and adjust it to detect siPSL formulas, as in the paper of Dax et al. (ATVA'09). For issue #51. * src/ltlast/atomic_prop.cc, src/ltlast/binop.cc, src/ltlast/bunop.cc, src/ltlast/constant.cc, src/ltlast/formula.cc, src/ltlast/formula.hh, src/ltlast/multop.cc, src/ltlast/unop.cc: Rename the property, and adjust its computation on siSERE. * src/ltlvisit/remove_x.cc, src/ltlvisit/simplify.cc, src/tgbaalgos/stutter.cc: Adjust to new names. * src/bin/ltlfilt.cc: Add option --syntactic-sutter-invariant. * src/ltltest/kind.test: Update tests and add some new.
544 lines
15 KiB
C++
544 lines
15 KiB
C++
// -*- coding: utf-8 -*-
|
|
// Copyright (C) 2009, 2010, 2011, 2012, 2013, 2014, 2015 Laboratoire
|
|
// de Recherche et Développement de l'Epita (LRDE).
|
|
// Copyright (C) 2003, 2005 Laboratoire d'Informatique de Paris
|
|
// 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
|
|
// Université Pierre et Marie Curie.
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "config.h"
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <utility>
|
|
#include "binop.hh"
|
|
#include "unop.hh"
|
|
#include "multop.hh"
|
|
#include "constant.hh"
|
|
#include "visitor.hh"
|
|
#include <iostream>
|
|
|
|
namespace spot
|
|
{
|
|
namespace ltl
|
|
{
|
|
binop::binop(type op, const formula* first, const formula* second)
|
|
: formula(BinOp), op_(op), first_(first), second_(second)
|
|
{
|
|
// Beware: (f U g) is a pure eventuality if both operands
|
|
// are pure eventualities, unlike in the proceedings of
|
|
// Concur'00. (The revision of the paper available at
|
|
// http://www.bell-labs.com/project/TMP/ is fixed.) See
|
|
// also http://arxiv.org/abs/1011.4214v2 for a discussion
|
|
// about this problem. (Which we fixed in 2005 thanks
|
|
// to LBTT.)
|
|
// This means that we can use the following line to handle
|
|
// all cases of (f U g), (f R g), (f W g), (f M g) for
|
|
// universality and eventuality.
|
|
props = first->get_props() & second->get_props();
|
|
// The matter can be further refined because:
|
|
// (f U g) is a pure eventuality if
|
|
// g is a pure eventuality (regardless of f),
|
|
// or f == 1
|
|
// (g M f) is a pure eventuality if f and g are,
|
|
// or f == 1
|
|
// (g R f) is purely universal if
|
|
// f is purely universal (regardless of g)
|
|
// or g == 0
|
|
// (f W g) is purely universal if f and g are
|
|
// or g == 0
|
|
switch (op)
|
|
{
|
|
case Xor:
|
|
case Equiv:
|
|
is.eventual = false;
|
|
is.universal = false;
|
|
is.sere_formula = is.boolean;
|
|
is.sugar_free_boolean = false;
|
|
is.in_nenoform = false;
|
|
// is.syntactic_obligation inherited;
|
|
is.accepting_eword = false;
|
|
if (is.syntactic_obligation)
|
|
{
|
|
// Only formula that are in the intersection of
|
|
// guarantee and safety are closed by Xor and <=>.
|
|
bool sg = is.syntactic_safety && is.syntactic_guarantee;
|
|
is.syntactic_safety = sg;
|
|
is.syntactic_guarantee = sg;
|
|
assert(is.syntactic_recurrence == true);
|
|
assert(is.syntactic_persistence == true);
|
|
}
|
|
else
|
|
{
|
|
is.syntactic_safety = false;
|
|
is.syntactic_guarantee = false;
|
|
is.syntactic_recurrence = false;
|
|
is.syntactic_persistence = false;
|
|
}
|
|
break;
|
|
case Implies:
|
|
is.eventual = false;
|
|
is.universal = false;
|
|
is.sere_formula = is.boolean;
|
|
is.sugar_free_boolean = false;
|
|
is.in_nenoform = false;
|
|
is.syntactic_safety =
|
|
first->is_syntactic_guarantee() && second->is_syntactic_safety();
|
|
is.syntactic_guarantee =
|
|
first->is_syntactic_safety() && second->is_syntactic_guarantee();
|
|
// is.syntactic_obligation inherited
|
|
is.syntactic_persistence = first->is_syntactic_recurrence()
|
|
&& second->is_syntactic_persistence();
|
|
is.syntactic_recurrence = first->is_syntactic_persistence()
|
|
&& second->is_syntactic_recurrence();
|
|
is.accepting_eword = false;
|
|
break;
|
|
case EConcatMarked:
|
|
case EConcat:
|
|
is.not_marked = (op != EConcatMarked);
|
|
is.ltl_formula = false;
|
|
is.boolean = false;
|
|
is.eltl_formula = false;
|
|
is.sere_formula = false;
|
|
is.accepting_eword = false;
|
|
is.psl_formula = true;
|
|
|
|
is.syntactic_guarantee = second->is_syntactic_guarantee();
|
|
is.syntactic_persistence = second->is_syntactic_persistence();
|
|
if (first->is_finite())
|
|
{
|
|
is.syntactic_safety = second->is_syntactic_safety();
|
|
is.syntactic_obligation = second->is_syntactic_obligation();
|
|
is.syntactic_recurrence = second->is_syntactic_recurrence();
|
|
}
|
|
else
|
|
{
|
|
is.syntactic_safety = false;
|
|
is.syntactic_obligation = second->is_syntactic_guarantee();
|
|
is.syntactic_recurrence = second->is_syntactic_guarantee();
|
|
}
|
|
assert(first->is_sere_formula());
|
|
assert(second->is_psl_formula());
|
|
if (first->is_boolean())
|
|
is.syntactic_si = false;
|
|
break;
|
|
case UConcat:
|
|
is.not_marked = true;
|
|
is.ltl_formula = false;
|
|
is.boolean = false;
|
|
is.eltl_formula = false;
|
|
is.sere_formula = false;
|
|
is.accepting_eword = false;
|
|
is.psl_formula = true;
|
|
|
|
is.syntactic_safety = second->is_syntactic_safety();
|
|
is.syntactic_recurrence = second->is_syntactic_recurrence();
|
|
if (first->is_finite())
|
|
{
|
|
is.syntactic_guarantee = second->is_syntactic_guarantee();
|
|
is.syntactic_obligation = second->is_syntactic_obligation();
|
|
is.syntactic_persistence = second->is_syntactic_persistence();
|
|
}
|
|
else
|
|
{
|
|
is.syntactic_guarantee = false;
|
|
is.syntactic_obligation = second->is_syntactic_safety();
|
|
is.syntactic_persistence = second->is_syntactic_safety();
|
|
}
|
|
assert(first->is_sere_formula());
|
|
assert(second->is_psl_formula());
|
|
if (first->is_boolean())
|
|
is.syntactic_si = false;
|
|
break;
|
|
case U:
|
|
is.not_marked = true;
|
|
// f U g is universal if g is eventual, or if f == 1.
|
|
is.eventual = second->is_eventual();
|
|
is.eventual |= (first == constant::true_instance());
|
|
is.boolean = false;
|
|
is.eltl_formula = false;
|
|
is.sere_formula = false;
|
|
is.finite = false;
|
|
is.accepting_eword = false;
|
|
|
|
is.syntactic_safety = false;
|
|
// is.syntactic_guarantee = Guarantee U Guarantee
|
|
is.syntactic_obligation = // Obligation U Guarantee
|
|
first->is_syntactic_obligation()
|
|
&& second->is_syntactic_guarantee();
|
|
is.syntactic_recurrence = // Recurrence U Guarantee
|
|
first->is_syntactic_recurrence()
|
|
&& second->is_syntactic_guarantee();
|
|
// is.syntactic_persistence = Persistence U Persistance
|
|
break;
|
|
case W:
|
|
is.not_marked = true;
|
|
// f W g is universal if f and g are, or if g == 0.
|
|
is.universal |= (second == constant::false_instance());
|
|
is.boolean = false;
|
|
is.eltl_formula = false;
|
|
is.sere_formula = false;
|
|
is.finite = false;
|
|
is.accepting_eword = false;
|
|
|
|
// is.syntactic_safety = Safety W Safety;
|
|
is.syntactic_guarantee = false;
|
|
is.syntactic_obligation = // Safety W Obligation
|
|
first->is_syntactic_safety() && second->is_syntactic_obligation();
|
|
// is.syntactic_recurrence = Recurrence W Recurrence
|
|
is.syntactic_persistence = // Safety W Persistance
|
|
first->is_syntactic_safety()
|
|
&& second->is_syntactic_persistence();
|
|
|
|
break;
|
|
case R:
|
|
is.not_marked = true;
|
|
// g R f is universal if f is universal, or if g == 0.
|
|
is.universal = second->is_universal();
|
|
is.universal |= (first == constant::false_instance());
|
|
is.boolean = false;
|
|
is.eltl_formula = false;
|
|
is.sere_formula = false;
|
|
is.finite = false;
|
|
is.accepting_eword = false;
|
|
|
|
// is.syntactic_safety = Safety R Safety;
|
|
is.syntactic_guarantee = false;
|
|
is.syntactic_obligation = // Obligation R Safety
|
|
first->is_syntactic_obligation() && second->is_syntactic_safety();
|
|
//is.syntactic_recurrence = Recurrence R Recurrence
|
|
is.syntactic_persistence = // Persistence R Safety
|
|
first->is_syntactic_persistence()
|
|
&& second->is_syntactic_safety();
|
|
|
|
break;
|
|
case M:
|
|
is.not_marked = true;
|
|
// g M f is eventual if both g and f are eventual, or if f == 1.
|
|
is.eventual |= (second == constant::true_instance());
|
|
is.boolean = false;
|
|
is.eltl_formula = false;
|
|
is.sere_formula = false;
|
|
is.finite = false;
|
|
is.accepting_eword = false;
|
|
|
|
is.syntactic_safety = false;
|
|
// is.syntactic_guarantee = Guarantee M Guarantee
|
|
is.syntactic_obligation = // Guarantee M Obligation
|
|
first->is_syntactic_guarantee()
|
|
&& second->is_syntactic_obligation();
|
|
is.syntactic_recurrence = // Guarantee M Recurrence
|
|
first->is_syntactic_guarantee()
|
|
&& second->is_syntactic_recurrence();
|
|
// is.syntactic_persistence = Persistence M Persistance
|
|
|
|
break;
|
|
}
|
|
|
|
assert((!is.syntactic_obligation) ||
|
|
(is.syntactic_persistence && is.syntactic_recurrence));
|
|
}
|
|
|
|
binop::~binop()
|
|
{
|
|
// Get this instance out of the instance map.
|
|
size_t c = instances.erase(key(op(), first(), second()));
|
|
assert(c == 1);
|
|
(void) c; // For the NDEBUG case.
|
|
|
|
// Dereference children.
|
|
first()->destroy();
|
|
second()->destroy();
|
|
}
|
|
|
|
std::string
|
|
binop::dump() const
|
|
{
|
|
return (std::string("binop(") + op_name()
|
|
+ ", " + first()->dump()
|
|
+ ", " + second()->dump() + ")");
|
|
}
|
|
|
|
void
|
|
binop::accept(visitor& v) const
|
|
{
|
|
v.visit(this);
|
|
}
|
|
|
|
const char*
|
|
binop::op_name() const
|
|
{
|
|
switch (op_)
|
|
{
|
|
case Xor:
|
|
return "Xor";
|
|
case Implies:
|
|
return "Implies";
|
|
case Equiv:
|
|
return "Equiv";
|
|
case U:
|
|
return "U";
|
|
case R:
|
|
return "R";
|
|
case W:
|
|
return "W";
|
|
case M:
|
|
return "M";
|
|
case EConcat:
|
|
return "EConcat";
|
|
case EConcatMarked:
|
|
return "EConcatMarked";
|
|
case UConcat:
|
|
return "UConcat";
|
|
}
|
|
SPOT_UNREACHABLE();
|
|
}
|
|
|
|
binop::map binop::instances;
|
|
|
|
const formula*
|
|
binop::instance(type op, const formula* first, const formula* second)
|
|
{
|
|
// Sort the operands of commutative operators, so that for
|
|
// example the formula instance for 'a xor b' is the same as
|
|
// that for 'b xor a'.
|
|
|
|
// Trivial identities:
|
|
switch (op)
|
|
{
|
|
case Xor:
|
|
{
|
|
// Xor is commutative: sort operands.
|
|
formula_ptr_less_than_bool_first cmp;
|
|
if (cmp(second, first))
|
|
std::swap(second, first);
|
|
}
|
|
// - (1 ^ Exp) = !Exp
|
|
// - (0 ^ Exp) = Exp
|
|
if (first == constant::true_instance())
|
|
return unop::instance(unop::Not, second);
|
|
if (first == constant::false_instance())
|
|
return second;
|
|
if (first == second)
|
|
{
|
|
first->destroy();
|
|
second->destroy();
|
|
return constant::false_instance();
|
|
}
|
|
// We expect constants to appear first, because they are
|
|
// instantiated first.
|
|
assert(second != constant::false_instance());
|
|
assert(second != constant::true_instance());
|
|
break;
|
|
case Equiv:
|
|
{
|
|
// Equiv is commutative: sort operands.
|
|
formula_ptr_less_than_bool_first cmp;
|
|
if (cmp(second, first))
|
|
std::swap(second, first);
|
|
}
|
|
// - (0 <=> Exp) = !Exp
|
|
// - (1 <=> Exp) = Exp
|
|
// - (Exp <=> Exp) = 1
|
|
if (first == constant::false_instance())
|
|
return unop::instance(unop::Not, second);
|
|
if (first == constant::true_instance())
|
|
return second;
|
|
if (first == second)
|
|
{
|
|
first->destroy();
|
|
second->destroy();
|
|
return constant::true_instance();
|
|
}
|
|
// We expect constants to appear first, because they are
|
|
// instantiated first.
|
|
assert(second != constant::false_instance());
|
|
assert(second != constant::true_instance());
|
|
break;
|
|
case Implies:
|
|
// - (1 => Exp) = Exp
|
|
// - (0 => Exp) = 1
|
|
// - (Exp => 1) = 1
|
|
// - (Exp => 0) = !Exp
|
|
// - (Exp => Exp) = 1
|
|
if (first == constant::true_instance())
|
|
return second;
|
|
if (first == constant::false_instance())
|
|
{
|
|
second->destroy();
|
|
return constant::true_instance();
|
|
}
|
|
if (second == constant::true_instance())
|
|
{
|
|
first->destroy();
|
|
return second;
|
|
}
|
|
if (second == constant::false_instance())
|
|
return unop::instance(unop::Not, first);
|
|
if (first == second)
|
|
{
|
|
first->destroy();
|
|
second->destroy();
|
|
return constant::true_instance();
|
|
}
|
|
break;
|
|
case U:
|
|
// - (Exp U 1) = 1
|
|
// - (Exp U 0) = 0
|
|
// - (0 U Exp) = Exp
|
|
// - (Exp U Exp) = Exp
|
|
if (second == constant::true_instance()
|
|
|| second == constant::false_instance()
|
|
|| first == constant::false_instance()
|
|
|| first == second)
|
|
{
|
|
first->destroy();
|
|
return second;
|
|
}
|
|
break;
|
|
case W:
|
|
// - (Exp W 1) = 1
|
|
// - (0 W Exp) = Exp
|
|
// - (1 W Exp) = 1
|
|
// - (Exp W Exp) = Exp
|
|
if (second == constant::true_instance()
|
|
|| first == constant::false_instance()
|
|
|| first == second)
|
|
{
|
|
first->destroy();
|
|
return second;
|
|
}
|
|
if (first == constant::true_instance())
|
|
{
|
|
second->destroy();
|
|
return first;
|
|
}
|
|
break;
|
|
case R:
|
|
// - (Exp R 1) = 1
|
|
// - (Exp R 0) = 0
|
|
// - (1 R Exp) = Exp
|
|
// - (Exp R Exp) = Exp
|
|
if (second == constant::true_instance()
|
|
|| second == constant::false_instance()
|
|
|| first == constant::true_instance()
|
|
|| first == second)
|
|
{
|
|
first->destroy();
|
|
return second;
|
|
}
|
|
break;
|
|
case M:
|
|
// - (Exp M 0) = 0
|
|
// - (1 M Exp) = Exp
|
|
// - (0 M Exp) = 0
|
|
// - (Exp M Exp) = Exp
|
|
if (second == constant::false_instance()
|
|
|| first == constant::true_instance()
|
|
|| first == second)
|
|
{
|
|
first->destroy();
|
|
return second;
|
|
}
|
|
if (first == constant::false_instance())
|
|
{
|
|
second->destroy();
|
|
return first;
|
|
}
|
|
break;
|
|
case EConcat:
|
|
case EConcatMarked:
|
|
// - 0 <>-> Exp = 0
|
|
// - 1 <>-> Exp = Exp
|
|
// - [*0] <>-> Exp = 0
|
|
// - Exp <>-> 0 = 0
|
|
// - boolExp <>-> Exp = boolExp & Exp
|
|
if (first == constant::true_instance())
|
|
return second;
|
|
if (first == constant::false_instance()
|
|
|| first == constant::empty_word_instance())
|
|
{
|
|
second->destroy();
|
|
return constant::false_instance();
|
|
}
|
|
if (second == constant::false_instance())
|
|
{
|
|
first->destroy();
|
|
return second;
|
|
}
|
|
if (first->is_boolean())
|
|
return multop::instance(multop::And, first, second);
|
|
break;
|
|
case UConcat:
|
|
// - 0 []-> Exp = 1
|
|
// - 1 []-> Exp = Exp
|
|
// - [*0] []-> Exp = 1
|
|
// - Exp []-> 1 = 1
|
|
// - boolExp []-> Exp = !boolExp | Exp
|
|
if (first == constant::true_instance())
|
|
return second;
|
|
if (first == constant::false_instance()
|
|
|| first == constant::empty_word_instance())
|
|
{
|
|
second->destroy();
|
|
return constant::true_instance();
|
|
}
|
|
if (second == constant::true_instance())
|
|
{
|
|
first->destroy();
|
|
return second;
|
|
}
|
|
if (first->is_boolean())
|
|
return multop::instance(multop::Or,
|
|
unop::instance(unop::Not, first), second);
|
|
break;
|
|
}
|
|
|
|
const formula* res;
|
|
auto ires = instances.emplace(key(op, first, second), nullptr);
|
|
if (!ires.second)
|
|
{
|
|
// This instance already exists.
|
|
first->destroy();
|
|
second->destroy();
|
|
res = ires.first->second->clone();
|
|
}
|
|
else
|
|
{
|
|
res = ires.first->second = new binop(op, first, second);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
unsigned
|
|
binop::instance_count()
|
|
{
|
|
return instances.size();
|
|
}
|
|
|
|
std::ostream&
|
|
binop::dump_instances(std::ostream& os)
|
|
{
|
|
for (const auto& i: instances)
|
|
os << i.second << " = "
|
|
<< 1 + i.second->refs_ << " * "
|
|
<< i.second->dump() << '\n';
|
|
return os;
|
|
}
|
|
|
|
|
|
}
|
|
}
|