spot/iface/gspn/gspn.cc
Alexandre Duret-Lutz 0dc53d3d2a * iface/gspn/ssp.cc (tgba_gspn_ssp_private_::~tgba_gspn_ssp_private_):
Fix the declaration for GCC 4.1.2.
* iface/gspn/gspn.cc (tgba_gspn_private_::~tgba_gspn_private_):
Likewise.
2008-02-25 14:37:00 +01:00

492 lines
13 KiB
C++

// Copyright (C) 2003, 2004, 2006, 2007 Laboratoire d'Informatique de
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#include <map>
#include <cassert>
#include "gspn.hh"
#include <gspnlib.h>
namespace spot
{
namespace
{
// state_gspn
//////////////////////////////////////////////////////////////////////
class state_gspn: public state
{
public:
state_gspn(State s)
: state_(s)
{
}
virtual
~state_gspn()
{
}
virtual int
compare(const state* other) const
{
const state_gspn* o = dynamic_cast<const state_gspn*>(other);
assert(o);
return reinterpret_cast<char*>(o->get_state())
- reinterpret_cast<char*>(get_state());
}
virtual size_t
hash() const
{
return reinterpret_cast<char*>(get_state()) - static_cast<char*>(0);
}
virtual state_gspn* clone() const
{
return new state_gspn(get_state());
}
State
get_state() const
{
return state_;
}
private:
State state_;
}; // state_gspn
// tgba_gspn_private_
//////////////////////////////////////////////////////////////////////
struct tgba_gspn_private_
{
int refs; // reference count
bdd_dict* dict;
typedef std::pair<AtomicPropKind, bdd> ab_pair;
typedef std::map<AtomicProp, ab_pair> prop_map;
prop_map prop_dict;
AtomicProp *all_indexes;
size_t index_count;
const state_gspn* last_state_conds_input;
bdd last_state_conds_output;
bdd alive_prop;
bdd dead_prop;
tgba_gspn_private_(bdd_dict* dict, ltl::declarative_environment& env,
const std::string& dead)
: refs(1), dict(dict), all_indexes(0), last_state_conds_input(0)
{
const ltl::declarative_environment::prop_map& p = env.get_prop_map();
try
{
for (ltl::declarative_environment::prop_map::const_iterator i
= p.begin(); i != p.end(); ++i)
{
// Skip the DEAD proposition, GreatSPN knows nothing
// about it.
if (i->first == dead)
continue;
int var = dict->register_proposition(i->second, this);
AtomicProp index;
int err = prop_index(i->first.c_str(), &index);
if (err)
throw gspn_exception("prop_index(" + i->first + ")", err);
AtomicPropKind kind;
err = prop_kind(index, &kind);
if (err)
throw gspn_exception("prop_kind(" + i->first + ")", err);
prop_dict[index] = ab_pair(kind, bdd_ithvar(var));
}
index_count = prop_dict.size();
all_indexes = new AtomicProp[index_count];
unsigned idx = 0;
for (prop_map::const_iterator i = prop_dict.begin();
i != prop_dict.end(); ++i)
all_indexes[idx++] = i->first;
}
catch (...)
{
// If an exception occurs during the loop, we need to clean
// all BDD variables which have been registered so far.
dict->unregister_all_my_variables(this);
throw;
}
// Register the "dead" proposition. There are three cases to
// consider:
// * If DEAD is "false", it means we are not interested in finite
// sequences of the system.
// * If DEAD is "true", we want to check finite sequences as well
// as infinite sequences, but do not need to distinguish them.
// * If DEAD is any other string, this is the name a property
// that should be true when looping on a dead state, and false
// otherwise.
// We handle these three cases by setting ALIVE_PROP and DEAD_PROP
// appropriately. ALIVE_PROP is the bdd that should be ANDed
// to all transitions leaving a live state, while DEAD_PROP should
// be ANDed to all transitions leaving a dead state.
if (!strcasecmp(dead.c_str(), "false"))
{
alive_prop = bddtrue;
dead_prop = bddfalse;
}
else if (!strcasecmp(dead.c_str(), "true"))
{
alive_prop = bddtrue;
dead_prop = bddtrue;
}
else
{
ltl::formula* f = env.require(dead);
assert(f);
int var = dict->register_proposition(f, this);
dead_prop = bdd_ithvar(var);
alive_prop = bdd_nithvar(var);
}
}
~tgba_gspn_private_()
{
dict->unregister_all_my_variables(this);
delete last_state_conds_input;
delete[] all_indexes;
}
bdd index_to_bdd(AtomicProp index) const
{
if (index == EVENT_TRUE)
return bddtrue;
prop_map::const_iterator i = prop_dict.find(index);
assert(i != prop_dict.end());
return i->second.second;
}
bdd state_conds(const state_gspn* s)
{
// Use cached value if possible.
if (!last_state_conds_input ||
last_state_conds_input->compare(s) != 0)
{
// Build the BDD of the conditions available on this state.
unsigned char* cube = 0;
// FIXME: This is temporary. We ought to ask only what we need.
AtomicProp* want = all_indexes;
size_t count = index_count;
int res = satisfy(s->get_state(), want, &cube, count);
if (res)
throw gspn_exception("satisfy()", res);
assert(cube);
last_state_conds_output = bddtrue;
for (size_t i = 0; i < count; ++i)
{
bdd v = index_to_bdd(want[i]);
last_state_conds_output &= cube[i] ? v : !v;
}
satisfy_free(cube);
delete last_state_conds_input;
last_state_conds_input = s->clone();
}
return last_state_conds_output;
}
};
// tgba_succ_iterator_gspn
//////////////////////////////////////////////////////////////////////
class tgba_succ_iterator_gspn: public tgba_succ_iterator
{
public:
tgba_succ_iterator_gspn(bdd state_conds, State state,
tgba_gspn_private_* data)
: state_conds_(state_conds),
successors_(0),
size_(0),
current_(0),
data_(data),
from_state_(state)
{
int res = succ(state, &successors_, &size_);
if (res)
throw gspn_exception("succ()", res);
// GreatSPN should return successors_ == 0 and size_ == 0 when a
// state has no successors.
assert((size_ <= 0) ^ (successors_ != 0));
// If we have to stutter on a dead state, we have one successor.
if (size_ <= 0 && data_->dead_prop != bddfalse)
size_ = 1;
}
virtual
~tgba_succ_iterator_gspn()
{
if (successors_)
succ_free(successors_);
}
virtual void
first()
{
current_ = 0;
}
virtual void
next()
{
assert(!done());
++current_;
}
virtual bool
done() const
{
return current_ >= size_;
}
virtual state*
current_state() const
{
// If GreatSPN returned no successor, we stutter on the dead state.
return
new state_gspn(successors_ ? successors_[current_].s : from_state_);
}
virtual bdd
current_condition() const
{
if (successors_)
{
bdd p = data_->index_to_bdd(successors_[current_].p);
return state_conds_ & p & data_->alive_prop;
}
else
{
return state_conds_ & data_->dead_prop;
}
}
virtual bdd
current_acceptance_conditions() const
{
// There is no acceptance conditions in GSPN systems.
return bddfalse;
}
private:
bdd state_conds_; /// All conditions known on STATE.
EventPropSucc* successors_; /// array of successors
size_t size_; /// size of successors_
size_t current_; /// current position in successors_
tgba_gspn_private_* data_;
State from_state_;
}; // tgba_succ_iterator_gspn
// tgba_gspn
//////////////////////////////////////////////////////////////////////
/// Data private to tgba_gspn.
struct tgba_gspn_private_;
class tgba_gspn: public tgba
{
public:
tgba_gspn(bdd_dict* dict, ltl::declarative_environment& env,
const std::string& dead);
tgba_gspn(const tgba_gspn& other);
tgba_gspn& operator=(const tgba_gspn& other);
virtual ~tgba_gspn();
virtual state* get_init_state() const;
virtual tgba_succ_iterator*
succ_iter(const state* local_state,
const state* global_state = 0,
const tgba* global_automaton = 0) const;
virtual bdd_dict* get_dict() const;
virtual std::string format_state(const state* state) const;
virtual bdd all_acceptance_conditions() const;
virtual bdd neg_acceptance_conditions() const;
protected:
virtual bdd compute_support_conditions(const spot::state* state) const;
virtual bdd compute_support_variables(const spot::state* state) const;
private:
tgba_gspn_private_* data_;
};
tgba_gspn::tgba_gspn(bdd_dict* dict, ltl::declarative_environment& env,
const std::string& dead)
{
data_ = new tgba_gspn_private_(dict, env, dead);
}
tgba_gspn::tgba_gspn(const tgba_gspn& other)
: tgba()
{
data_ = other.data_;
++data_->refs;
}
tgba_gspn::~tgba_gspn()
{
if (--data_->refs == 0)
delete data_;
}
tgba_gspn&
tgba_gspn::operator=(const tgba_gspn& other)
{
if (&other == this)
return *this;
this->~tgba_gspn();
new (this) tgba_gspn(other);
return *this;
}
state* tgba_gspn::get_init_state() const
{
State s;
int err = initial_state(&s);
if (err)
throw gspn_exception("initial_state()", err);
return new state_gspn(s);
}
tgba_succ_iterator*
tgba_gspn::succ_iter(const state* state,
const state* global_state,
const tgba* global_automaton) const
{
const state_gspn* s = dynamic_cast<const state_gspn*>(state);
assert(s);
(void) global_state;
(void) global_automaton;
// FIXME: Should pass global_automaton->support_variables(state)
// to state_conds.
bdd state_conds = data_->state_conds(s);
return new tgba_succ_iterator_gspn(state_conds, s->get_state(), data_);
}
bdd
tgba_gspn::compute_support_conditions(const spot::state* state) const
{
const state_gspn* s = dynamic_cast<const state_gspn*>(state);
assert(s);
return data_->state_conds(s);
}
bdd
tgba_gspn::compute_support_variables(const spot::state* state) const
{
// FIXME: At the time of writing, only tgba_gspn calls
// support_variables on the root of a product to gather the
// variables used by all other automata and let GPSN compute only
// these. Because support_variables() is recursive over the
// product treee, tgba_gspn::support_variables should not output
// all the variables known by GSPN; this would ruin the sole
// purpose of this function.
// However this works because we assume there is at most one
// tgba_gspn automata in a product (a legitimate assumption
// since the GSPN API is not re-entrant) and only this automata
// need to call support_variables (now _this_ is shady).
(void) state;
return bddtrue;
}
bdd_dict*
tgba_gspn::get_dict() const
{
return data_->dict;
}
std::string
tgba_gspn::format_state(const state* state) const
{
const state_gspn* s = dynamic_cast<const state_gspn*>(state);
assert(s);
char* str;
int err = print_state(s->get_state(), &str);
if (err)
throw gspn_exception("print_state()", err);
// Strip trailing \n...
unsigned len = strlen(str);
while (str[--len] == '\n')
str[len] = 0;
std::string res(str);
free(str);
return res;
}
bdd
tgba_gspn::all_acceptance_conditions() const
{
// There is no acceptance conditions in GSPN systems.
return bddfalse;
}
bdd
tgba_gspn::neg_acceptance_conditions() const
{
// There is no acceptance conditions in GSPN systems.
return bddtrue;
}
} // anonymous
// gspn_interface
//////////////////////////////////////////////////////////////////////
gspn_interface::gspn_interface(int argc, char **argv,
bdd_dict* dict,
ltl::declarative_environment& env,
const std::string& dead)
: dict_(dict), env_(env), dead_(dead)
{
int res = initialize(argc, argv);
if (res)
throw gspn_exception("initialize()", res);
}
gspn_interface::~gspn_interface()
{
int res = finalize();
if (res)
throw gspn_exception("finalize()", res);
}
tgba*
gspn_interface::automaton() const
{
return new tgba_gspn(dict_, env_, dead_);
}
}