spot/src/ltlast/binop.cc
Alexandre Duret-Lutz 34f1601b9b ltl: rename is_X_free() into is_syntactic_stutter_invariant()
and adjust it to detect siPSL formulas, as in the paper of Dax et
al. (ATVA'09).  For issue #51.

* src/ltlast/atomic_prop.cc, src/ltlast/binop.cc,
src/ltlast/bunop.cc, src/ltlast/constant.cc, src/ltlast/formula.cc,
src/ltlast/formula.hh, src/ltlast/multop.cc, src/ltlast/unop.cc: Rename
the property, and adjust its computation on siSERE.
* src/ltlvisit/remove_x.cc, src/ltlvisit/simplify.cc,
src/tgbaalgos/stutter.cc: Adjust to new names.
* src/bin/ltlfilt.cc: Add option --syntactic-sutter-invariant.
* src/ltltest/kind.test: Update tests and add some new.
2015-01-19 14:39:41 +01:00

544 lines
15 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2010, 2011, 2012, 2013, 2014, 2015 Laboratoire
// de Recherche et Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2005 Laboratoire d'Informatique de Paris
// 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "config.h"
#include <cassert>
#include <cstddef>
#include <utility>
#include "binop.hh"
#include "unop.hh"
#include "multop.hh"
#include "constant.hh"
#include "visitor.hh"
#include <iostream>
namespace spot
{
namespace ltl
{
binop::binop(type op, const formula* first, const formula* second)
: formula(BinOp), op_(op), first_(first), second_(second)
{
// Beware: (f U g) is a pure eventuality if both operands
// are pure eventualities, unlike in the proceedings of
// Concur'00. (The revision of the paper available at
// http://www.bell-labs.com/project/TMP/ is fixed.) See
// also http://arxiv.org/abs/1011.4214v2 for a discussion
// about this problem. (Which we fixed in 2005 thanks
// to LBTT.)
// This means that we can use the following line to handle
// all cases of (f U g), (f R g), (f W g), (f M g) for
// universality and eventuality.
props = first->get_props() & second->get_props();
// The matter can be further refined because:
// (f U g) is a pure eventuality if
// g is a pure eventuality (regardless of f),
// or f == 1
// (g M f) is a pure eventuality if f and g are,
// or f == 1
// (g R f) is purely universal if
// f is purely universal (regardless of g)
// or g == 0
// (f W g) is purely universal if f and g are
// or g == 0
switch (op)
{
case Xor:
case Equiv:
is.eventual = false;
is.universal = false;
is.sere_formula = is.boolean;
is.sugar_free_boolean = false;
is.in_nenoform = false;
// is.syntactic_obligation inherited;
is.accepting_eword = false;
if (is.syntactic_obligation)
{
// Only formula that are in the intersection of
// guarantee and safety are closed by Xor and <=>.
bool sg = is.syntactic_safety && is.syntactic_guarantee;
is.syntactic_safety = sg;
is.syntactic_guarantee = sg;
assert(is.syntactic_recurrence == true);
assert(is.syntactic_persistence == true);
}
else
{
is.syntactic_safety = false;
is.syntactic_guarantee = false;
is.syntactic_recurrence = false;
is.syntactic_persistence = false;
}
break;
case Implies:
is.eventual = false;
is.universal = false;
is.sere_formula = is.boolean;
is.sugar_free_boolean = false;
is.in_nenoform = false;
is.syntactic_safety =
first->is_syntactic_guarantee() && second->is_syntactic_safety();
is.syntactic_guarantee =
first->is_syntactic_safety() && second->is_syntactic_guarantee();
// is.syntactic_obligation inherited
is.syntactic_persistence = first->is_syntactic_recurrence()
&& second->is_syntactic_persistence();
is.syntactic_recurrence = first->is_syntactic_persistence()
&& second->is_syntactic_recurrence();
is.accepting_eword = false;
break;
case EConcatMarked:
case EConcat:
is.not_marked = (op != EConcatMarked);
is.ltl_formula = false;
is.boolean = false;
is.eltl_formula = false;
is.sere_formula = false;
is.accepting_eword = false;
is.psl_formula = true;
is.syntactic_guarantee = second->is_syntactic_guarantee();
is.syntactic_persistence = second->is_syntactic_persistence();
if (first->is_finite())
{
is.syntactic_safety = second->is_syntactic_safety();
is.syntactic_obligation = second->is_syntactic_obligation();
is.syntactic_recurrence = second->is_syntactic_recurrence();
}
else
{
is.syntactic_safety = false;
is.syntactic_obligation = second->is_syntactic_guarantee();
is.syntactic_recurrence = second->is_syntactic_guarantee();
}
assert(first->is_sere_formula());
assert(second->is_psl_formula());
if (first->is_boolean())
is.syntactic_si = false;
break;
case UConcat:
is.not_marked = true;
is.ltl_formula = false;
is.boolean = false;
is.eltl_formula = false;
is.sere_formula = false;
is.accepting_eword = false;
is.psl_formula = true;
is.syntactic_safety = second->is_syntactic_safety();
is.syntactic_recurrence = second->is_syntactic_recurrence();
if (first->is_finite())
{
is.syntactic_guarantee = second->is_syntactic_guarantee();
is.syntactic_obligation = second->is_syntactic_obligation();
is.syntactic_persistence = second->is_syntactic_persistence();
}
else
{
is.syntactic_guarantee = false;
is.syntactic_obligation = second->is_syntactic_safety();
is.syntactic_persistence = second->is_syntactic_safety();
}
assert(first->is_sere_formula());
assert(second->is_psl_formula());
if (first->is_boolean())
is.syntactic_si = false;
break;
case U:
is.not_marked = true;
// f U g is universal if g is eventual, or if f == 1.
is.eventual = second->is_eventual();
is.eventual |= (first == constant::true_instance());
is.boolean = false;
is.eltl_formula = false;
is.sere_formula = false;
is.finite = false;
is.accepting_eword = false;
is.syntactic_safety = false;
// is.syntactic_guarantee = Guarantee U Guarantee
is.syntactic_obligation = // Obligation U Guarantee
first->is_syntactic_obligation()
&& second->is_syntactic_guarantee();
is.syntactic_recurrence = // Recurrence U Guarantee
first->is_syntactic_recurrence()
&& second->is_syntactic_guarantee();
// is.syntactic_persistence = Persistence U Persistance
break;
case W:
is.not_marked = true;
// f W g is universal if f and g are, or if g == 0.
is.universal |= (second == constant::false_instance());
is.boolean = false;
is.eltl_formula = false;
is.sere_formula = false;
is.finite = false;
is.accepting_eword = false;
// is.syntactic_safety = Safety W Safety;
is.syntactic_guarantee = false;
is.syntactic_obligation = // Safety W Obligation
first->is_syntactic_safety() && second->is_syntactic_obligation();
// is.syntactic_recurrence = Recurrence W Recurrence
is.syntactic_persistence = // Safety W Persistance
first->is_syntactic_safety()
&& second->is_syntactic_persistence();
break;
case R:
is.not_marked = true;
// g R f is universal if f is universal, or if g == 0.
is.universal = second->is_universal();
is.universal |= (first == constant::false_instance());
is.boolean = false;
is.eltl_formula = false;
is.sere_formula = false;
is.finite = false;
is.accepting_eword = false;
// is.syntactic_safety = Safety R Safety;
is.syntactic_guarantee = false;
is.syntactic_obligation = // Obligation R Safety
first->is_syntactic_obligation() && second->is_syntactic_safety();
//is.syntactic_recurrence = Recurrence R Recurrence
is.syntactic_persistence = // Persistence R Safety
first->is_syntactic_persistence()
&& second->is_syntactic_safety();
break;
case M:
is.not_marked = true;
// g M f is eventual if both g and f are eventual, or if f == 1.
is.eventual |= (second == constant::true_instance());
is.boolean = false;
is.eltl_formula = false;
is.sere_formula = false;
is.finite = false;
is.accepting_eword = false;
is.syntactic_safety = false;
// is.syntactic_guarantee = Guarantee M Guarantee
is.syntactic_obligation = // Guarantee M Obligation
first->is_syntactic_guarantee()
&& second->is_syntactic_obligation();
is.syntactic_recurrence = // Guarantee M Recurrence
first->is_syntactic_guarantee()
&& second->is_syntactic_recurrence();
// is.syntactic_persistence = Persistence M Persistance
break;
}
assert((!is.syntactic_obligation) ||
(is.syntactic_persistence && is.syntactic_recurrence));
}
binop::~binop()
{
// Get this instance out of the instance map.
size_t c = instances.erase(key(op(), first(), second()));
assert(c == 1);
(void) c; // For the NDEBUG case.
// Dereference children.
first()->destroy();
second()->destroy();
}
std::string
binop::dump() const
{
return (std::string("binop(") + op_name()
+ ", " + first()->dump()
+ ", " + second()->dump() + ")");
}
void
binop::accept(visitor& v) const
{
v.visit(this);
}
const char*
binop::op_name() const
{
switch (op_)
{
case Xor:
return "Xor";
case Implies:
return "Implies";
case Equiv:
return "Equiv";
case U:
return "U";
case R:
return "R";
case W:
return "W";
case M:
return "M";
case EConcat:
return "EConcat";
case EConcatMarked:
return "EConcatMarked";
case UConcat:
return "UConcat";
}
SPOT_UNREACHABLE();
}
binop::map binop::instances;
const formula*
binop::instance(type op, const formula* first, const formula* second)
{
// Sort the operands of commutative operators, so that for
// example the formula instance for 'a xor b' is the same as
// that for 'b xor a'.
// Trivial identities:
switch (op)
{
case Xor:
{
// Xor is commutative: sort operands.
formula_ptr_less_than_bool_first cmp;
if (cmp(second, first))
std::swap(second, first);
}
// - (1 ^ Exp) = !Exp
// - (0 ^ Exp) = Exp
if (first == constant::true_instance())
return unop::instance(unop::Not, second);
if (first == constant::false_instance())
return second;
if (first == second)
{
first->destroy();
second->destroy();
return constant::false_instance();
}
// We expect constants to appear first, because they are
// instantiated first.
assert(second != constant::false_instance());
assert(second != constant::true_instance());
break;
case Equiv:
{
// Equiv is commutative: sort operands.
formula_ptr_less_than_bool_first cmp;
if (cmp(second, first))
std::swap(second, first);
}
// - (0 <=> Exp) = !Exp
// - (1 <=> Exp) = Exp
// - (Exp <=> Exp) = 1
if (first == constant::false_instance())
return unop::instance(unop::Not, second);
if (first == constant::true_instance())
return second;
if (first == second)
{
first->destroy();
second->destroy();
return constant::true_instance();
}
// We expect constants to appear first, because they are
// instantiated first.
assert(second != constant::false_instance());
assert(second != constant::true_instance());
break;
case Implies:
// - (1 => Exp) = Exp
// - (0 => Exp) = 1
// - (Exp => 1) = 1
// - (Exp => 0) = !Exp
// - (Exp => Exp) = 1
if (first == constant::true_instance())
return second;
if (first == constant::false_instance())
{
second->destroy();
return constant::true_instance();
}
if (second == constant::true_instance())
{
first->destroy();
return second;
}
if (second == constant::false_instance())
return unop::instance(unop::Not, first);
if (first == second)
{
first->destroy();
second->destroy();
return constant::true_instance();
}
break;
case U:
// - (Exp U 1) = 1
// - (Exp U 0) = 0
// - (0 U Exp) = Exp
// - (Exp U Exp) = Exp
if (second == constant::true_instance()
|| second == constant::false_instance()
|| first == constant::false_instance()
|| first == second)
{
first->destroy();
return second;
}
break;
case W:
// - (Exp W 1) = 1
// - (0 W Exp) = Exp
// - (1 W Exp) = 1
// - (Exp W Exp) = Exp
if (second == constant::true_instance()
|| first == constant::false_instance()
|| first == second)
{
first->destroy();
return second;
}
if (first == constant::true_instance())
{
second->destroy();
return first;
}
break;
case R:
// - (Exp R 1) = 1
// - (Exp R 0) = 0
// - (1 R Exp) = Exp
// - (Exp R Exp) = Exp
if (second == constant::true_instance()
|| second == constant::false_instance()
|| first == constant::true_instance()
|| first == second)
{
first->destroy();
return second;
}
break;
case M:
// - (Exp M 0) = 0
// - (1 M Exp) = Exp
// - (0 M Exp) = 0
// - (Exp M Exp) = Exp
if (second == constant::false_instance()
|| first == constant::true_instance()
|| first == second)
{
first->destroy();
return second;
}
if (first == constant::false_instance())
{
second->destroy();
return first;
}
break;
case EConcat:
case EConcatMarked:
// - 0 <>-> Exp = 0
// - 1 <>-> Exp = Exp
// - [*0] <>-> Exp = 0
// - Exp <>-> 0 = 0
// - boolExp <>-> Exp = boolExp & Exp
if (first == constant::true_instance())
return second;
if (first == constant::false_instance()
|| first == constant::empty_word_instance())
{
second->destroy();
return constant::false_instance();
}
if (second == constant::false_instance())
{
first->destroy();
return second;
}
if (first->is_boolean())
return multop::instance(multop::And, first, second);
break;
case UConcat:
// - 0 []-> Exp = 1
// - 1 []-> Exp = Exp
// - [*0] []-> Exp = 1
// - Exp []-> 1 = 1
// - boolExp []-> Exp = !boolExp | Exp
if (first == constant::true_instance())
return second;
if (first == constant::false_instance()
|| first == constant::empty_word_instance())
{
second->destroy();
return constant::true_instance();
}
if (second == constant::true_instance())
{
first->destroy();
return second;
}
if (first->is_boolean())
return multop::instance(multop::Or,
unop::instance(unop::Not, first), second);
break;
}
const formula* res;
auto ires = instances.emplace(key(op, first, second), nullptr);
if (!ires.second)
{
// This instance already exists.
first->destroy();
second->destroy();
res = ires.first->second->clone();
}
else
{
res = ires.first->second = new binop(op, first, second);
}
return res;
}
unsigned
binop::instance_count()
{
return instances.size();
}
std::ostream&
binop::dump_instances(std::ostream& os)
{
for (const auto& i: instances)
os << i.second << " = "
<< 1 + i.second->refs_ << " * "
<< i.second->dump() << '\n';
return os;
}
}
}