spot/spot/misc/bitvect.hh
Alexandre Duret-Lutz 48edfd80c2 powerset: deal with accepting sinks more effectively
Part of #444.

* spot/twaalgos/powerset.cc, spot/twaalgos/powerset.hh: Implement
accepting sink handling.
* spot/twaalgos/minimize.cc (minimize_wdba): Pass sinks to
tgba_powerset.
* spot/misc/bitvect.hh: Add an interesects method.
* tests/core/ltl2tgba2.test: More tests.
* NEWS: Mention this new feature.
2020-12-08 17:55:50 +01:00

470 lines
12 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) 2013-2020 Laboratoire de Recherche et Développement
// de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#pragma once
#include <spot/misc/common.hh>
#include <cstddef>
#include <cstdlib>
#include <cassert>
#include <iosfwd>
#include <iostream>
#include <algorithm>
#include <new>
namespace spot
{
/// \ingroup misc_tools
/// @{
class bitvect;
class bitvect_array;
///\brief Allocate a bit-vector of \a bitcount bits.
///
/// The resulting object should be released with <code>delete</code>.
SPOT_API bitvect* make_bitvect(size_t bitcount);
/// \brief Allocate \a vectcount bit-vectors of \a bitcount bits.
///
/// The resulting bitvect_array should be released with <code>delete</code>.
SPOT_API bitvect_array* make_bitvect_array(size_t bitcount,
size_t vectcount);
/// \brief A bit vector
class SPOT_API bitvect
{
private:
// Used by make_bitvect to construct a large bitvect in place.
bitvect(size_t size, size_t block_count);
bitvect(size_t size, size_t block_count, bool);
public:
typedef unsigned long block_t;
bitvect():
size_(0),
block_count_(1),
storage_(&local_storage_),
local_storage_(0)
{
}
bitvect(const bitvect& other):
size_(other.size_),
block_count_(1),
storage_(&local_storage_)
{
*this = other;
}
bitvect* clone() const;
void operator delete(void *ptr)
{
// This object was allocated using a placement new.
::operator delete(ptr);
}
void make_empty()
{
size_ = 0;
}
bitvect& operator=(const bitvect& other)
{
reserve_blocks(other.block_count_);
size_ = other.size();
for (size_t i = 0; i < block_count_; ++i)
storage_[i] = other.storage_[i];
return *this;
}
~bitvect()
{
if (storage_ != &local_storage_)
free(storage_);
}
/// Grow the bitvector to \a new_block_count blocks.
///
/// This only changes the capacity of the bitvector, not its size.
void reserve_blocks(size_t new_block_count)
{
if (new_block_count < block_count_)
return;
if (storage_ == &local_storage_)
{
block_t* new_storage_ = static_cast<block_t*>
(malloc(new_block_count * sizeof(block_t)));
for (size_t i = 0; i < block_count_; ++i)
new_storage_[i] = storage_[i];
storage_ = new_storage_;
}
else
{
auto old = storage_;
storage_ = static_cast<block_t*>
(realloc(old, new_block_count * sizeof(block_t)));
if (!storage_)
{
free(old);
throw std::bad_alloc();
}
}
block_count_ = new_block_count;
}
private:
void grow()
{
size_t new_block_count_ = (block_count_ + 1) * 7 / 5;
reserve_blocks(new_block_count_);
}
public:
size_t used_blocks() const
{
const size_t bpb = 8 * sizeof(block_t);
return (size_ + bpb - 1) / bpb;
}
size_t size() const
{
return size_;
}
size_t capacity() const
{
return 8 * block_count_ * sizeof(block_t);
}
size_t hash() const noexcept;
bool get(size_t pos) const
{
SPOT_ASSERT(pos < size_);
const size_t bpb = 8 * sizeof(block_t);
return storage_[pos / bpb] & (1UL << (pos % bpb));
}
void clear_all()
{
for (size_t i = 0; i < block_count_; ++i)
storage_[i] = 0;
}
bool is_fully_clear() const
{
size_t i;
const size_t bpb = 8 * sizeof(bitvect::block_t);
size_t rest = size() % bpb;
for (i = 0; i < block_count_ - !!rest; ++i)
if (storage_[i] != 0)
return false;
// The last block might not be fully used, compare only the
// relevant portion.
if (!rest)
return true;
block_t mask = (1UL << rest) - 1;
return (storage_[i] & mask) == 0;
}
bool is_fully_set() const
{
size_t i;
const size_t bpb = 8 * sizeof(bitvect::block_t);
size_t rest = size() % bpb;
for (i = 0; i < block_count_ - !!rest; ++i)
if (storage_[i] != -1UL)
return false;
if (!rest)
return true;
// The last block might not be fully used, compare only the
// relevant portion.
block_t mask = (1UL << rest) - 1;
return ((~storage_[i]) & mask) == 0;
}
void set_all()
{
for (size_t i = 0; i < block_count_; ++i)
storage_[i] = -1UL;
}
void flip_all()
{
for (size_t i = 0; i < block_count_; ++i)
storage_[i] = ~storage_[i];
}
void set(size_t pos)
{
SPOT_ASSERT(pos < size_);
const size_t bpb = 8 * sizeof(block_t);
storage_[pos / bpb] |= 1UL << (pos % bpb);
}
void clear(size_t pos)
{
SPOT_ASSERT(pos < size_);
const size_t bpb = 8 * sizeof(block_t);
storage_[pos / bpb] &= ~(1UL << (pos % bpb));
}
void flip(size_t pos)
{
SPOT_ASSERT(pos < size_);
const size_t bpb = 8 * sizeof(block_t);
storage_[pos / bpb] ^= (1UL << (pos % bpb));
}
bitvect& operator|=(const bitvect& other)
{
SPOT_ASSERT(other.size_ <= size_);
unsigned m = std::min(other.block_count_, block_count_);
for (size_t i = 0; i < m; ++i)
storage_[i] |= other.storage_[i];
return *this;
}
bitvect& operator&=(const bitvect& other)
{
SPOT_ASSERT(other.size_ <= size_);
unsigned m = std::min(other.block_count_, block_count_);
for (size_t i = 0; i < m; ++i)
storage_[i] &= other.storage_[i];
return *this;
}
bool intersects(const bitvect& other)
{
SPOT_ASSERT(other.size_ <= size_);
unsigned m = std::min(other.block_count_, block_count_);
for (size_t i = 0; i < m; ++i)
if (storage_[i] & other.storage_[i])
return true;
return false;
}
bitvect& operator^=(const bitvect& other)
{
SPOT_ASSERT(other.size_ <= size_);
unsigned m = std::min(other.block_count_, block_count_);
for (size_t i = 0; i < m; ++i)
storage_[i] ^= other.storage_[i];
return *this;
}
bitvect& operator-=(const bitvect& other)
{
SPOT_ASSERT(other.block_count_ <= block_count_);
for (size_t i = 0; i < other.block_count_; ++i)
storage_[i] &= ~other.storage_[i];
return *this;
}
bool is_subset_of(const bitvect& other) const
{
SPOT_ASSERT(other.block_count_ >= block_count_);
size_t i;
const size_t bpb = 8 * sizeof(bitvect::block_t);
size_t rest = size() % bpb;
for (i = 0; i < block_count_ - !!rest; ++i)
if ((storage_[i] & other.storage_[i]) != storage_[i])
return false;
if (!rest)
return true;
// The last block might not be fully used, compare only the
// relevant portion.
block_t mask = (1UL << rest) - 1;
return ((storage_[i] & mask & other.storage_[i])
== (storage_[i] & mask));
}
bool operator==(const bitvect& other) const
{
if (other.size_ != size_)
return false;
if (size_ == 0)
return true;
size_t i;
size_t m = other.used_blocks();
const size_t bpb = 8 * sizeof(bitvect::block_t);
size_t rest = size() % bpb;
for (i = 0; i < m - !!rest; ++i)
if (storage_[i] != other.storage_[i])
return false;
if (!rest)
return true;
// The last block might not be fully used, compare only the
// relevant portion.
block_t mask = (1UL << rest) - 1;
return (storage_[i] & mask) == (other.storage_[i] & mask);
}
bool operator!=(const bitvect& other) const
{
return !(*this == other);
}
bool operator<(const bitvect& other) const
{
if (size_ != other.size_)
return size_ < other.size_;
if (size_ == 0)
return false;
size_t i;
size_t m = other.used_blocks();
const size_t bpb = 8 * sizeof(bitvect::block_t);
size_t rest = size() % bpb;
for (i = 0; i < m - !!rest; ++i)
if (storage_[i] > other.storage_[i])
return false;
if (!rest)
return true;
// The last block might not be fully used, compare only the
// relevant portion.
block_t mask = (1UL << rest) - 1;
return (storage_[i] & mask) < (other.storage_[i] & mask);
}
bool operator>=(const bitvect& other) const
{
return !(*this < other);
}
bool operator>(const bitvect& other) const
{
return other < *this;
}
bool operator<=(const bitvect& other) const
{
return !(other < *this);
}
friend SPOT_API bitvect* make_bitvect(size_t bitcount);
/// Print a bitvect.
friend SPOT_API std::ostream& operator<<(std::ostream&,
const bitvect&);
private:
friend SPOT_API bitvect_array* make_bitvect_array(size_t bitcount,
size_t vectcount);
size_t size_;
size_t block_count_;
// storage_ points to local_storage_ as long as size_ <= block_count_ * 8.
block_t* storage_;
// Keep this at the end of the structure: when make_bitvect is used,
// it may allocate more block_t at the end of this structure.
block_t local_storage_;
};
class SPOT_API bitvect_array
{
private:
/// Private constructor used by make_bitvect_array().
bitvect_array(size_t size, size_t bvsize):
size_(size),
bvsize_(bvsize)
{
}
SPOT_LOCAL bitvect_array(const bitvect_array&) = delete;
SPOT_LOCAL void operator=(const bitvect_array&) = delete;
// Extra storage has been allocated at the end of the struct.
char* storage()
{
return reinterpret_cast<char*>(this) + sizeof(*this);
}
const char* storage() const
{
return reinterpret_cast<const char*>(this) + sizeof(*this);
}
public:
~bitvect_array()
{
for (size_t i = 0; i < size_; ++i)
at(i).~bitvect();
}
void operator delete(void *ptr)
{
// This object was allocated using a placement new.
::operator delete(ptr);
}
/// The number of bitvect in the array.
size_t size() const
{
return size_;
}
void clear_all()
{
// FIXME: This could be changed into a large memset if the
// individual vectors where not allowed to be reallocated.
for (unsigned s = 0; s < size_; s++)
at(s).clear_all();
}
/// Return the bit-vector at \a index.
bitvect& at(const size_t index)
{
SPOT_ASSERT(index < size_);
// The double cast is to prevent -Wcast-align diagnostics
// about the fact that char* (the type of storage) has a
// smaller required alignment than bitvect*.
auto v = static_cast<void*>(storage() + index * bvsize_);
return *static_cast<bitvect*>(v);
}
/// Return the bit-vector at \a index.
const bitvect& at(const size_t index) const
{
SPOT_ASSERT(index < size_);
auto v = static_cast<const void*>(storage() + index * bvsize_);
return *static_cast<const bitvect*>(v);
}
friend SPOT_API bitvect_array* make_bitvect_array(size_t bitcount,
size_t vectcount);
/// Print a bitvect_array.
friend SPOT_API std::ostream& operator<<(std::ostream&,
const bitvect_array&);
private:
size_t size_;
size_t bvsize_;
};
/// @}
}