spot/src/tgbaalgos/emptinesscheck.cc
Alexandre Duret-Lutz 93c0732f0e * src/tgbaalgos/emptinesscheck.hh, src/tgbaalgos/emptinesscheck.cc
(emptiness_check::seq_counter, emptiness_check::periode): Rename as ...
(emptiness_check::prefix, emptiness_check::period): ... these.
2003-10-22 15:25:05 +00:00

560 lines
16 KiB
C++

#include "emptinesscheck.hh"
#include "tgba/tgba.hh"
#include "tgba/state.hh"
#include "tgba/bddprint.hh"
#include "tgba/tgbabddfactory.hh"
#include "tgba/succiterconcrete.hh"
#include "tgba/tgbabddconcrete.hh"
#include "bdd.h"
#include <map>
#include <list>
#include <sstream>
#include <stack>
#include <queue>
#include <stdio.h>
#include <vector>
#include <set>
#include <iterator>
#include <utility>
#include <ostream>
namespace spot
{
connected_component::connected_component()
{
index = 0;
condition = bddfalse;
transition_acc = -1;
nb_transition = 0;
nb_state = 1;
not_null = false;
}
connected_component::connected_component(int i, bdd a)
{
index = i;
condition = a;
transition_acc = -1;
nb_transition = 0;
nb_state = 1;
not_null = false;
}
connected_component::~connected_component()
{
}
bool
connected_component::isAccepted(tgba* aut)
{
return aut->all_accepting_conditions() == condition;
}
/// \brief Remove all the nodes accessible from the given node start_delete.
///
/// The removed graph is the subgraph containing nodes stored
/// in table state_map with order -1.
void
emptiness_check::remove_component(const tgba& aut, seen& state_map,
const spot::state* start_delete)
{
std::stack<spot::tgba_succ_iterator*> to_remove;
state_map[start_delete] = -1;
tgba_succ_iterator* iter_delete = aut.succ_iter(start_delete);
iter_delete->first();
to_remove.push(iter_delete);
while (!to_remove.empty())
{
tgba_succ_iterator* succ_delete = to_remove.top();
to_remove.pop();
if (!succ_delete->done())
{
to_remove.push(succ_delete);
state* curr_state = succ_delete->current_state();
succ_delete->next();
if (state_map[curr_state] != -1)
{
state_map[curr_state] = -1;
tgba_succ_iterator* succ_delete2 = aut.succ_iter(curr_state);
succ_delete2->first();
to_remove.push(succ_delete2);
}
}
}
}
/// \brief On-the-fly emptiness check.
///
/// The algorithm used here is adapted from Jean-Michel Couvreur's
/// Probataf tool.
bool
emptiness_check::tgba_emptiness_check(const spot::tgba* aut_check)
{
int nbstate = 1;
state* init = aut_check->get_init_state();
seen_state_num[init] = 1;
root_component.push(spot::connected_component(1,bddfalse));
arc_accepting.push(bddfalse);
tgba_succ_iterator* iter_ = aut_check->succ_iter(init);
iter_->first();
todo.push(pair_state_iter(init, iter_ ));
while (!todo.empty())
{
pair_state_iter step = todo.top();
if ((step.second)->done())
{
todo.pop();
assert(!root_component.empty());
connected_component comp_tmp = root_component.top();
root_component.pop();
seen::iterator i_0 = seen_state_num.find(step.first);
assert(i_0 != seen_state_num.end());
if (comp_tmp.index == seen_state_num[step.first])
{
/// The current node is a root of a Strong Connected Component.
spot::emptiness_check::remove_component(*aut_check,
seen_state_num,
step.first);
assert(!arc_accepting.empty());
arc_accepting.pop();
assert(root_component.size() == arc_accepting.size());
}
else
{
root_component.push(comp_tmp);
assert(root_component.size() == arc_accepting.size());
}
}
else
{
iter_ = step.second;
state* current_state = iter_->current_state();
bdd current_accepting = iter_->current_accepting_conditions();
seen::iterator i = seen_state_num.find(current_state);
iter_->next();
if (i == seen_state_num.end())
{
// New node.
nbstate = nbstate + 1;
assert(nbstate != 0);
seen_state_num[current_state] = nbstate;
root_component.push(connected_component(nbstate, bddfalse));
arc_accepting.push(current_accepting);
tgba_succ_iterator* iter2 = aut_check->succ_iter(current_state);
iter2->first();
todo.push(pair_state_iter(current_state, iter2 ));
}
else if (seen_state_num[current_state] != -1)
{
// A node with order != -1 (a seen node not removed).
assert(!root_component.empty());
connected_component comp = root_component.top();
root_component.pop();
bdd new_condition = current_accepting;
int current_index = seen_state_num[current_state];
while (comp.index > current_index)
{
// root_component and arc_accepting are popped
// until the head of root_component is less or
// equal to the order of the current state.
assert(!root_component.empty());
comp = root_component.top();
root_component.pop();
new_condition |= comp.condition;
assert(!arc_accepting.empty());
bdd arc_acc = arc_accepting.top();
arc_accepting.pop();
new_condition |= arc_acc;
}
comp.condition |= new_condition;
if (aut_check->all_accepting_conditions() == comp.condition)
{
// A failure SCC is find, the automata is not empty.
// spot::bdd_print_dot(std::cout, aut_check->get_dict(),
// comp.condition);
root_component.push(comp);
std::cout << "CONSISTENT AUTOMATA" << std::endl;
return false;
}
root_component.push(comp);
assert(root_component.size() == arc_accepting.size());
}
}
}
// The automata is empty.
std::cout << "EMPTY LANGUAGE" << std::endl;
return true;
}
std::ostream&
emptiness_check::print_result(std::ostream& os, const spot::tgba* aut,
const tgba* restrict) const
{
os << "======================" << std::endl;
os << "Prefix:" << std::endl;
os << "======================" << std::endl;
const bdd_dict* d = aut->get_dict();
for (state_sequence::const_iterator i_se = suffix.begin();
i_se != suffix.end(); i_se++)
{
if (restrict)
{
os << restrict->format_state(aut->project_state((*i_se), restrict))
<< std::endl;
}
else
{
os << aut->format_state((*i_se)) << std::endl;
}
}
os << "======================" << std::endl;
os << "Cycle:" <<std::endl;
os << "======================" << std::endl;
for (cycle_path::const_iterator it = period.begin();
it != period.end(); it++)
{
if (restrict)
{
os << " | " << bdd_format_set(d, (*it).second) <<std::endl ;
os << restrict->format_state(aut->project_state((*it).first,
restrict))
<< std::endl;
}
else
{
os << " | " << bdd_format_set(d, (*it).second) <<std::endl ;
os << aut->format_state((*it).first) << std::endl;
}
}
return os;
}
/// \brief Build a possible prefix and period for a counter example.
void
emptiness_check::counter_example(const spot::tgba* aut_counter)
{
std::deque <pair_state_iter> todo_trace;
typedef std::map<const spot::state*, const spot::state*,
spot::state_ptr_less_than> path_state;
path_state path_map;
if (!root_component.empty())
{
int comp_size = root_component.size();
typedef std::vector<connected_component> vec_compo;
vec_compo vec_component;
vec_component.resize(comp_size);
vec_sequence.resize(comp_size);
state_sequence seq;
state_sequence tmp_lst;
state_sequence best_lst;
bdd tmp_acc = bddfalse;
std::stack<pair_state_iter> todo_accept;
for (int j = comp_size -1; j >= 0; j--)
{
vec_component[j] = root_component.top();
root_component.pop();
}
int q_index;
int tmp_int = 0;
// Fill the SCC in the stack root_component.
for (seen::iterator iter_map = seen_state_num.begin();
iter_map != seen_state_num.end(); iter_map++)
{
q_index = (*iter_map).second;
tmp_int = 0;
if (q_index > 0)
{
while ((tmp_int < comp_size)
&& (vec_component[tmp_int].index <= q_index))
tmp_int = tmp_int+1;
if (tmp_int < comp_size)
vec_component[tmp_int-1].state_set.insert((*iter_map).first);
else
vec_component[comp_size-1].state_set
.insert((*iter_map).first);
}
}
state* start_state = aut_counter->get_init_state();
if (comp_size != 1)
{
tgba_succ_iterator* i = aut_counter->succ_iter(start_state);
todo_trace.push_back(pair_state_iter(start_state, i));
for (int k = 0; k < comp_size-1; k++)
{
// We build a path trought all SCC in the stack: a
// possible prefix for a counter example.
while (!todo_trace.empty())
{
pair_state_iter started_from = todo_trace.front();
todo_trace.pop_front();
started_from.second->first();
for (started_from.second->first();
!started_from.second->done();
started_from.second->next())
{
const state* curr_state =
started_from.second->current_state();
connected_component::set_of_state::iterator iter_set =
vec_component[k+1].state_set.find(curr_state);
if (iter_set != vec_component[k+1].state_set.end())
{
const state* curr_father = started_from.first;
seq.push_front(*iter_set);
seq.push_front(curr_father);
seen::iterator i_2 =
seen_state_num.find(curr_father);
assert(i_2 != seen_state_num.end());
while ((vec_component[k].index
< seen_state_num[curr_father])
&& (seen_state_num[curr_father] != 1))
{
seq.push_front(path_map[curr_father]);
curr_father = path_map[curr_father];
seen::iterator i_3 =
seen_state_num.find(curr_father);
assert(i_3 != seen_state_num.end());
}
vec_sequence[k] = seq;
seq.clear();
todo_trace.clear();
break;
}
else
{
connected_component::set_of_state::iterator i_s =
vec_component[k].state_set.find(curr_state);
if (i_s != vec_component[k].state_set.end())
{
path_state::iterator i_path =
path_map.find(curr_state);
seen::iterator i_seen =
seen_state_num.find(curr_state);
if (i_seen != seen_state_num.end()
&& seen_state_num[curr_state] > 0
&& i_path == path_map.end())
{
todo_trace.
push_back(pair_state_iter(curr_state,
aut_counter->succ_iter(curr_state)));
path_map[curr_state] = started_from.first;
}
}
}
}
}
todo_trace.
push_back(pair_state_iter(vec_sequence[k].back(),
aut_counter->succ_iter(vec_sequence[k].back())));
}
}
else
{
suffix.push_front(start_state);
}
for (int n_ = 0; n_ < comp_size-1; n_++)
{
for (state_sequence::iterator it = vec_sequence[n_].begin();
it != vec_sequence[n_].end(); it++)
{
suffix.push_back(*it);
}
}
suffix.unique();
emptiness_check::accepting_path(aut_counter,
vec_component[comp_size-1],
suffix.back(),
vec_component[comp_size-1].condition);
}
else
{
std::cout << "EMPTY LANGUAGE NO COUNTER EXEMPLE" << std::endl;
}
}
/// \brief complete the path build by accepting_path to get the period.
void
emptiness_check::complete_cycle(const spot::tgba* aut_counter,
const connected_component& comp_path,
const state* from_state,
const state* to_state)
{
if (seen_state_num[from_state] != seen_state_num[to_state])
{
std::map<const spot::state*, state_proposition,
spot::state_ptr_less_than> complete_map;
std::deque<pair_state_iter> todo_complete;
spot::tgba_succ_iterator* ite = aut_counter->succ_iter(from_state);
todo_complete.push_back(pair_state_iter(from_state, ite));
cycle_path tmp_comp;
while(!todo_complete.empty())
{
pair_state_iter started_ = todo_complete.front();
todo_complete.pop_front();
tgba_succ_iterator* iter_s = started_.second;
iter_s->first();
for (iter_s->first(); !iter_s->done(); iter_s->next())
{
const state* curr_state = (started_.second)->current_state();
connected_component::set_of_state::iterator i_set =
comp_path.state_set.find(curr_state);
if (i_set != comp_path.state_set.end())
{
if (curr_state->compare(to_state) == 0)
{
const state* curr_father = started_.first;
bdd curr_condition = iter_s->current_condition();
tmp_comp.push_front(state_proposition(curr_state, curr_condition));
while (curr_father->compare(from_state) != 0)
{
tmp_comp.push_front(state_proposition(curr_father,
complete_map[curr_father].second));
curr_father = complete_map[curr_father].first;
}
emptiness_check::period.splice(period.end(),
tmp_comp);
todo_complete.clear();
break;
}
else
{
todo_complete.push_back(pair_state_iter(curr_state,
aut_counter->succ_iter(curr_state)));
complete_map[curr_state] =
state_proposition(started_.first,
iter_s->current_condition());
}
}
}
}
}
}
/// \Brief build recursively a path in the accepting SCC to get
/// all accepting conditions. This path is the first part of the
/// period.
void
emptiness_check::accepting_path(const spot::tgba* aut_counter,
const connected_component& comp_path,
const spot::state* start_path, bdd to_accept)
{
seen seen_priority;
std::stack<triplet> todo_path;
tgba_succ_iterator* t_s_i = aut_counter->succ_iter(start_path);
t_s_i->first();
todo_path.push(triplet(pair_state_iter(start_path,t_s_i), bddfalse));
bdd tmp_acc = bddfalse;
bdd best_acc = bddfalse;
cycle_path tmp_lst;
cycle_path best_lst;
bool ok = false;
seen_priority[start_path] = seen_state_num[start_path];
while (!todo_path.empty())
{
triplet step_ = todo_path.top();
tgba_succ_iterator* iter_ = (step_.first).second;
if (iter_->done())
{
todo_path.pop();
seen_priority.erase((step_.first).first);
tmp_lst.pop_back();
}
else
{
state* curr_state = iter_->current_state();
connected_component::set_of_state::iterator it_set =
comp_path.state_set.find(curr_state);
if (it_set != comp_path.state_set.end())
{
seen::iterator i = seen_priority.find(curr_state);
if (i == seen_priority.end())
{
tgba_succ_iterator* c_iter =
aut_counter->succ_iter(curr_state);
bdd curr_bdd =
iter_->current_accepting_conditions() | step_.second;
c_iter->first();
todo_path.push(triplet(pair_state_iter(curr_state, c_iter),
curr_bdd));
tmp_lst.push_back(state_proposition(curr_state,
iter_->current_condition()));
seen_priority[curr_state] = seen_state_num[curr_state];
}
else
{
if (ok)
{
bdd last_ = iter_->current_accepting_conditions();
bdd prop_ = iter_->current_condition();
tmp_lst.push_back(state_proposition(curr_state, prop_));
tmp_acc = last_ | step_.second;
bdd curr_in = tmp_acc & to_accept;
bdd best_in = best_acc & to_accept;
if (curr_in == best_in)
{
if (tmp_lst.size() < best_lst.size())
{
cycle_path tmp(tmp_lst);
best_lst = tmp;
spot::bdd_print_dot(std::cout,
aut_counter->get_dict(),
step_.second);
}
}
else
{
if (bddtrue == (best_in >> curr_in))
{
cycle_path tmp(tmp_lst);
best_lst = tmp;
best_acc = tmp_acc;
}
}
}
else
{
bdd last_ = iter_->current_accepting_conditions();
bdd prop_ = iter_->current_condition();
tmp_acc = last_ | step_.second;
tmp_lst.push_back(state_proposition(curr_state,
prop_));
cycle_path tmp(tmp_lst);
best_lst = tmp;
best_acc = tmp_acc;
ok = true;
}
}
}
iter_->next();
}
}
for (cycle_path::iterator it = best_lst.begin();
it != best_lst.end(); it++)
emptiness_check::period.push_back(*it);
if (best_acc != to_accept)
{
bdd rec_to_acc = to_accept - best_acc;
emptiness_check::accepting_path(aut_counter, comp_path,
period.back().first, rec_to_acc);
}
else
{
if (!period.empty())
{
/// The path contains all accepting conditions. Then we
///complete the cycle in this SCC by calling complete_cycle.
complete_cycle(aut_counter, comp_path, period.back().first,
suffix.back());
}
}
}
}