<unsigned> remap(n_states, -1U);
|
|
SPOT_ASSUME(remap.data() != nullptr); // help GCC 9.4
|
|
remap[0] = 0;
|
|
get_graph().defrag_states(remap, 1);
|
|
SPOT_ASSERT(num_states() == 1);
|
|
set_init_state(0);
|
|
return n_states - 1;
|
|
}
|
|
|
|
#ifdef ENABLE_PTHREAD
|
|
const unsigned nthreads = ppolicy.nthreads();
|
|
#else
|
|
(void) ppolicy;
|
|
constexpr unsigned nthreads = 1;
|
|
#endif
|
|
|
|
typedef graph_t::edge_storage_t tr_t;
|
|
g_.sort_edges_srcfirst_([](const tr_t& lhs, const tr_t& rhs)
|
|
{
|
|
assert(lhs.src == rhs.src);
|
|
if (lhs.acc < rhs.acc)
|
|
return true;
|
|
if (lhs.acc > rhs.acc)
|
|
return false;
|
|
// compare with id?
|
|
if (bdd_less_than_stable lt; lt(lhs.cond, rhs.cond))
|
|
return true;
|
|
if (rhs.cond != lhs.cond)
|
|
return false;
|
|
return lhs.dst < rhs.dst;
|
|
}, nthreads);
|
|
g_.chain_edges_();
|
|
|
|
// Edges are nicely chained and there are no erased edges
|
|
// -> We can work with the edge_vector
|
|
|
|
// Check if it is a game <-> "state-player" is defined. If
|
|
// so, we can only merge states that belong to the same player.
|
|
// (We will use two hash maps in this case.)
|
|
auto sp = get_named_prop<std::vector<bool>>("state-player");
|
|
|
|
// The hashing is a bit delicate: We may only use the dst if it has
|
|
// no self-loop. HASH_OF_STATE stores the hash associated to each
|
|
// state (by default its own number) or some common value if the
|
|
// state contains self-loop.
|
|
std::vector<unsigned> hash_of_state;
|
|
hash_of_state.reserve(n_states);
|
|
for (unsigned i = 0; i < n_states; ++i)
|
|
hash_of_state.push_back(i);
|
|
|
|
// For each state we need 4 indices of the edge vector
|
|
// [first, first_non_sfirst_selflooplfloop, first_selfloop, end]
|
|
// The init value makes sure nothing is done for dead end states
|
|
std::vector<std::array<unsigned, 4>> e_idx(n_states, {-1u, -1u,
|
|
-1u, -1u});
|
|
// Like a linked list holding the non-selfloop and selfloop transitions
|
|
std::vector<unsigned> e_chain(n_edges, -1u);
|
|
|
|
unsigned idx = 1;
|
|
|
|
// Edges are sorted with respect to src first
|
|
const unsigned n_high = e_vec.back().src;
|
|
for (auto s = 0u; s < n_high; ++s)
|
|
treat<false>(e_idx, e_vec, e_chain,
|
|
hash_of_state, idx, s, n_edges);
|
|
// Last one
|
|
treat<true>(e_idx, e_vec, e_chain,
|
|
hash_of_state, idx, n_high, n_edges);
|
|
|
|
assert(idx == e_vec.size() && "Something went wrong during indexing");
|
|
|
|
unsigned n_player1 = 0u;
|
|
if (sp)
|
|
n_player1 = std::accumulate(sp->begin(), sp->end(), 0u);
|
|
|
|
// Represents which states share a hash
|
|
// Head is in the unordered_map,
|
|
// hash_linked_list is like a linked list structure
|
|
// of fake pointers
|
|
|
|
std::vector<unsigned> hash_linked_list(n_states, -1u);
|
|
typedef robin_hood::unordered_flat_map<size_t,
|
|
std::pair<unsigned,
|
|
unsigned>> player_map;
|
|
// If the automaton is not a game, everything is assumed to be
|
|
// owned by player 0.
|
|
player_map map0; // for player 0
|
|
player_map map1; // for player 1
|
|
|
|
map0.reserve(n_states - n_player1);
|
|
map1.reserve(n_player1);
|
|
|
|
// Sadly we need to loop the edges twice since we have
|
|
// to check for self-loops before hashing
|
|
|
|
auto emplace = [&hash_linked_list](auto& m, auto h, auto s)
|
|
{
|
|
auto [it, inserted] = m.try_emplace(h, std::make_pair(s, s));
|
|
if (!inserted)
|
|
{
|
|
// We already have an entry with hash "h". Link it
|
|
// to the new state.
|
|
unsigned idx = it->second.second; // tail of the list
|
|
assert(idx < s && "Must be monotone");
|
|
hash_linked_list[idx] = s;
|
|
it->second.second = s;
|
|
}
|
|
};
|
|
|
|
// Hash all states
|
|
constexpr unsigned shift = sizeof(size_t)/2 * CHAR_BIT;
|
|
for (auto s = 0u; s != n_states; ++s)
|
|
{
|
|
size_t h = fnv<size_t>::init;
|
|
const unsigned e = e_idx[s][3];
|
|
for (unsigned i = e_idx[s][0]; i != e; ++i)
|
|
{
|
|
// If size_t has 8byte and unsigned has 4byte
|
|
// then this works fine, otherwise there might be more collisions
|
|
size_t hh = hash_of_state[e_vec[i].dst];
|
|
hh <<= shift;
|
|
hh += e_vec[i].cond.id();
|
|
h ^= hh;
|
|
h *= fnv<size_t>::prime;
|
|
h ^= e_vec[i].acc.hash();
|
|
h *= fnv<size_t>::prime;
|
|
}
|
|
if (sp && (*sp)[s])
|
|
emplace(map1, h, s);
|
|
else
|
|
emplace(map0, h, s);
|
|
}
|
|
// All states that might possible be merged share the same hash
|
|
// Info hash coll
|
|
//std::cout << "Hash collision rate pre merge: "
|
|
// << ((map0.size()+map1.size())/((float)n_states))
|
|
// << '\n';
|
|
|
|
|
|
// Check whether we can merge two states
|
|
// and takes into account the self-loops
|
|
auto state_equal = [&e_vec, &e_chain, &e_idx](unsigned s1, unsigned s2,
|
|
std::vector<char>& checked1,
|
|
std::vector<char>& checked2)
|
|
{
|
|
auto edge_data_comp = [](const auto& lhs,
|
|
const auto& rhs)
|
|
{
|
|
if (lhs.acc < rhs.acc)
|
|
return true;
|
|
if (lhs.acc > rhs.acc)
|
|
return false;
|
|
// todo compare with id
|
|
if (bdd_less_than_stable lt; lt(lhs.cond, rhs.cond))
|
|
return true;
|
|
return false;
|
|
};
|
|
|
|
auto [i1, nsl1, sl1, e1] = e_idx[s1];
|
|
(void) nsl1;
|
|
auto [i2, nsl2, sl2, e2] = e_idx[s2];
|
|
(void) nsl2;
|
|
|
|
unsigned n_trans = e1 - i1;
|
|
if ((e2 - i2) != n_trans)
|
|
return false; // Different number of outgoing trans
|
|
|
|
// checked1/2 is one element larger than necessary;
|
|
// the last element (false) serves as a sentinel.
|
|
checked1.clear();
|
|
checked1.resize(n_trans + 1, false);
|
|
checked2.clear();
|
|
checked2.resize(n_trans + 1, false);
|
|
|
|
// Try to match self-loops
|
|
unsigned self_loops_matched = 0;
|
|
while ((sl1 < e1) && (sl2 < e2))
|
|
{
|
|
auto& data1 = e_vec[sl1].data();
|
|
auto& data2 = e_vec[sl2].data();
|
|
if (data1 == data2)
|
|
{
|
|
// Matched
|
|
++self_loops_matched;
|
|
checked1[sl1 - i1] = true; //never touches last element
|
|
checked2[sl2 - i2] = true;
|
|
// Advance both
|
|
sl1 = e_chain[sl1];
|
|
sl2 = e_chain[sl2];
|
|
}
|
|
// Since edges are ordered on each side, advance
|
|
// the smallest side in case there is no match.
|
|
else if (edge_data_comp(data1, data2))
|
|
sl1 = e_chain[sl1];
|
|
else
|
|
sl2 = e_chain[sl2];
|
|
}
|
|
|
|
// If the matched self-loops cover all transitions, we can
|
|
// stop here.
|
|
if (self_loops_matched == n_trans)
|
|
return true;
|
|
|
|
// The remaining edges need to match exactly
|
|
unsigned idx1 = i1;
|
|
unsigned idx2 = i2;
|
|
while (((idx1 < e1) && (idx2 < e2)))
|
|
{
|
|
// More efficient version?
|
|
// Skip checked edges
|
|
// Last element serves as break
|
|
while (checked1[idx1 - i1])
|
|
++idx1;
|
|
while (checked2[idx2 - i2])
|
|
++idx2;
|
|
// If one is out of bounds, so is the other
|
|
if (idx1 == e1)
|
|
{
|
|
assert(idx2 == e2);
|
|
break;
|
|
}
|
|
|
|
if ((e_vec[idx1].dst != e_vec[idx2].dst)
|
|
|| !(e_vec[idx1].data() == e_vec[idx2].data()))
|
|
return false;
|
|
|
|
// Advance
|
|
++idx1;
|
|
++idx2;
|
|
}
|
|
// All edges have bee paired
|
|
return true;
|
|
};
|
|
|
|
const unsigned nb_states = num_states();
|
|
std::vector<unsigned> remap(nb_states, -1U);
|
|
|
|
// Check all pair of states with compatible hash
|
|
auto check_ix = [&](unsigned ix, std::vector<unsigned>& v,
|
|
std::vector<char>& checked1,
|
|
std::vector<char>& checked2)
|
|
{
|
|
if (hash_linked_list[ix] == -1U) // no compatible state
|
|
return;
|
|
|
|
v.clear();
|
|
for (unsigned i = ix; i != -1U; i = hash_linked_list[i])
|
|
v.push_back(i);
|
|
const unsigned vs = v.size();
|
|
|
|
for (unsigned idx = 0; idx < vs; ++idx)
|
|
{
|
|
unsigned i = v[idx];
|
|
for (unsigned jdx = 0; jdx < idx; ++jdx)
|
|
{
|
|
unsigned j = v[jdx];
|
|
if (state_equal(j, i, checked1, checked2))
|
|
{
|
|
remap[i] = (remap[j] != -1U) ? remap[j] : j;
|
|
|
|
// Because of the special self-loop tests we use
|
|
// above, it's possible that i can be mapped to
|
|
// remap[j] even if j was the last compatible
|
|
// state found. Consider the following cases,
|
|
// taken from an actual test case: 18 is equal to
|
|
// 5, 35 is equal to 18, but 35 is not equal to 5.
|
|
//
|
|
// State: 5
|
|
// [0&1&2] 8 {3}
|
|
// [!0&1&2] 10 {1}
|
|
// [!0&!1&!2] 18 {1}
|
|
// [!0&!1&2] 19 {1}
|
|
// [!0&1&!2] 20 {1}
|
|
//
|
|
// State: 18
|
|
// [0&1&2] 8 {3}
|
|
// [!0&1&2] 10 {1}
|
|
// [!0&!1&!2] 18 {1} // self-loop
|
|
// [!0&!1&2] 19 {1}
|
|
// [!0&1&!2] 20 {1}
|
|
//
|
|
// State: 35
|
|
// [0&1&2] 8 {3}
|
|
// [!0&1&2] 10 {1}
|
|
// [!0&!1&!2] 35 {1} // self-loop
|
|
// [!0&!1&2] 19 {1}
|
|
// [!0&1&!2] 20 {1}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
auto upd = [](auto& b, const auto&e, unsigned it)
|
|
{
|
|
while ((it > 0) & (b != e))
|
|
{
|
|
--it;
|
|
++b;
|
|
}
|
|
};
|
|
|
|
auto worker = [&upd, check_ix, nthreads](unsigned pid,
|
|
auto beg1, auto end1,
|
|
auto beg0, auto end0)
|
|
{
|
|
// Temporary storage for list of edges to reduce cache misses
|
|
std::vector<unsigned> v;
|
|
// Vector reused by all invocations of state_equal to mark edges
|
|
// that have been matched already.
|
|
std::vector<char> checked1;
|
|
std::vector<char> checked2;
|
|
upd(beg1, end1, pid);
|
|
upd(beg0, end0, pid);
|
|
for (; beg1 != end1; upd(beg1, end1, nthreads))
|
|
check_ix(beg1->second.first, v, checked1, checked2);
|
|
for (; beg0 != end0; upd(beg0, end0, nthreads))
|
|
check_ix(beg0->second.first, v, checked1, checked2);
|
|
};
|
|
|
|
{
|
|
auto beg1 = map1.begin();
|
|
auto end1 = map1.end();
|
|
auto beg0 = map0.begin();
|
|
auto end0 = map0.end();
|
|
|
|
#ifndef ENABLE_PTHREAD
|
|
(void) nthreads;
|
|
#else
|
|
if (nthreads <= 1)
|
|
{
|
|
#endif // ENABLE_PTHREAD
|
|
worker(0, beg1, end1, beg0, end0);
|
|
#ifdef ENABLE_PTHREAD
|
|
}
|
|
else
|
|
{
|
|
static auto tv = std::vector<std::thread>();
|
|
assert(tv.empty());
|
|
tv.resize(nthreads);
|
|
for (unsigned pid = 0; pid < nthreads; ++pid)
|
|
tv[pid] = std::thread(
|
|
[worker, pid, beg1, end1, beg0, end0]()
|
|
{
|
|
worker(pid, beg1, end1, beg0, end0);
|
|
return;
|
|
});
|
|
for (auto& t : tv)
|
|
t.join();
|
|
tv.clear();
|
|
}
|
|
#endif // ENABLE_PTHREAD
|
|
}
|
|
|
|
for (auto& e: edges())
|
|
if (remap[e.dst] != -1U)
|
|
{
|
|
assert((!sp || (sp->at(e.dst) == sp->at(remap[e.dst])))
|
|
&& "States do not have the same owner");
|
|
e.dst = remap[e.dst];
|
|
}
|
|
|
|
if (remap[get_init_state_number()] != -1U)
|
|
set_init_state(remap[get_init_state_number()]);
|
|
|
|
unsigned st = 0;
|
|
for (auto& s: remap)
|
|
if (s == -1U)
|
|
s = st++;
|
|
else
|
|
s = -1U;
|
|
|
|
unsigned merged = num_states() - st;
|
|
if (merged)
|
|
defrag_states(remap, st);
|
|
// Info hash coll 2
|
|
//std::cout << "Hash collision rate post merge: "
|
|
// << ((map0.size()+map1.size())/((float)num_states()))
|
|
// << '\n';
|
|
return merged;
|
|
}
|
|
|
|
unsigned twa_graph::merge_states_of(bool stable,
|
|
const std::vector<bool>* to_merge_ptr)
|
|
{
|
|
if (!is_existential())
|
|
throw std::runtime_error(
|
|
"twa_graph::merge_states() does not work on alternating automata");
|
|
|
|
typedef graph_t::edge_storage_t tr_t;
|
|
if (stable)
|
|
g_.sort_edges_of_<true>([](const tr_t& lhs, const tr_t& rhs)
|
|
{
|
|
if (lhs.acc < rhs.acc)
|
|
return true;
|
|
if (lhs.acc > rhs.acc)
|
|
return false;
|
|
if (bdd_less_than_stable lt; lt(lhs.cond, rhs.cond))
|
|
return true;
|
|
if (rhs.cond != lhs.cond)
|
|
return false;
|
|
// The destination must be sorted last
|
|
// for our self-loop optimization to work.
|
|
return lhs.dst < rhs.dst;
|
|
});
|
|
else
|
|
g_.sort_edges_of_<false>([](const tr_t& lhs, const tr_t& rhs)
|
|
{
|
|
if (lhs.acc < rhs.acc)
|
|
return true;
|
|
if (lhs.acc > rhs.acc)
|
|
return false;
|
|
if (bdd_less_than lt; lt(lhs.cond, rhs.cond))
|
|
return true;
|
|
if (rhs.cond != lhs.cond)
|
|
return false;
|
|
// The destination must be sorted last
|
|
// for our self-loop optimization to work.
|
|
return lhs.dst < rhs.dst;
|
|
});
|
|
|
|
// Associates a hash value to a vector of classes
|
|
std::unordered_map<size_t, std::vector<std::set<unsigned>>> equiv_class_;
|
|
|
|
auto hash_state_ = [&](unsigned s)->size_t
|
|
{
|
|
// Hash the edges
|
|
// bottle_neck?
|
|
size_t h = fnv<size_t>::init;
|
|
for (const edge_storage_t& e : out(s))
|
|
{
|
|
h ^= knuth32_hash(e.dst);
|
|
h ^= knuth32_hash(e.cond.id());
|
|
h ^= e.acc.hash();
|
|
h = wang32_hash(h);
|
|
}
|
|
return h;
|
|
};
|
|
|
|
const unsigned nb_states = num_states();
|
|
|
|
std::vector<unsigned> comp_classes_; // Classes to be merged
|
|
for (unsigned i = 0; i != nb_states; ++i)
|
|
{
|
|
if (to_merge_ptr && !(*to_merge_ptr)[nb_states])
|
|
continue;
|
|
|
|
size_t hi = hash_state_(i);
|
|
auto equal_to_i_ = [&, outi = out(i)](unsigned j)
|
|
{
|
|
auto outj = out(j);
|
|
return std::equal(outi.begin(), outi.end(),
|
|
outj.begin(), outj.end(),
|
|
[](const edge_storage_t& a,
|
|
const edge_storage_t& b)
|
|
{ return ((a.dst == b.dst
|
|
|| (a.dst == a.src && b.dst == b.src))
|
|
&& a.data() == b.data()); });
|
|
};
|
|
comp_classes_.clear();
|
|
// get all compatible classes
|
|
// Candidate classes share a hash
|
|
// A state is compatible to a class if it is compatible
|
|
// to any of its states
|
|
auto& cand_classes = equiv_class_[hi];
|
|
unsigned n_c_classes = cand_classes.size();
|
|
// Built it in "reverse order" the idx of
|
|
// classes to be merged
|
|
for (unsigned nc = n_c_classes - 1; nc < n_c_classes; --nc)
|
|
if (std::any_of(cand_classes[nc].begin(),
|
|
cand_classes[nc].end(),
|
|
[&](unsigned j)
|
|
{return equal_to_i_(j); }))
|
|
comp_classes_.push_back(nc);
|
|
// Possible results:
|
|
// 1) comp_classes_ is empty -> i gets its own class
|
|
// 2) fuse together all comp_classes and add i
|
|
if (comp_classes_.empty())
|
|
cand_classes.emplace_back(std::set<unsigned>({i}));
|
|
else
|
|
{
|
|
// Lowest idx
|
|
auto& base_class = cand_classes[comp_classes_.back()];
|
|
comp_classes_.pop_back(); // Keep this one
|
|
for (unsigned compi : comp_classes_)
|
|
{
|
|
// fuse with base and delete
|
|
base_class.insert(cand_classes[compi].begin(),
|
|
cand_classes[compi].end());
|
|
std::swap(cand_classes[compi], cand_classes.back());
|
|
cand_classes.pop_back();
|
|
}
|
|
// finally add the current state that caused all the merging
|
|
base_class.emplace_hint(base_class.end(), i);
|
|
}
|
|
};
|
|
|
|
// Now we have equivalence classes
|
|
// and a state can only be in exactly one.
|
|
// (Otherwise the classes would have fused)
|
|
// For each equiv class we take the first state as representative
|
|
// and redirect all incoming edges to this one.
|
|
std::vector<unsigned> remap(nb_states, -1U);
|
|
for (const auto& [_, class_v] : equiv_class_)
|
|
for (const auto& aclass : class_v)
|
|
{
|
|
(void)_; // please some versions of GCC
|
|
unsigned rep = *aclass.begin();
|
|
for (auto it = ++aclass.begin(); it != aclass.end(); ++it)
|
|
remap[*it] = rep;
|
|
}
|
|
|
|
for (auto& e: edges())
|
|
if (remap[e.dst] != -1U)
|
|
e.dst = remap[e.dst];
|
|
|
|
if (remap[get_init_state_number()] != -1U)
|
|
set_init_state(remap[get_init_state_number()]);
|
|
|
|
unsigned st = 0;
|
|
for (auto& s: remap)
|
|
if (s == -1U)
|
|
s = st++;
|
|
else
|
|
s = -1U;
|
|
|
|
defrag_states(remap, st);
|
|
return remap.size() - st;
|
|
}
|
|
|
|
void twa_graph::purge_unreachable_states(shift_action* f, void* action_data)
|
|
{
|
|
unsigned num_states = g_.num_states();
|
|
// The TODO vector serves two purposes:
|
|
// - it is a stack of state to process,
|
|
// - it is a set of processed states.
|
|
// The lower 31 bits of each entry is a state on the stack. (The
|
|
// next usable entry on the stack is indicated by todo_pos.) The
|
|
// 32th bit (i.e., the sign bit) of todo[x] indicates whether
|
|
// states number x has been seen.
|
|
std::vector<unsigned> todo(num_states, 0);
|
|
const unsigned seen = 1U << (sizeof(unsigned)*8-1);
|
|
const unsigned mask = seen - 1;
|
|
unsigned todo_pos = 0;
|
|
for (unsigned i: univ_dests(get_init_state_number()))
|
|
{
|
|
todo[i] |= seen;
|
|
todo[todo_pos++] |= i;
|
|
}
|
|
do
|
|
{
|
|
unsigned cur = todo[--todo_pos] & mask;
|
|
todo[todo_pos] ^= cur; // Zero the state
|
|
for (auto& t: g_.out(cur))
|
|
for (unsigned dst: univ_dests(t.dst))
|
|
if (!(todo[dst] & seen))
|
|
{
|
|
todo[dst] |= seen;
|
|
todo[todo_pos++] |= dst;
|
|
}
|
|
}
|
|
while (todo_pos > 0);
|
|
// Now renumber each used state.
|
|
unsigned current = 0;
|
|
for (auto& v: todo)
|
|
if (!(v & seen))
|
|
v = -1U;
|
|
else
|
|
v = current++;
|
|
if (current == todo.size())
|
|
return; // No unreachable state.
|
|
|
|
// Removing some non-deterministic dead state could make the
|
|
// automaton universal.
|
|
if (prop_universal().is_false())
|
|
prop_universal(trival::maybe());
|
|
if (prop_complete().is_false())
|
|
prop_complete(trival::maybe());
|
|
|
|
if (f)
|
|
(*f)(todo, action_data);
|
|
|
|
defrag_states(todo, current);
|
|
}
|
|
|
|
void twa_graph::purge_dead_states()
|
|
{
|
|
unsigned num_states = g_.num_states();
|
|
std::vector<unsigned> useful(num_states, 0);
|
|
|
|
// Make a DFS to compute a topological order.
|
|
std::vector<unsigned> order;
|
|
order.reserve(num_states);
|
|
|
|
bool purge_unreachable_needed = false;
|
|
|
|
if (is_existential())
|
|
{
|
|
std::vector<std::pair<unsigned, unsigned>> todo; // state, edge
|
|
useful[get_init_state_number()] = 1;
|
|
todo.emplace_back(init_number_, g_.state_storage(init_number_).succ);
|
|
do
|
|
{
|
|
unsigned src;
|
|
unsigned tid;
|
|
std::tie(src, tid) = todo.back();
|
|
if (tid == 0U)
|
|
{
|
|
todo.pop_back();
|
|
order.emplace_back(src);
|
|
continue;
|
|
}
|
|
auto& t = g_.edge_storage(tid);
|
|
todo.back().second = t.next_succ;
|
|
unsigned dst = t.dst;
|
|
if (useful[dst] != 1 && t.cond != bddfalse)
|
|
{
|
|
todo.emplace_back(dst, g_.state_storage(dst).succ);
|
|
useful[dst] = 1;
|
|
}
|
|
}
|
|
while (!todo.empty());
|
|
}
|
|
else
|
|
{
|
|
// state, edge, begin, end
|
|
std::vector<std::tuple<unsigned, unsigned,
|
|
const unsigned*, const unsigned*>> todo;
|
|
auto& dests = g_.dests_vector();
|
|
|
|
auto beginend = [&](const unsigned& dst,
|
|
const unsigned*& begin, const unsigned*& end)
|
|
{
|
|
if ((int)dst < 0)
|
|
{
|
|
begin = dests.data() + ~dst + 1;
|
|
end = begin + dests[~dst];
|
|
}
|
|
else
|
|
{
|
|
begin = &dst;
|
|
end = begin + 1;
|
|
}
|
|
};
|
|
{
|
|
const unsigned* begin;
|
|
const unsigned* end;
|
|
beginend(init_number_, begin, end);
|
|
todo.emplace_back(init_number_, 0U, begin, end);
|
|
}
|
|
|
|
for (;;)
|
|
{
|
|
unsigned& tid = std::get<1>(todo.back());
|
|
const unsigned*& begin = std::get<2>(todo.back());
|
|
const unsigned*& end = std::get<3>(todo.back());
|
|
if (tid == 0U && begin == end)
|
|
{
|
|
unsigned src = std::get<0>(todo.back());
|
|
todo.pop_back();
|
|
// Last transition from a state?
|
|
if ((int)src >= 0 && (todo.empty()
|
|
|| src != std::get<0>(todo.back())))
|
|
order.emplace_back(src);
|
|
if (todo.empty())
|
|
break;
|
|
else
|
|
continue;
|
|
}
|
|
unsigned dst = *begin++;
|
|
if (begin == end)
|
|
// that was the last destination, update the stack for
|
|
// the next edge.
|
|
{
|
|
do
|
|
tid = g_.edge_storage(tid).next_succ;
|
|
while (tid && g_.edge_storage(tid).cond == bddfalse);
|
|
if (tid != 0)
|
|
beginend(g_.edge_storage(tid).dst, begin, end);
|
|
}
|
|
if (useful[dst] != 1)
|
|
{
|
|
auto& ss = g_.state_storage(dst);
|
|
unsigned succ = ss.succ;
|
|
while (succ && g_.edge_storage(succ).cond == bddfalse)
|
|
succ = g_.edge_storage(succ).next_succ;
|
|
if (succ == 0U)
|
|
continue;
|
|
useful[dst] = 1;
|
|
const unsigned* begin;
|
|
const unsigned* end;
|
|
beginend(g_.edge_storage(succ).dst, begin, end);
|
|
todo.emplace_back(dst, succ, begin, end);
|
|
}
|
|
}
|
|
}
|
|
|
|
// At this point, all reachable states with successors are marked
|
|
// as useful.
|
|
for (;;)
|
|
{
|
|
bool univ_edge_erased = false;
|
|
// Process states in topological order to mark those without
|
|
// successors as useless.
|
|
for (auto s: order)
|
|
{
|
|
auto t = g_.out_iteraser(s);
|
|
bool useless = true;
|
|
while (t)
|
|
{
|
|
// Erase any false edge, except self-loops (which can
|
|
// be used to store colors on state without successor
|
|
// with state-based acceptance).
|
|
if (t->cond == bddfalse && t->src != t->dst)
|
|
{
|
|
t.erase();
|
|
continue;
|
|
}
|
|
// A non-false edge is useful if all its destinations
|
|
// are useful.
|
|
bool usefuledge = true;
|
|
for (unsigned d: univ_dests(t->dst))
|
|
if (!useful[d])
|
|
{
|
|
usefuledge = false;
|
|
break;
|
|
}
|
|
// Erase any useless edge
|
|
if (!usefuledge)
|
|
{
|
|
if (is_univ_dest(t->dst))
|
|
univ_edge_erased = true;
|
|
t.erase();
|
|
continue;
|
|
}
|
|
// if we have a edge to a useful state, then the
|
|
// state is useful.
|
|
useless = false;
|
|
++t;
|
|
}
|
|
if (useless)
|
|
useful[s] = 0;
|
|
}
|
|
// If we have erased any universal destination, it is possible
|
|
// that we have have created some new dead states, so we
|
|
// actually need to redo the whole thing again until there is
|
|
// no more universal edge to remove. Also we might have
|
|
// created some unreachable states, so we will simply call
|
|
// purge_unreachable_states() later to clean this.
|
|
if (!univ_edge_erased)
|
|
break;
|
|
else
|
|
purge_unreachable_needed = true;
|
|
}
|
|
|
|
// Is the initial state actually useful? If not, make this an
|
|
// empty automaton by resetting the graph.
|
|
bool usefulinit = true;
|
|
for (unsigned d: univ_dests(init_number_))
|
|
if (!useful[d])
|
|
{
|
|
usefulinit = false;
|
|
break;
|
|
}
|
|
if (!usefulinit)
|
|
{
|
|
g_ = graph_t();
|
|
init_number_ = new_state();
|
|
prop_universal(true);
|
|
prop_complete(false);
|
|
prop_stutter_invariant(true);
|
|
prop_weak(true);
|
|
return;
|
|
}
|
|
|
|
// Renumber each used state.
|
|
unsigned current = 0;
|
|
for (unsigned s = 0; s < num_states; ++s)
|
|
if (useful[s])
|
|
useful[s] = current++;
|
|
else
|
|
useful[s] = -1U;
|
|
if (current == num_states)
|
|
return; // No useless state.
|
|
|
|
// Removing some non-deterministic dead state could make the
|
|
// automaton universal. Likewise for non-complete.
|
|
if (prop_universal().is_false())
|
|
prop_universal(trival::maybe());
|
|
if (prop_complete().is_false())
|
|
prop_complete(trival::maybe());
|
|
|
|
defrag_states(useful, current);
|
|
|
|
if (purge_unreachable_needed)
|
|
purge_unreachable_states();
|
|
}
|
|
|
|
void twa_graph::defrag_states(std::vector<unsigned>& newst,
|
|
unsigned used_states)
|
|
{
|
|
if (!is_existential())
|
|
{
|
|
// Running defrag_states() on alternating automata is tricky,
|
|
// because we want to
|
|
// #1 rename the regular states
|
|
// #2 rename the states in universal destinations
|
|
// #3 get rid of the unused universal destinations
|
|
// #4 merge identical universal destinations
|
|
//
|
|
// graph::degrag_states() actually does only #1. It could
|
|
// do #2, but that would prevent us from doing #3 and #4. It
|
|
// cannot do #3 and #4 because the graph object does not know
|
|
// what an initial state is, and our initial state might be
|
|
// universal.
|
|
//
|
|
// As a consequence this code preforms #2, #3, and #4 before
|
|
// calling graph::degrag_states() to finish with #1. We clear
|
|
// the "dests vector" of the current automaton, recreate all
|
|
// the new destination groups using a univ_dest_mapper to
|
|
// simplify and unify them, and extend newst with some new
|
|
// entries that will point the those new universal destination
|
|
// so that graph::defrag_states() does not have to deal with
|
|
// universal destination in any way.
|
|
auto& g = get_graph();
|
|
auto& dests = g.dests_vector();
|
|
|
|
// Clear the destination vector, saving the old one.
|
|
std::vector<unsigned> old_dests;
|
|
std::swap(dests, old_dests);
|
|
// dests will be updated as a side effect of declaring new
|
|
// destination groups to uniq.
|
|
internal::univ_dest_mapper<twa_graph::graph_t> uniq(g);
|
|
|
|
// The newst entry associated to each of the old destination
|
|
// group.
|
|
std::vector<unsigned> seen(old_dests.size(), -1U);
|
|
|
|
// Rename a state if it denotes a universal destination. This
|
|
// function has to be applied to the destination of each edge,
|
|
// as well as to the initial state. The need to work on the
|
|
// initial state is the reason it cannot be implemented in
|
|
// graph::defrag_states().
|
|
auto fixup = [&](unsigned& in_dst)
|
|
{
|
|
unsigned dst = in_dst;
|
|
if ((int) dst >= 0) // not a universal edge
|
|
return;
|
|
dst = ~dst;
|
|
unsigned& nd = seen[dst];
|
|
if (nd == -1U) // An unprocessed destination group
|
|
{
|
|
// store all renamed destination states in tmp
|
|
std::vector<unsigned> tmp;
|
|
auto begin = old_dests.data() + dst + 1;
|
|
auto end = begin + old_dests[dst];
|
|
while (begin != end)
|
|
{
|
|
unsigned n = newst[*begin++];
|
|
if (n == -1U)
|
|
continue;
|
|
tmp.emplace_back(n);
|
|
}
|
|
if (tmp.empty())
|
|
{
|
|
// All destinations of this group were marked for
|
|
// removal. Mark this universal transition for
|
|
// removal as well. Is this really what we expect?
|
|
nd = -1U;
|
|
}
|
|
else
|
|
{
|
|
// register this new destination group, add it to
|
|
// newst, and use the index in newst to relabel
|
|
// the state so that graph::degrag_states() will
|
|
// eventually update it to the correct value.
|
|
nd = newst.size();
|
|
newst.emplace_back(uniq.new_univ_dests(std::move(tmp)));
|
|
}
|
|
}
|
|
in_dst = nd;
|
|
};
|
|
fixup(init_number_);
|
|
for (auto& e: edges())
|
|
fixup(e.dst);
|
|
}
|
|
// Update properties...
|
|
if (auto* names = get_named_prop<std::vector<std::string>>("state-names"))
|
|
{
|
|
permute_vector(*names, newst);
|
|
names->resize(used_states);
|
|
}
|
|
if (auto hs = get_named_prop<std::map<unsigned, unsigned>>
|
|
("highlight-states"))
|
|
{
|
|
unsigned ns = newst.size();
|
|
std::map<unsigned, unsigned> hs2;
|
|
for (auto p: *hs)
|
|
{
|
|
// Let's just ignore unexisting states. Raising an
|
|
// exception here would leave the automaton in a strange
|
|
// state.
|
|
if (SPOT_UNLIKELY(p.first >= ns))
|
|
continue;
|
|
unsigned dst = newst[p.first];
|
|
if (dst != -1U)
|
|
hs2[dst] = p.second;
|
|
}
|
|
std::swap(*hs, hs2);
|
|
}
|
|
if (auto he = get_named_prop<std::map<unsigned, unsigned>>
|
|
("highlight-edges"))
|
|
{
|
|
// Unfortunately, the underlying graph, who might remove some
|
|
// edges, knows nothing about named properties. So we have to
|
|
// predict the indices of the edges after
|
|
// graph::defrag_states() will run. This might break if
|
|
// graph::defrag_states() is changed.
|
|
auto& ev = edge_vector();
|
|
unsigned es = ev.size();
|
|
std::vector<unsigned> newedges(es, -1U);
|
|
unsigned edgeidx = 1;
|
|
for (unsigned e = 1; e < es; ++e)
|
|
{
|
|
if (is_dead_edge(e)
|
|
|| newst[ev[e].dst] == -1U
|
|
|| newst[ev[e].src] == -1U)
|
|
newedges[e] = -1U;
|
|
else
|
|
newedges[e] = edgeidx++;
|
|
}
|
|
std::map<unsigned, unsigned> he2;
|
|
for (auto [e, c]: *he)
|
|
// Let's just ignore unexisting edges. Raising an exception
|
|
// here would leave the automaton in a strange state.
|
|
if (SPOT_UNLIKELY(e > es))
|
|
continue;
|
|
else if (newedges[e] != -1U)
|
|
he2.emplace(newedges[e], c);
|
|
std::swap(*he, he2);
|
|
}
|
|
for (const char* prop: {"original-classes",
|
|
"original-states",
|
|
"degen-levels"})
|
|
if (auto os = get_named_prop<std::vector<unsigned>>(prop))
|
|
{
|
|
permute_vector(*os, newst);
|
|
os->resize(used_states);
|
|
}
|
|
if (auto ss = get_named_prop<std::vector<unsigned>>("simulated-states"))
|
|
{
|
|
for (auto& s : *ss)
|
|
{
|
|
if (s >= newst.size())
|
|
s = -1U;
|
|
else
|
|
s = newst[s];
|
|
}
|
|
}
|
|
// Reassign the state-players
|
|
if (auto sp = get_named_prop<std::vector<bool>>("state-player"))
|
|
{
|
|
permute_vector(*sp, newst);
|
|
sp->resize(used_states);
|
|
}
|
|
// Finally, update all states and edges.
|
|
init_number_ = newst[init_number_];
|
|
g_.defrag_states(newst, used_states);
|
|
}
|
|
|
|
void twa_graph::remove_unused_ap()
|
|
{
|
|
if (ap().empty())
|
|
return;
|
|
bdd all = ap_vars();
|
|
for (auto& e: g_.edges())
|
|
{
|
|
all = bdd_exist(all, bdd_support(e.cond));
|
|
if (all == bddtrue) // All APs are used.
|
|
return;
|
|
}
|
|
auto d = get_dict();
|
|
while (all != bddtrue)
|
|
{
|
|
unregister_ap(bdd_var(all));
|
|
all = bdd_high(all);
|
|
}
|
|
}
|
|
|
|
void twa_graph::copy_state_names_from(const const_twa_graph_ptr& other)
|
|
{
|
|
if (other == shared_from_this())
|
|
return;
|
|
|
|
auto orig = get_named_prop<std::vector<unsigned>>("original-states");
|
|
auto lvl = get_named_prop<std::vector<unsigned>>("degen-levels");
|
|
auto sims = get_named_prop<std::vector<unsigned>>("simulated-states");
|
|
|
|
assert(!lvl || orig);
|
|
|
|
if (orig && sims)
|
|
throw std::runtime_error("copy_state_names_from(): original-states and "
|
|
"simulated-states are both set");
|
|
|
|
if (orig && orig->size() != num_states())
|
|
throw std::runtime_error("copy_state_names_from(): unexpected size "
|
|
"for original-states");
|
|
if (lvl && lvl->size() != num_states())
|
|
throw std::runtime_error("copy_state_names_from(): unexpected size "
|
|
"for degen-levels");
|
|
|
|
if (sims && sims->size() != other->num_states())
|
|
throw std::runtime_error("copy_state_names_from(): unexpected size "
|
|
"for simulated-states");
|
|
|
|
auto names = std::unique_ptr<std::vector<std::string>>
|
|
(new std::vector<std::string>);
|
|
unsigned ns = num_states();
|
|
unsigned ons = other->num_states();
|
|
|
|
for (unsigned s = 0; s < ns; ++s)
|
|
{
|
|
std::string newname = "";
|
|
if (sims)
|
|
{
|
|
for (unsigned t = 0; t < ons; ++t)
|
|
{
|
|
if (s == (*sims)[t])
|
|
newname += other->format_state(t) + ',';
|
|
}
|
|
assert(!newname.empty());
|
|
newname.pop_back(); // remove trailing comma
|
|
newname = '[' + newname + ']';
|
|
}
|
|
else
|
|
{
|
|
unsigned other_s = orig ? (*orig)[s] : s;
|
|
if (other_s >= ons)
|
|
throw std::runtime_error("copy_state_names_from(): state does not"
|
|
" exist in source automaton");
|
|
newname = other->format_state(other_s);
|
|
if (lvl)
|
|
newname += '#' + std::to_string((*lvl)[s]);
|
|
}
|
|
names->emplace_back(newname);
|
|
}
|
|
|
|
set_named_prop("state-names", names.release());
|
|
}
|
|
|
|
void twa_graph::kill_state(unsigned state)
|
|
{
|
|
auto t = g_.out_iteraser(state);
|
|
while (t)
|
|
t.erase();
|
|
// A complete automaton is unlikely to stay
|
|
// complete after killing a state.
|
|
if (prop_complete().is_true())
|
|
prop_complete(trival::maybe());
|
|
prop_stutter_invariant(trival::maybe());
|
|
// Many properties are preserved by state removal, and may even
|
|
// become true if they were false before and the appropriate
|
|
// states are removed.
|
|
if (prop_universal().is_false())
|
|
prop_universal(trival::maybe());
|
|
if (prop_inherently_weak().is_false())
|
|
prop_inherently_weak(trival::maybe());
|
|
if (prop_weak().is_false())
|
|
prop_weak(trival::maybe());
|
|
if (prop_very_weak().is_false())
|
|
prop_very_weak(trival::maybe());
|
|
if (prop_terminal().is_false())
|
|
prop_terminal(trival::maybe());
|
|
if (prop_unambiguous().is_false())
|
|
prop_unambiguous(trival::maybe());
|
|
if (prop_semi_deterministic().is_false())
|
|
prop_semi_deterministic(trival::maybe());
|
|
}
|
|
|
|
void twa_graph::dump_storage_as_dot(std::ostream& out,
|
|
const char* opt) const
|
|
{
|
|
bool want_vectors = false;
|
|
bool want_data = false;
|
|
bool want_properties = false;
|
|
if (!opt || !*opt)
|
|
{
|
|
want_vectors = want_data = want_properties = true;
|
|
}
|
|
else
|
|
{
|
|
while (*opt)
|
|
switch (*opt++)
|
|
{
|
|
case 'v':
|
|
want_vectors = true;
|
|
break;
|
|
case 'd':
|
|
want_data = true;
|
|
break;
|
|
case 'p':
|
|
want_properties = true;
|
|
break;
|
|
default:
|
|
throw std::runtime_error
|
|
("dump_storage_as_dow(): unsupported option '"s + opt[-1] +"'");
|
|
}
|
|
}
|
|
|
|
const graph_t& g = get_graph();
|
|
|
|
g.dump_storage_as_dot(out, graph_t::DSI_GraphHeader);
|
|
out << "rankdir=BT\n";
|
|
|
|
if (want_vectors)
|
|
{
|
|
out << "{rank=same;\n";
|
|
|
|
g.dump_storage_as_dot(out, graph_t::DSI_States |
|
|
graph_t::DSI_EdgesHeader);
|
|
|
|
auto edges = g.edge_vector();
|
|
unsigned eend = edges.size();
|
|
out << "<tr><td>cond</td>\n";
|
|
for (unsigned e = 1; e < eend; ++e)
|
|
{
|
|
out << "<td>";
|
|
std::string f = bdd_format_formula(get_dict(), edges[e].cond);
|
|
escape_html(out, f);
|
|
out << "</td>\n";
|
|
}
|
|
out << "</tr>\n<tr><td>acc</td>\n";
|
|
for (unsigned e = 1; e < eend; ++e)
|
|
out << "<td>" << edges[e].acc << "</td>\n";
|
|
out << "</tr>\n";
|
|
|
|
g.dump_storage_as_dot(out, graph_t::DSI_EdgesBody
|
|
| graph_t::DSI_EdgesFooter
|
|
| graph_t::DSI_Dests);
|
|
out << "}\n";
|
|
}
|
|
if (want_data || want_properties)
|
|
{
|
|
out << "{rank=same;\n";
|
|
|
|
if (want_data)
|
|
{
|
|
out << ("meta [label=<\n"
|
|
"<table border='0' cellborder='0' cellspacing='0'>\n");
|
|
unsigned d = get_init_state_number();
|
|
out << ("<tr><td align='left'>init_state:</td>"
|
|
"<td align='left' bgcolor='");
|
|
if ((int)d < 0)
|
|
out << "pink'>~" << ~d;
|
|
else
|
|
out << "yellow'>" << d;
|
|
out << ("</td></tr><tr><td align='left'>num_sets:</td>"
|
|
"<td align='left' >")
|
|
<< num_sets()
|
|
<< ("</td></tr><tr><td align='left'>acceptance:</td>"
|
|
"<td align='left' >");
|
|
get_acceptance().to_html(out);
|
|
out << ("</td></tr><tr><td align='left'>ap_vars:</td>"
|
|
"<td align='left'>");
|
|
escape_html(out, bdd_format_sat(get_dict(), ap_vars()));
|
|
out << "</td></tr></table>>]\n";
|
|
}
|
|
if (want_properties)
|
|
{
|
|
out << ("props [label=<\n"
|
|
"<table border='0' cellborder='0' cellspacing='0'>\n");
|
|
#define print_prop(name) \
|
|
out << ("<tr><td align='left'>" #name ":</td>" \
|
|
"<td align='left' >") << name() << "</td></tr>\n";
|
|
print_prop(prop_state_acc);
|
|
print_prop(prop_inherently_weak);
|
|
print_prop(prop_terminal);
|
|
print_prop(prop_weak);
|
|
print_prop(prop_very_weak);
|
|
print_prop(prop_complete);
|
|
print_prop(prop_universal);
|
|
print_prop(prop_unambiguous);
|
|
print_prop(prop_semi_deterministic);
|
|
print_prop(prop_stutter_invariant);
|
|
#undef print_prop
|
|
out << "</table>>]\n";
|
|
|
|
if (!named_prop_.empty())
|
|
{
|
|
// GraphiViz 2.46.0 has a bug where plain newlines in
|
|
// quoted strings are ignored. See
|
|
// https://gitlab.com/graphviz/graphviz/-/issues/1931
|
|
// A workaround is to use emit \n instead of the
|
|
// actual new line.
|
|
out << "namedprops [label=\"named properties:\\n";
|
|
for (auto p: named_prop_)
|
|
escape_html(out, p.first) << "\\n";
|
|
out << "\"]\n";
|
|
}
|
|
}
|
|
out << "}\n";
|
|
}
|
|
|
|
if (want_data && want_vectors)
|
|
out << "meta -> states [style=invis]\n";
|
|
if (want_properties && want_vectors)
|
|
{
|
|
out << "props -> edges [style=invis]\n";
|
|
if (!named_prop_.empty())
|
|
{
|
|
out << "namedprops -> edges [style=invis]\n";
|
|
if (!is_existential())
|
|
out << "namedprops -> dests [style=invis]\n";
|
|
}
|
|
}
|
|
g.dump_storage_as_dot(out, graph_t::DSI_GraphFooter);
|
|
}
|
|
|
|
namespace
|
|
{
|
|
twa_graph_ptr
|
|
copy(const const_twa_ptr& aut, twa::prop_set p,
|
|
bool preserve_names, unsigned max_states)
|
|
{
|
|
// If the input is a twa_graph and the number of states is not
|
|
// restricted, simply use the make_twa_graph variant for
|
|
// twa_graph. Not only is this faster, but this is also
|
|
// necessary as a workaround for Swig-3 calling the wrong copy
|
|
// of make_twa_graph because it tests if twa match before
|
|
// testing twa_graph (swig-4 seems fixed).
|
|
const_twa_graph_ptr aut_g =
|
|
std::dynamic_pointer_cast<const twa_graph>(aut);
|
|
if (max_states == -1U && aut_g)
|
|
return make_twa_graph(aut_g, p, preserve_names);
|
|
|
|
twa_graph_ptr out = make_twa_graph(aut->get_dict());
|
|
out->copy_acceptance_of(aut);
|
|
out->copy_ap_of(aut);
|
|
out->prop_copy(aut, p);
|
|
|
|
std::vector<std::string>* names = nullptr;
|
|
std::set<unsigned>* incomplete = nullptr;
|
|
|
|
// Old highlighting maps
|
|
typedef std::map<unsigned, unsigned> hmap;
|
|
hmap* ohstates = nullptr;
|
|
hmap* ohedges = nullptr;
|
|
// New highlighting maps
|
|
hmap* nhstates = nullptr;
|
|
hmap* nhedges = nullptr;
|
|
|
|
if (preserve_names)
|
|
{
|
|
names = new std::vector<std::string>;
|
|
out->set_named_prop("state-names", names);
|
|
|
|
// If the input is a twa_graph and we were asked to preserve
|
|
// names, also preserve highlights.
|
|
if (aut_g)
|
|
{
|
|
ohstates = aut->get_named_prop<hmap>("highlight-states");
|
|
if (ohstates)
|
|
nhstates = out->get_or_set_named_prop<hmap>("highlight-states");
|
|
ohedges = aut->get_named_prop<hmap>("highlight-edges");
|
|
if (ohedges)
|
|
nhedges = out->get_or_set_named_prop<hmap>("highlight-edges");
|
|
}
|
|
}
|
|
|
|
// States already seen.
|
|
state_map<unsigned> seen;
|
|
// States to process
|
|
std::deque<state_map<unsigned>::value_type> todo;
|
|
|
|
auto new_state = [&](const state* s) -> unsigned
|
|
{
|
|
auto p = seen.emplace(s, 0);
|
|
if (p.second)
|
|
{
|
|
p.first->second = out->new_state();
|
|
todo.emplace_back(*p.first);
|
|
if (names)
|
|
names->emplace_back(aut->format_state(s));
|
|
if (ohstates)
|
|
{
|
|
auto q = ohstates->find(aut_g->state_number(s));
|
|
if (q != ohstates->end())
|
|
nhstates->emplace(p.first->second, q->second);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
s->destroy();
|
|
}
|
|
return p.first->second;
|
|
};
|
|
|
|
// If the input is a kripke_graph and the number of states is
|
|
// not restricted, predeclare all states to keep their
|
|
// numbering, and also copy unreachable states.
|
|
if (max_states == -1U)
|
|
if (auto kg = std::dynamic_pointer_cast<const kripke_graph>(aut))
|
|
{
|
|
unsigned ns = kg->num_states();
|
|
for (unsigned s = 0; s < ns; ++s)
|
|
new_state(kg->state_from_number(s));
|
|
}
|
|
|
|
out->set_init_state(new_state(aut->get_init_state()));
|
|
while (!todo.empty())
|
|
{
|
|
const state* src1;
|
|
unsigned src2;
|
|
std::tie(src1, src2) = todo.front();
|
|
todo.pop_front();
|
|
for (auto* t: aut->succ(src1))
|
|
{
|
|
unsigned edgenum = 0;
|
|
if (SPOT_UNLIKELY(max_states < out->num_states()))
|
|
{
|
|
// If we have reached the max number of state, never try
|
|
// to create a new one.
|
|
auto i = seen.find(t->dst());
|
|
if (i == seen.end())
|
|
{
|
|
if (!incomplete)
|
|
incomplete = new std::set<unsigned>;
|
|
incomplete->insert(src2);
|
|
continue;
|
|
}
|
|
edgenum = out->new_edge(src2, i->second, t->cond(), t->acc());
|
|
}
|
|
else
|
|
{
|
|
edgenum = out->new_edge(src2, new_state(t->dst()),
|
|
t->cond(), t->acc());
|
|
}
|
|
if (ohedges)
|
|
{
|
|
auto q = ohedges->find(aut_g->edge_number(t));
|
|
if (q != ohedges->end())
|
|
nhedges->emplace(edgenum, q->second);
|
|
}
|
|
}
|
|
}
|
|
|
|
auto s = seen.begin();
|
|
while (s != seen.end())
|
|
{
|
|
// Advance the iterator before deleting the "key" pointer.
|
|
const state* ptr = s->first;
|
|
++s;
|
|
ptr->destroy();
|
|
}
|
|
|
|
if (incomplete)
|
|
out->set_named_prop("incomplete-states", incomplete);
|
|
return out;
|
|
}
|
|
}
|
|
|
|
twa_graph_ptr make_twa_graph(const const_twa_ptr& aut, twa::prop_set p,
|
|
bool preserve_names, unsigned max_states)
|
|
{
|
|
if (max_states == -1U && !preserve_names)
|
|
if (auto a = std::dynamic_pointer_cast<const twa_graph>(aut))
|
|
return SPOT_make_shared_enabled__(twa_graph, a, p);
|
|
return copy(aut, p, preserve_names, max_states);
|
|
}
|
|
}
|