spot/spot/twaalgos/determinize.cc
Alexandre Duret-Lutz 26ef5458eb determinize: speedup on automata with many AP and few labels
This uses the same trick as discussed in issue #566 and issue #568.

* spot/twaalgos/determinize.cc (safra_support): Use a basis
if it is smaller than 2^|support| for the current Safra state.
* tests/core/568.test: Add some tests.
* NEWS: Mention the optimization.
2024-03-25 20:25:24 +01:00

1114 lines
34 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) by the Spot authors, see the AUTHORS file for details.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "config.h"
#include <algorithm>
#include <deque>
#include <stack>
#include <utility>
#include <set>
#include <map>
#include <cmath>
#include <spot/misc/clz.hh>
#include <spot/misc/bddlt.hh>
#include <spot/twaalgos/sccinfo.hh>
#include <spot/twaalgos/determinize.hh>
#include <spot/twaalgos/degen.hh>
#include <spot/twaalgos/sccfilter.hh>
#include <spot/twaalgos/simulation.hh>
#include <spot/twaalgos/isdet.hh>
#include <spot/twaalgos/parity.hh>
#include <spot/twaalgos/split.hh>
#include <spot/priv/robin_hood.hh>
namespace spot
{
namespace
{
// forward declaration
struct safra_build;
class compute_succs;
}
class safra_state final
{
public:
// a helper method to check invariants
void
check() const
{
// do not refer to braces that do not exist
for (const auto& p : nodes_)
if (p.second >= 0)
if (((unsigned)p.second) >= braces_.size())
assert(false);
// braces_ describes the parenthood relation, -1 meaning toplevel
// so braces_[b] < b always, and -1 is the only negative number allowed
for (int b : braces_)
{
if (b < 0 && b != -1)
assert(false);
if (b >= 0 && braces_[b] > b)
assert(false);
}
// no unused braces
std::set<int> used_braces;
for (const auto& n : nodes_)
{
int b = n.second;
while (b >= 0)
{
used_braces.insert(b);
b = braces_[b];
}
}
assert(used_braces.size() == braces_.size());
}
public:
using state_t = unsigned;
using safra_node_t = std::pair<state_t, std::vector<int>>;
bool operator<(const safra_state&) const;
bool operator==(const safra_state&) const;
size_t hash() const;
// Print the number of states in each brace
// default constructor
safra_state();
safra_state(state_t state_number, bool acceptance_scc = false);
safra_state(const safra_build& s, const compute_succs& cs, unsigned& color,
unsigned topbrace);
// Compute successor for transition ap
safra_state
compute_succ(const compute_succs& cs, const bdd& ap, unsigned& color) const;
void
merge_redundant_states(const std::vector<std::vector<char>>& implies);
unsigned
finalize_construction(const std::vector<int>& buildbraces,
const compute_succs& cs, unsigned topbrace);
// each brace points to its parent.
// braces_[i] is the parent of i
// Note that braces_[i] < i, -1 stands for "no parent" (top-level)
std::vector<int> braces_;
std::vector<std::pair<state_t, int>> nodes_;
};
namespace
{
struct hash_safra
{
size_t
operator()(const safra_state& s) const noexcept
{
return s.hash();
}
};
template<class T>
struct ref_wrap_equal
{
bool
operator()(const std::reference_wrapper<T>& x,
const std::reference_wrapper<T>& y) const
{
return std::equal_to<T>()(x.get(), y.get());
}
};
using power_set =
robin_hood::unordered_node_map<safra_state, unsigned, hash_safra>;
std::string
nodes_to_string(const const_twa_graph_ptr& aut,
const safra_state& states);
// Returns true if lhs has a smaller nesting pattern than rhs
// If lhs and rhs are the same, return false.
// NB the nesting patterns are backwards.
bool nesting_cmp(const std::vector<int>& lhs,
const std::vector<int>& rhs)
{
unsigned m = std::min(lhs.size(), rhs.size());
auto lit = lhs.rbegin();
auto rit = rhs.rbegin();
for (unsigned i = 0; i != m; ++i)
{
if (*lit != *rit)
return *lit < *rit;
}
return lhs.size() > rhs.size();
}
// a helper class for building the successor of a safra_state
struct safra_build final
{
std::vector<int> braces_;
std::map<unsigned, int> nodes_;
bool
compare_braces(int a, int b)
{
std::vector<int> a_pattern;
std::vector<int> b_pattern;
a_pattern.reserve(a+1);
b_pattern.reserve(b+1);
while (a != b)
{
if (a > b)
{
a_pattern.emplace_back(a);
a = braces_[a];
}
else
{
b_pattern.emplace_back(b);
b = braces_[b];
}
}
return nesting_cmp(a_pattern, b_pattern);
}
// Used when creating the list of successors
// A new intermediate node is created with src's braces and with dst as id
// A merge is done if dst already existed in *this
void
update_succ(int brace, unsigned dst, const acc_cond::mark_t& acc)
{
int newb = brace;
if (acc)
{
assert(acc.has(0) && acc.is_singleton() && "Only TBA are accepted");
// Accepting edges generate new braces: step A1
newb = braces_.size();
braces_.emplace_back(brace);
}
auto i = nodes_.emplace(dst, newb);
if (!i.second) // dst already exists
{
// Step A2: Only keep the smallest nesting pattern.
// Use nesting_cmp to compare nesting patterns.
if (compare_braces(newb, i.first->second))
{
i.first->second = newb;
}
else
{
if (newb != brace) // new brace was created but is not needed
braces_.pop_back();
}
}
}
// Same as above, specialized for brace == -1
// Acceptance parameter is passed as a template parameter to improve
// performance.
// If a node for dst already existed, the newly inserted node has smaller
// nesting pattern iff is_acc == true AND nodes_[dst] == -1
template<bool is_acc>
void
update_succ_toplevel(unsigned dst)
{
if (is_acc)
{
// Accepting edges generate new braces: step A1
int newb = braces_.size();
auto i = nodes_.emplace(dst, newb);
if (i.second || i.first->second == -1)
{
braces_.emplace_back(-1);
i.first->second = newb;
}
}
else
{
nodes_.emplace(dst, -1);
}
}
};
// Given a certain transition_label, compute all the successors of a
// safra_state under that label, and return the new nodes in res.
class compute_succs final
{
friend class spot::safra_state;
const safra_state* src;
const std::vector<bdd>* all_bdds;
const const_twa_graph_ptr& aut;
const power_set& seen;
const scc_info& scc;
const std::vector<std::vector<char>>& implies;
bool use_scc;
bool use_simulation;
bool use_stutter;
// work vectors for safra_state::finalize_construction()
mutable std::vector<char> empty_green;
mutable std::vector<int> highest_green_ancestor;
mutable std::vector<unsigned> decr_by;
mutable safra_build ss;
public:
compute_succs(const const_twa_graph_ptr& aut,
const power_set& seen,
const scc_info& scc,
const std::vector<std::vector<char>>& implies,
bool use_scc,
bool use_simulation,
bool use_stutter)
: src(nullptr)
, all_bdds(nullptr)
, aut(aut)
, seen(seen)
, scc(scc)
, implies(implies)
, use_scc(use_scc)
, use_simulation(use_simulation)
, use_stutter(use_stutter)
{}
void
set(const safra_state& s, const std::vector<bdd>& v)
{
src = &s;
all_bdds = &v;
}
struct iterator
{
const compute_succs& cs_;
std::vector<bdd>::const_iterator bddit;
safra_state ss;
unsigned color_;
iterator(const compute_succs& c, std::vector<bdd>::const_iterator it)
: cs_(c)
, bddit(it)
{
compute_();
}
bool
operator!=(const iterator& other) const
{
return bddit != other.bddit;
}
iterator&
operator++()
{
++bddit;
compute_();
return *this;
}
// no need to implement postfix increment
const bdd&
cond() const
{
return *bddit;
}
const safra_state&
operator*() const
{
return ss;
}
const safra_state*
operator->() const
{
return &ss;
}
private:
std::vector<safra_state> stutter_path_;
void
compute_()
{
if (bddit == cs_.all_bdds->end())
return;
const bdd& ap = *bddit;
// In stutter-invariant automata, every time we follow a
// transition labeled by L, we can actually stutter the L
// label and jump further away. The following code performs
// this stuttering until a cycle is found, and select one
// state of the cycle as the destination to jump to.
if (cs_.use_stutter && cs_.aut->prop_stutter_invariant())
{
ss = *cs_.src;
// The path is usually quite small (3-4 states), so it's
// not worth setting up a hash table to detect a cycle.
stutter_path_.clear();
std::vector<safra_state>::iterator cycle_seed;
unsigned mincolor = -1U;
// stutter forward until we cycle
for (;;)
{
// any duplicate value, if any, is usually close to
// the end, so search backward.
auto it = std::find(stutter_path_.rbegin(),
stutter_path_.rend(), ss);
if (it != stutter_path_.rend())
{
cycle_seed = (it + 1).base();
break;
}
stutter_path_.emplace_back(std::move(ss));
ss = stutter_path_.back().compute_succ(cs_, ap, color_);
mincolor = std::min(color_, mincolor);
}
bool in_seen = cs_.seen.find(*cycle_seed) != cs_.seen.end();
for (auto it = cycle_seed + 1; it < stutter_path_.end(); ++it)
{
if (in_seen)
{
// if *cycle_seed is already in seen, replace
// it with a smaller state also in seen.
if (cs_.seen.find(*it) != cs_.seen.end()
&& *it < *cycle_seed)
cycle_seed = it;
}
else
{
// if *cycle_seed is not in seen, replace it
// either with a state in seen or with a smaller
// state
if (cs_.seen.find(*it) != cs_.seen.end())
{
cycle_seed = it;
in_seen = true;
}
else if (*it < *cycle_seed)
{
cycle_seed = it;
}
}
}
ss = std::move(*cycle_seed);
color_ = mincolor;
}
else
{
ss = cs_.src->compute_succ(cs_, ap, color_);
}
}
};
iterator
begin() const
{
return iterator(*this, all_bdds->begin());
}
iterator
end() const
{
return iterator(*this, all_bdds->end());
}
};
const char* const sub[10] =
{
"\u2080",
"\u2081",
"\u2082",
"\u2083",
"\u2084",
"\u2085",
"\u2086",
"\u2087",
"\u2088",
"\u2089",
};
std::string subscript(unsigned start)
{
std::string res;
do
{
res = sub[start % 10] + res;
start /= 10;
}
while (start);
return res;
}
struct compare
{
bool
operator() (const safra_state::safra_node_t& lhs,
const safra_state::safra_node_t& rhs) const
{
return lhs.second < rhs.second;
}
};
// Return the nodes sorted in ascending order
std::vector<safra_state::safra_node_t>
sorted_nodes(const safra_state& s)
{
std::vector<safra_state::safra_node_t> res;
for (const auto& n: s.nodes_)
{
// First, count the number of braces.
unsigned nbraces = 0;
for (int brace = n.second; brace >= 0; brace = s.braces_[brace])
++nbraces;
// Then list them in reverse order. Since we know the
// number of braces, we can allocate exactly what we need.
if (nbraces > 0)
{
std::vector<int> tmp(nbraces, 0);
for (int brace = n.second; brace >= 0; brace = s.braces_[brace])
tmp[--nbraces] = brace;
res.emplace_back(n.first, std::move(tmp));
}
else
{
res.emplace_back(n.first, std::vector<int>{});
}
}
std::sort(res.begin(), res.end(), compare());
return res;
}
std::string
nodes_to_string(const const_twa_graph_ptr& aut,
const safra_state& states)
{
auto copy = sorted_nodes(states);
std::ostringstream os;
std::stack<int> s;
bool first = true;
for (const auto& n: copy)
{
auto it = n.second.begin();
// Find brace on top of stack in vector
// If brace is not present, then we close it as no other ones of that
// type will be found since we ordered our vector
while (!s.empty())
{
it = std::lower_bound(n.second.begin(), n.second.end(),
s.top());
if (it == n.second.end() || *it != s.top())
{
os << subscript(s.top()) << '}';
s.pop();
}
else
{
if (*it == s.top())
++it;
break;
}
}
// Add new braces
while (it != n.second.end())
{
os << '{' << subscript(*it);
s.push(*it);
++it;
first = true;
}
if (!first)
os << ' ';
os << aut->format_state(n.first);
first = false;
}
// Finish unwinding stack to print last braces
while (!s.empty())
{
os << subscript(s.top()) << '}';
s.pop();
}
return os.str();
}
std::vector<std::string>*
print_debug(const const_twa_graph_ptr& aut,
const power_set& states)
{
auto res = new std::vector<std::string>(states.size());
for (const auto& p: states)
(*res)[p.second] = nodes_to_string(aut, p.first);
return res;
}
std::vector<unsigned>*
classify(const power_set& states,
const std::vector<unsigned>* original_class)
{
unsigned sz = states.size();
auto classes = new std::vector<unsigned>(sz);
std::vector<std::set<unsigned>> state_sets(sz);
for (const auto& p: states)
{
// Get the set of original stats of this
std::set<unsigned> s;
for (auto& n: p.first.nodes_)
{
unsigned st = n.first;
if (original_class)
st = (*original_class)[st];
s.insert(st);
}
state_sets[p.second] = std::move(s);
}
std::map<std::set<unsigned>, unsigned> seensets;
for (unsigned s = 0; s < sz; ++s)
{
auto p = seensets.emplace(state_sets[s], s);
(*classes)[s] = p.first->second;
}
return classes;
}
class safra_support
{
const std::vector<bdd>& state_supports;
robin_hood::unordered_flat_map<bdd, std::vector<bdd>, bdd_hash> cache;
std::vector<bdd> basis;
unsigned log_basis_size = 0;
public:
safra_support(const std::vector<bdd>& s,
const const_twa_graph_ptr& orig_aut)
: state_supports(s)
{
unsigned nap = orig_aut->ap().size();
if (nap > 5)
{
edge_separator es;
// Gather all labels, but stop if we see too many. The
// threshold below is arbitrary: adjust if you know better.
if (es.add_to_basis(orig_aut, 256 * nap))
{
basis = es.basis();
auto sz = basis.size();
log_basis_size = CHAR_BIT*sizeof(sz) - clz(sz);
}
}
}
const std::vector<bdd>&
get(const safra_state& s)
{
bdd supp = bddtrue;
for (const auto& n : s.nodes_)
supp &= state_supports[n.first];
auto i = cache.emplace(supp, std::vector<bdd>());
if (i.second) // insertion took place
{
std::vector<bdd>& res = i.first->second;
// If we have a basis, we probably want to use it.
// But we should do that only if 2^|supp| is larger.
if (log_basis_size)
{
// Compute the size of the support
bdd s = supp;
unsigned sz = log_basis_size;
while (sz && s != bddtrue)
{
--sz;
s = bdd_high(s);
}
if (s != bddtrue)
return res = basis;
}
for (bdd one: minterms_of(bddtrue, supp))
res.emplace_back(one);
}
return i.first->second;
}
};
}
std::vector<char> find_scc_paths(const scc_info& scc);
safra_state
safra_state::compute_succ(const compute_succs& cs,
const bdd& ap, unsigned& color) const
{
safra_build& ss = cs.ss;
ss.braces_ = braces_; // copy
ss.nodes_.clear();
unsigned topbrace = braces_.size();
for (const auto& node: nodes_)
{
for (const auto& t: cs.aut->out(node.first))
{
if (!bdd_implies(ap, t.cond))
continue;
// Check if we are leaving the SCC, if so we delete all the
// braces as no cycles can be found with that node
if (cs.use_scc && cs.scc.scc_of(node.first) != cs.scc.scc_of(t.dst))
if (cs.scc.is_accepting_scc(cs.scc.scc_of(t.dst)))
// Entering accepting SCC so add brace
ss.update_succ_toplevel<true>(t.dst);
else
// When entering non accepting SCC don't create any braces
ss.update_succ_toplevel<false>(t.dst);
else
ss.update_succ(node.second, t.dst, t.acc);
}
}
return safra_state(ss, cs, color, topbrace);
}
// When a node a implies a node b, remove the node a.
void
safra_state::merge_redundant_states(
const std::vector<std::vector<char>>& implies)
{
auto it1 = nodes_.begin();
while (it1 != nodes_.end())
{
const auto& imp1 = implies[it1->first];
auto old_it1 = it1++;
if (imp1.empty())
continue;
for (auto it2 = nodes_.begin(); it2 != nodes_.end(); ++it2)
{
if (old_it1 == it2)
continue;
if (imp1[it2->first])
{
it1 = nodes_.erase(old_it1);
break;
}
}
}
}
// Return the emitted color, red or green
unsigned
safra_state::finalize_construction(const std::vector<int>& buildbraces,
const compute_succs& cs, unsigned topbrace)
{
unsigned red = -1U;
unsigned green = -1U;
// use std::vector<char> to avoid std::vector<bool>
// a char encodes several bools:
// * first bit says whether the brace is empty and red
// * second bit says whether the brace is green
// brackets removed from green pairs can be safely be marked as red,
// because their enclosing green has a lower number
// beware of pairs marked both as red and green: they are actually empty
constexpr char is_empty = 1;
constexpr char is_green = 2;
cs.empty_green.assign(buildbraces.size(), is_empty | is_green);
for (const auto& n : nodes_)
if (n.second >= 0)
{
int brace = n.second;
// Step A4: For a brace to be green it must not contain states
// on its own.
cs.empty_green[brace] &= ~is_green;
while (brace >= 0 && (cs.empty_green[brace] & is_empty))
{
cs.empty_green[brace] &= ~is_empty;
brace = buildbraces[brace];
}
}
// Step A4 Remove brackets within green pairs
// for each bracket, find its highest green ancestor
// 0 cannot be in a green pair, its highest green ancestor is itself
// Also find red and green signals to emit
// And compute the number of braces to remove for renumbering
cs.highest_green_ancestor.assign(buildbraces.size(), 0);
cs.decr_by.assign(buildbraces.size(), 0);
unsigned decr = 0;
for (unsigned b = 0; b != buildbraces.size(); ++b)
{
cs.highest_green_ancestor[b] = b;
const int& ancestor = buildbraces[b];
// Note that ancestor < b
if (ancestor >= 0
&& (cs.highest_green_ancestor[ancestor] != ancestor
|| (cs.empty_green[ancestor] & is_green)))
{
cs.highest_green_ancestor[b] = cs.highest_green_ancestor[ancestor];
cs.empty_green[b] |= is_empty; // mark brace for removal
}
if (cs.empty_green[b] & is_empty)
{
// Step A5 renumber braces
++decr;
// Any brace above topbrace was added while constructing
// this successor, so it should not emit any red.
if (b < topbrace)
// Step A3 emit red
red = std::min(red, 2*b);
}
else if (cs.empty_green[b] & is_green)
{
assert(b < topbrace);
// Step A4 emit green
green = std::min(green, 2*b+1);
}
cs.decr_by[b] = decr;
}
// Update nodes with new braces numbers
braces_ = std::vector<int>(buildbraces.size() - decr, -1);
for (auto& n : nodes_)
{
if (n.second >= 0)
{
unsigned i = cs.highest_green_ancestor[n.second];
int j = buildbraces[i] >=0
? buildbraces[i] - cs.decr_by[buildbraces[i]]
: -1;
n.second = i - cs.decr_by[i];
braces_[n.second] = j;
}
}
return std::min(red, green);
}
safra_state::safra_state()
: nodes_{std::make_pair(0, -1)}
{}
// Called only to initialize first state
safra_state::safra_state(state_t val, bool accepting_scc)
: nodes_{std::make_pair(val, -1)}
{
if (accepting_scc)
{
braces_.emplace_back(-1);
nodes_.back().second = 0;
}
}
safra_state::safra_state(const safra_build& s,
const compute_succs& cs,
unsigned& color,
unsigned topbrace)
: nodes_(s.nodes_.begin(), s.nodes_.end())
{
if (cs.use_simulation)
merge_redundant_states(cs.implies);
color = finalize_construction(s.braces_, cs, topbrace);
}
bool
safra_state::operator<(const safra_state& other) const
{
// FIXME: what is the right, if any, comparison to perform?
return braces_ == other.braces_ ? nodes_ < other.nodes_
: braces_ < other.braces_;
}
size_t
safra_state::hash() const
{
size_t res = 0;
//std::cerr << this << " [";
for (const auto& p : nodes_)
{
res ^= (res << 3) ^ p.first;
res ^= (res << 3) ^ p.second;
// std::cerr << '(' << p.first << ',' << p.second << ')';
}
// std::cerr << "][ ";
for (const auto& b : braces_)
{
res ^= (res << 3) ^ b;
// std::cerr << b << ' ';
}
// std::cerr << "]: " << std::hex << res << std::dec << '\n';
return res;
}
bool
safra_state::operator==(const safra_state& other) const
{
return nodes_ == other.nodes_ && braces_ == other.braces_;
}
namespace
{
class reachability_matrix final
{
// Store a lower triangular matrix.
// (j can reach i) <=> (i<=j and m[j*(j+1)/2 + i]==1)
std::vector<char> m;
public:
reachability_matrix(const scc_info& scc)
{
unsigned scccount = scc.scc_count();
m.resize(scccount * (scccount + 1) / 2, 0);
for (unsigned i = 0; i < scccount; ++i)
m[(i * (i + 1) / 2) + i] = 1;
for (unsigned i = 1; i < scccount; ++i)
{
unsigned ibase = i * (i + 1) / 2;
for (unsigned d: scc.succ(i))
{
// we necessarily have d < i because of the way SCCs are
// numbered, so we can build the transitive closure by
// just ORing any SCC reachable from d.
unsigned dbase = d * (d + 1) / 2;
for (unsigned j = 0; j <= d; ++j)
m[ibase + j] |= m[dbase + j];
}
}
}
bool operator()(unsigned j, unsigned i) const
{
return i <= j && m[(j * (j + 1) / 2) + i];
}
};
}
twa_graph_ptr
tgba_determinize(const const_twa_graph_ptr& a,
bool pretty_print, bool use_scc,
bool use_simulation, bool use_stutter,
const output_aborter* aborter,
int trans_pruning,
bool want_classes)
{
if (!a->is_existential())
throw std::runtime_error
("tgba_determinize() does not support alternation");
if (is_universal(a))
return std::const_pointer_cast<twa_graph>(a);
// Degeneralize
const_twa_graph_ptr aut;
std::vector<bdd> implications;
{
twa_graph_ptr aut_tmp = spot::degeneralize_tba(a);
if (pretty_print)
aut_tmp->copy_state_names_from(a);
if (use_simulation)
{
aut_tmp = spot::scc_filter(aut_tmp, true, nullptr, true);
auto aut2 = simulation(aut_tmp, &implications, trans_pruning);
if (pretty_print)
aut2->copy_state_names_from(aut_tmp);
aut_tmp = aut2;
}
aut = aut_tmp;
}
scc_info_options scc_opt = scc_info_options::TRACK_SUCCS;
// We do need to track states in SCC for stutter invariance (see below how
// supports are computed in this case)
if (use_stutter && aut->prop_stutter_invariant())
scc_opt = scc_info_options::TRACK_SUCCS | scc_info_options::TRACK_STATES;
scc_info scc = scc_info(aut, scc_opt);
// If we have too many SCCs, disable simulation-based checks, as
// computations to index the matrix would overflow. (Issue #541.)
if (scc.scc_count() >= (1 << 16))
{
use_simulation = false;
implications.clear();
}
// If use_simulation is false, implications is empty, so nothing is built
std::vector<std::vector<char>> implies(
implications.size(),
std::vector<char>(implications.size(), 0));
if (use_simulation)
{
reachability_matrix scc_can_reach(scc);
bool something_implies_something = false;
for (unsigned i = 0; i != implications.size(); ++i)
{
// NB spot::simulation() does not remove unreachable states, as it
// would invalidate the contents of 'implications'.
// so we need to explicitly test for unreachable states
// FIXME: based on the scc_info, we could remove the unreachable
// states, both in the input automaton and in 'implications'
// to reduce the size of 'implies'.
if (!scc.reachable_state(i))
continue;
unsigned scc_of_i = scc.scc_of(i);
bool i_implies_something = false;
for (unsigned j = 0; j != implications.size(); ++j)
{
if (!scc.reachable_state(j))
continue;
bool i_implies_j = !scc_can_reach(scc.scc_of(j), scc_of_i)
&& bdd_implies(implications[i], implications[j]);
implies[i][j] = i_implies_j;
i_implies_something |= i_implies_j;
}
// Clear useless lines.
if (!i_implies_something)
implies[i].clear();
else
something_implies_something = true;
}
if (!something_implies_something)
{
implies.clear();
use_simulation = false;
}
}
// Compute the support of each state
std::vector<bdd> support(aut->num_states());
if (use_stutter && aut->prop_stutter_invariant())
{
// FIXME: this could be improved
// supports of states should account for possible stuttering if we plan
// to use stuttering invariance
for (unsigned c = 0; c != scc.scc_count(); ++c)
{
bdd c_supp = scc.scc_ap_support(c);
for (const auto& su: scc.succ(c))
c_supp &= support[scc.one_state_of(su)];
for (unsigned st: scc.states_of(c))
support[st] = c_supp;
}
}
else
{
for (unsigned i = 0; i != aut->num_states(); ++i)
{
bdd res = bddtrue;
for (const auto& e : aut->out(i))
res &= bdd_support(e.cond);
support[i] = res;
}
}
safra_support safra2letters(support, aut);
auto res = make_twa_graph(aut->get_dict());
res->copy_ap_of(aut);
res->prop_copy(aut,
{ false, // state based
false, // inherently_weak
false, false, // deterministic
false, // complete
true // stutter inv
});
// completeness can only be improved.
if (aut->prop_complete().is_true())
res->prop_complete(true);
// Given a safra_state get its associated state in output automata.
// Required to create new edges from 2 safra-state
power_set seen;
// As per the standard, references to elements in a std::unordered_set or
// std::unordered_map are invalidated by erasure only.
std::deque<std::reference_wrapper<power_set::value_type>> todo;
auto get_state = [&res, &seen, &todo](const safra_state& s) -> unsigned
{
auto it = seen.find(s);
if (it == seen.end())
{
unsigned dst_num = res->new_state();
it = seen.emplace(s, dst_num).first;
todo.emplace_back(*it);
}
return it->second;
};
{
unsigned init_state = aut->get_init_state_number();
bool start_accepting =
!use_scc || scc.is_accepting_scc(scc.scc_of(init_state));
safra_state init(init_state, start_accepting);
unsigned num = get_state(init); // inserts both in seen and in todo
res->set_init_state(num);
}
unsigned sets = 0;
compute_succs succs(aut, seen, scc, implies, use_scc, use_simulation,
use_stutter);
// The main loop
while (!todo.empty())
{
if (aborter && aborter->too_large(res))
return nullptr;
const safra_state& curr = todo.front().get().first;
unsigned src_num = todo.front().get().second;
todo.pop_front();
succs.set(curr, safra2letters.get(curr));
for (auto s = succs.begin(); s != succs.end(); ++s)
{
// Don't construct sink state as complete does a better job at this
if (s->nodes_.empty())
continue;
unsigned dst_num = get_state(*s);
if (s.color_ != -1U)
{
res->new_edge(src_num, dst_num, s.cond(), {s.color_});
sets = std::max(s.color_ + 1, sets);
}
else
res->new_edge(src_num, dst_num, s.cond());
}
}
// Green and red colors work in pairs, so the number of parity conditions is
// necessarily even.
sets += sets & 1;
// Acceptance is now min(odd) since we can emit Red on paths 0 with new opti
res->set_acceptance(sets, acc_cond::acc_code::parity_min_odd(sets));
res->prop_universal(true);
res->prop_state_acc(false);
cleanup_parity_here(res);
if (pretty_print)
res->set_named_prop("state-names", print_debug(aut, seen));
if (want_classes)
{
auto* ptr =
aut->get_named_prop<std::vector<unsigned>>("original-states");
if (ptr && ptr->size() != aut->num_states())
throw std::runtime_error("tgba_determinize(): "
"input's \"original-states\" property "
"has unexpected size");
if (!ptr)
{
ptr =
aut->get_named_prop<std::vector<unsigned>>("original-classes");
if (ptr && ptr->size() != aut->num_states())
throw std::runtime_error("tgba_determinize(): "
"input's \"original-classes\" property "
"has unexpected size");
}
res->set_named_prop("original-classes", classify(seen, ptr));
}
return res;
}
}