spot/spot/ltsmin/ltsmin.cc
Maximilien Colange a9293f329e fix warnings when compiling without assertions
* spot/twa/acc.hh, spot/twaalgos/alternation.cc,
  spot/twaalgos/determinize.cc, spot/twaalgos/ndfs_result.hxx,
  spot/twaalgos/tau03.cc, spot/ltsmin/ltsmin.cc, tests/core/parity.cc:
  here
2018-05-25 14:41:18 +02:00

1158 lines
33 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) 2011, 2012, 2014-2018 Laboratoire de
// Recherche et Développement de l'Epita (LRDE)
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "config.h"
#include <ltdl.h>
#include <cstring>
#include <cstdlib>
#include <vector>
#include <sstream>
#include <sys/stat.h>
#include <unistd.h>
// MinGW does not define this.
#ifndef WEXITSTATUS
# define WEXITSTATUS(x) ((x) & 0xff)
#endif
#include <spot/ltsmin/ltsmin.hh>
#include <spot/misc/hashfunc.hh>
#include <spot/misc/fixpool.hh>
#include <spot/misc/mspool.hh>
#include <spot/misc/intvcomp.hh>
#include <spot/misc/intvcmp2.hh>
namespace spot
{
namespace
{
////////////////////////////////////////////////////////////////////////
// spins interface
typedef struct transition_info {
int* labels; // edge labels, NULL, or pointer to the edge label(s)
int group; // holds transition group or -1 if unknown
} transition_info_t;
typedef void (*TransitionCB)(void *ctx,
transition_info_t *transition_info,
int *dst);
}
struct spins_interface
{
lt_dlhandle handle; // handle to the dynamic library
void (*get_initial_state)(void *to);
int (*have_property)();
int (*get_successors)(void* m, int *in, TransitionCB, void *arg);
int (*get_state_size)();
const char* (*get_state_variable_name)(int var);
int (*get_state_variable_type)(int var);
int (*get_type_count)();
const char* (*get_type_name)(int type);
int (*get_type_value_count)(int type);
const char* (*get_type_value_name)(int type, int value);
~spins_interface()
{
if (handle)
lt_dlclose(handle);
lt_dlexit();
}
};
namespace
{
typedef std::shared_ptr<const spins_interface> spins_interface_ptr;
////////////////////////////////////////////////////////////////////////
// STATE
struct spins_state final: public state
{
spins_state(int s, fixed_size_pool* p)
: pool(p), size(s), count(1)
{
}
void compute_hash()
{
hash_value = 0;
for (int i = 0; i < size; ++i)
hash_value = wang32_hash(hash_value ^ vars[i]);
}
spins_state* clone() const override
{
++count;
return const_cast<spins_state*>(this);
}
void destroy() const override
{
if (--count)
return;
pool->deallocate(this);
}
size_t hash() const override
{
return hash_value;
}
int compare(const state* other) const override
{
if (this == other)
return 0;
const spins_state* o = down_cast<const spins_state*>(other);
if (hash_value < o->hash_value)
return -1;
if (hash_value > o->hash_value)
return 1;
return memcmp(vars, o->vars, size * sizeof(*vars));
}
private:
~spins_state()
{
}
public:
fixed_size_pool* pool;
size_t hash_value: 32;
int size: 16;
mutable unsigned count: 16;
int vars[1];
};
struct spins_compressed_state final: public state
{
spins_compressed_state(int s, multiple_size_pool* p)
: pool(p), size(s), count(1)
{
}
void compute_hash()
{
hash_value = 0;
for (int i = 0; i < size; ++i)
hash_value = wang32_hash(hash_value ^ vars[i]);
}
spins_compressed_state* clone() const override
{
++count;
return const_cast<spins_compressed_state*>(this);
}
void destroy() const override
{
if (--count)
return;
pool->deallocate(this, sizeof(*this) - sizeof(vars)
+ size * sizeof(*vars));
}
size_t hash() const override
{
return hash_value;
}
int compare(const state* other) const override
{
if (this == other)
return 0;
const spins_compressed_state* o =
down_cast<const spins_compressed_state*>(other);
if (hash_value < o->hash_value)
return -1;
if (hash_value > o->hash_value)
return 1;
if (size < o->size)
return -1;
if (size > o->size)
return 1;
return memcmp(vars, o->vars, size * sizeof(*vars));
}
private:
~spins_compressed_state()
{
}
public:
multiple_size_pool* pool;
size_t hash_value: 32;
int size: 16;
mutable unsigned count: 16;
int vars[1];
};
////////////////////////////////////////////////////////////////////////
// CALLBACK FUNCTION for transitions.
struct callback_context
{
typedef std::list<state*> transitions_t;
transitions_t transitions;
int state_size;
void* pool;
int* compressed;
void (*compress)(const int*, size_t, int*, size_t&);
~callback_context()
{
for (auto t: transitions)
t->destroy();
}
};
void transition_callback(void* arg, transition_info_t*, int *dst)
{
callback_context* ctx = static_cast<callback_context*>(arg);
fixed_size_pool* p = static_cast<fixed_size_pool*>(ctx->pool);
spins_state* out =
new(p->allocate()) spins_state(ctx->state_size, p);
SPOT_ASSUME(out != nullptr);
memcpy(out->vars, dst, ctx->state_size * sizeof(int));
out->compute_hash();
ctx->transitions.emplace_back(out);
}
void transition_callback_compress(void* arg, transition_info_t*, int *dst)
{
callback_context* ctx = static_cast<callback_context*>(arg);
multiple_size_pool* p = static_cast<multiple_size_pool*>(ctx->pool);
size_t csize = ctx->state_size * 2;
ctx->compress(dst, ctx->state_size, ctx->compressed, csize);
void* mem = p->allocate(sizeof(spins_compressed_state)
- sizeof(spins_compressed_state::vars)
+ sizeof(int) * csize);
spins_compressed_state* out = new(mem) spins_compressed_state(csize, p);
SPOT_ASSUME(out != nullptr);
memcpy(out->vars, ctx->compressed, csize * sizeof(int));
out->compute_hash();
ctx->transitions.emplace_back(out);
}
////////////////////////////////////////////////////////////////////////
// SUCC_ITERATOR
class spins_succ_iterator final: public kripke_succ_iterator
{
public:
spins_succ_iterator(const callback_context* cc,
bdd cond)
: kripke_succ_iterator(cond), cc_(cc)
{
}
void recycle(const callback_context* cc, bdd cond)
{
delete cc_;
cc_ = cc;
kripke_succ_iterator::recycle(cond);
}
~spins_succ_iterator()
{
delete cc_;
}
virtual bool first() override
{
it_ = cc_->transitions.begin();
return it_ != cc_->transitions.end();
}
virtual bool next() override
{
++it_;
return it_ != cc_->transitions.end();
}
virtual bool done() const override
{
return it_ == cc_->transitions.end();
}
virtual state* dst() const override
{
return (*it_)->clone();
}
private:
const callback_context* cc_;
callback_context::transitions_t::const_iterator it_;
};
////////////////////////////////////////////////////////////////////////
// PREDICATE EVALUATION
typedef enum { OP_EQ, OP_NE, OP_LT, OP_GT, OP_LE, OP_GE } relop;
struct one_prop
{
int var_num;
relop op;
int val;
int bddvar; // if "var_num op val" is true, output bddvar,
// else its negation
};
typedef std::vector<one_prop> prop_set;
struct var_info
{
int num;
int type;
};
void
convert_aps(const atomic_prop_set* aps,
spins_interface_ptr d,
bdd_dict_ptr dict,
formula dead,
prop_set& out)
{
int errors = 0;
std::ostringstream err;
int state_size = d->get_state_size();
typedef std::map<std::string, var_info> val_map_t;
val_map_t val_map;
for (int i = 0; i < state_size; ++i)
{
const char* name = d->get_state_variable_name(i);
int type = d->get_state_variable_type(i);
var_info v = { i , type };
val_map[name] = v;
}
int type_count = d->get_type_count();
typedef std::map<std::string, int> enum_map_t;
std::vector<enum_map_t> enum_map(type_count);
for (int i = 0; i < type_count; ++i)
{
int enum_count = d->get_type_value_count(i);
for (int j = 0; j < enum_count; ++j)
enum_map[i].emplace(d->get_type_value_name(i, j), j);
}
for (atomic_prop_set::const_iterator ap = aps->begin();
ap != aps->end(); ++ap)
{
if (*ap == dead)
continue;
const std::string& str = ap->ap_name();
const char* s = str.c_str();
// Skip any leading blank.
while (*s && (*s == ' ' || *s == '\t'))
++s;
if (!*s)
{
err << "Proposition `" << str << "' cannot be parsed.\n";
++errors;
continue;
}
char* name = (char*) malloc(str.size() + 1);
char* name_p = name;
char* lastdot = nullptr;
while (*s && (*s != '=') && *s != '<' && *s != '!' && *s != '>')
{
if (*s == ' ' || *s == '\t')
++s;
else
{
if (*s == '.')
lastdot = name_p;
*name_p++ = *s++;
}
}
*name_p = 0;
if (name == name_p)
{
err << "Proposition `" << str << "' cannot be parsed.\n";
free(name);
++errors;
continue;
}
// Lookup the name
val_map_t::const_iterator ni = val_map.find(name);
if (ni == val_map.end())
{
// We may have a name such as X.Y.Z
// If it is not a known variable, it might mean
// an enumerated variable X.Y with value Z.
if (lastdot)
{
*lastdot++ = 0;
ni = val_map.find(name);
}
if (ni == val_map.end())
{
err << "No variable `" << name
<< "' found in model (for proposition `"
<< str << "').\n";
free(name);
++errors;
continue;
}
// We have found the enumerated variable, and lastdot is
// pointing to its expected value.
int type_num = ni->second.type;
enum_map_t::const_iterator ei = enum_map[type_num].find(lastdot);
if (ei == enum_map[type_num].end())
{
err << "No state `" << lastdot << "' known for variable `"
<< name << "'.\n";
err << "Possible states are:";
for (auto& ej: enum_map[type_num])
err << ' ' << ej.first;
err << '\n';
free(name);
++errors;
continue;
}
// At this point, *s should be 0.
if (*s)
{
err << "Trailing garbage `" << s
<< "' at end of proposition `"
<< str << "'.\n";
free(name);
++errors;
continue;
}
// Record that X.Y must be equal to Z.
int v = dict->register_proposition(*ap, d.get());
one_prop p = { ni->second.num, OP_EQ, ei->second, v };
out.emplace_back(p);
free(name);
continue;
}
int var_num = ni->second.num;
if (!*s) // No operator? Assume "!= 0".
{
int v = dict->register_proposition(*ap, d);
one_prop p = { var_num, OP_NE, 0, v };
out.emplace_back(p);
free(name);
continue;
}
relop op;
switch (*s)
{
case '!':
if (s[1] != '=')
goto report_error;
op = OP_NE;
s += 2;
break;
case '=':
if (s[1] != '=')
goto report_error;
op = OP_EQ;
s += 2;
break;
case '<':
if (s[1] == '=')
{
op = OP_LE;
s += 2;
}
else
{
op = OP_LT;
++s;
}
break;
case '>':
if (s[1] == '=')
{
op = OP_GE;
s += 2;
}
else
{
op = OP_GT;
++s;
}
break;
default:
report_error:
err << "Unexpected `" << s
<< "' while parsing atomic proposition `" << str
<< "'.\n";
++errors;
free(name);
continue;
}
while (*s && (*s == ' ' || *s == '\t'))
++s;
int val = 0; // Initialize to kill a warning from old compilers.
int type_num = ni->second.type;
if (type_num == 0 || (*s >= '0' && *s <= '9') || *s == '-')
{
char* s_end;
val = strtol(s, &s_end, 10);
if (s == s_end)
{
err << "Failed to parse `" << s << "' as an integer.\n";
++errors;
free(name);
continue;
}
s = s_end;
}
else
{
// We are in a case such as P_0 == S, trying to convert
// the string S into an integer.
const char* end = s;
while (*end && *end != ' ' && *end != '\t')
++end;
std::string st(s, end);
// Lookup the string.
enum_map_t::const_iterator ei = enum_map[type_num].find(st);
if (ei == enum_map[type_num].end())
{
err << "No state `" << st << "' known for variable `"
<< name << "'.\n";
err << "Possible states are:";
for (ei = enum_map[type_num].begin();
ei != enum_map[type_num].end(); ++ei)
err << ' ' << ei->first;
err << '\n';
free(name);
++errors;
continue;
}
s = end;
val = ei->second;
}
free(name);
while (*s && (*s == ' ' || *s == '\t'))
++s;
if (*s)
{
err << "Unexpected `" << s
<< "' while parsing atomic proposition `" << str
<< "'.\n";
++errors;
continue;
}
int v = dict->register_proposition(*ap, d);
one_prop p = { var_num, op, val, v };
out.emplace_back(p);
}
if (errors)
throw std::runtime_error(err.str());
}
////////////////////////////////////////////////////////////////////////
// KRIPKE
class spins_kripke final: public kripke
{
public:
spins_kripke(spins_interface_ptr d, const bdd_dict_ptr& dict,
const spot::prop_set* ps, formula dead,
int compress)
: kripke(dict),
d_(d),
state_size_(d_->get_state_size()),
ps_(ps),
compress_(compress == 0 ? nullptr
: compress == 1 ? int_array_array_compress
: int_array_array_compress2),
decompress_(compress == 0 ? nullptr
: compress == 1 ? int_array_array_decompress
: int_array_array_decompress2),
uncompressed_(compress ? new int[state_size_ + 30] : nullptr),
compressed_(compress ? new int[state_size_ * 2] : nullptr),
statepool_(compress ?
(sizeof(spins_compressed_state)
- sizeof(spins_compressed_state::vars)) :
(sizeof(spins_state) - sizeof(spins_state::vars)
+ (state_size_ * sizeof(int)))),
state_condition_last_state_(nullptr),
state_condition_last_cc_(nullptr)
{
vname_ = new const char*[state_size_];
format_filter_ = new bool[state_size_];
for (int i = 0; i < state_size_; ++i)
{
vname_[i] = d_->get_state_variable_name(i);
// We don't want to print variables that can take a single
// value (e.g. process with a single state) to shorten the
// output.
int type = d->get_state_variable_type(i);
format_filter_[i] =
(d->get_type_value_count(type) != 1);
}
// Register the "dead" proposition. There are three cases to
// consider:
// * If DEAD is "false", it means we are not interested in finite
// sequences of the system.
// * If DEAD is "true", we want to check finite sequences as well
// as infinite sequences, but do not need to distinguish them.
// * If DEAD is any other string, this is the name a property
// that should be true when looping on a dead state, and false
// otherwise.
// We handle these three cases by setting ALIVE_PROP and DEAD_PROP
// appropriately. ALIVE_PROP is the bdd that should be ANDed
// to all transitions leaving a live state, while DEAD_PROP should
// be ANDed to all transitions leaving a dead state.
if (dead.is_ff())
{
alive_prop = bddtrue;
dead_prop = bddfalse;
}
else if (dead.is_tt())
{
alive_prop = bddtrue;
dead_prop = bddtrue;
}
else
{
int var = dict->register_proposition(dead, d_);
dead_prop = bdd_ithvar(var);
alive_prop = bdd_nithvar(var);
}
}
~spins_kripke()
{
if (iter_cache_)
{
delete iter_cache_;
iter_cache_ = nullptr;
}
delete[] format_filter_;
delete[] vname_;
if (compress_)
{
delete[] uncompressed_;
delete[] compressed_;
}
dict_->unregister_all_my_variables(d_.get());
delete ps_;
if (state_condition_last_state_)
state_condition_last_state_->destroy();
delete state_condition_last_cc_; // Might be 0 already.
}
virtual state* get_init_state() const override
{
if (compress_)
{
d_->get_initial_state(uncompressed_);
size_t csize = state_size_ * 2;
compress_(uncompressed_, state_size_, compressed_, csize);
multiple_size_pool* p =
const_cast<multiple_size_pool*>(&compstatepool_);
void* mem = p->allocate(sizeof(spins_compressed_state)
- sizeof(spins_compressed_state::vars)
+ sizeof(int) * csize);
spins_compressed_state* res = new(mem)
spins_compressed_state(csize, p);
SPOT_ASSUME(res != nullptr);
memcpy(res->vars, compressed_, csize * sizeof(int));
res->compute_hash();
return res;
}
else
{
fixed_size_pool* p = const_cast<fixed_size_pool*>(&statepool_);
spins_state* res = new(p->allocate()) spins_state(state_size_, p);
SPOT_ASSUME(res != nullptr);
d_->get_initial_state(res->vars);
res->compute_hash();
return res;
}
}
bdd
compute_state_condition_aux(const int* vars) const
{
bdd res = bddtrue;
for (auto& i: *ps_)
{
int l = vars[i.var_num];
int r = i.val;
bool cond = false;
switch (i.op)
{
case OP_EQ:
cond = (l == r);
break;
case OP_NE:
cond = (l != r);
break;
case OP_LT:
cond = (l < r);
break;
case OP_GT:
cond = (l > r);
break;
case OP_LE:
cond = (l <= r);
break;
case OP_GE:
cond = (l >= r);
break;
}
if (cond)
res &= bdd_ithvar(i.bddvar);
else
res &= bdd_nithvar(i.bddvar);
}
return res;
}
callback_context* build_cc(const int* vars, int& t) const
{
callback_context* cc = new callback_context;
cc->state_size = state_size_;
cc->pool =
const_cast<void*>(compress_
? static_cast<const void*>(&compstatepool_)
: static_cast<const void*>(&statepool_));
cc->compress = compress_;
cc->compressed = compressed_;
t = d_->get_successors(nullptr, const_cast<int*>(vars),
compress_
? transition_callback_compress
: transition_callback,
cc);
assert((unsigned)t == cc->transitions.size());
return cc;
}
bdd
compute_state_condition(const state* st) const
{
// If we just computed it, don't do it twice.
if (st == state_condition_last_state_)
return state_condition_last_cond_;
if (state_condition_last_state_)
{
state_condition_last_state_->destroy();
delete state_condition_last_cc_; // Might be 0 already.
state_condition_last_cc_ = nullptr;
}
const int* vars = get_vars(st);
bdd res = compute_state_condition_aux(vars);
int t;
callback_context* cc = build_cc(vars, t);
if (t)
{
res &= alive_prop;
}
else
{
res &= dead_prop;
// Add a self-loop to dead-states if we care about these.
if (res != bddfalse)
cc->transitions.emplace_back(st->clone());
}
state_condition_last_cc_ = cc;
state_condition_last_cond_ = res;
state_condition_last_state_ = st->clone();
return res;
}
const int*
get_vars(const state* st) const
{
const int* vars;
if (compress_)
{
const spins_compressed_state* s =
down_cast<const spins_compressed_state*>(st);
decompress_(s->vars, s->size, uncompressed_, state_size_);
vars = uncompressed_;
}
else
{
const spins_state* s = down_cast<const spins_state*>(st);
vars = s->vars;
}
return vars;
}
virtual
spins_succ_iterator* succ_iter(const state* st) const override
{
// This may also compute successors in state_condition_last_cc
bdd scond = compute_state_condition(st);
callback_context* cc;
if (state_condition_last_cc_)
{
cc = state_condition_last_cc_;
state_condition_last_cc_ = nullptr; // Now owned by the iterator.
}
else
{
int t;
cc = build_cc(get_vars(st), t);
// Add a self-loop to dead-states if we care about these.
if (t == 0 && scond != bddfalse)
cc->transitions.emplace_back(st->clone());
}
if (iter_cache_)
{
spins_succ_iterator* it =
down_cast<spins_succ_iterator*>(iter_cache_);
it->recycle(cc, scond);
iter_cache_ = nullptr;
return it;
}
return new spins_succ_iterator(cc, scond);
}
virtual
bdd state_condition(const state* st) const override
{
return compute_state_condition(st);
}
virtual
std::string format_state(const state *st) const override
{
const int* vars = get_vars(st);
std::stringstream res;
if (state_size_ == 0)
return "empty state";
int i = 0;
for (;;)
{
if (!format_filter_[i])
{
++i;
if (i == state_size_)
break;
continue;
}
res << vname_[i] << '=' << vars[i];
++i;
if (i == state_size_)
break;
res << ", ";
}
return res.str();
}
private:
spins_interface_ptr d_;
int state_size_;
const char** vname_;
bool* format_filter_;
const spot::prop_set* ps_;
bdd alive_prop;
bdd dead_prop;
void (*compress_)(const int*, size_t, int*, size_t&);
void (*decompress_)(const int*, size_t, int*, size_t);
int* uncompressed_;
int* compressed_;
fixed_size_pool statepool_;
multiple_size_pool compstatepool_;
// This cache is used to speedup repeated calls to state_condition()
// and get_succ().
// If state_condition_last_state_ != 0, then state_condition_last_cond_
// contain its (recently computed) condition. If additionally
// state_condition_last_cc_ != 0, then it contains the successors.
mutable const state* state_condition_last_state_;
mutable bdd state_condition_last_cond_;
mutable callback_context* state_condition_last_cc_;
};
//////////////////////////////////////////////////////////////////////////
// LOADER
// Call spins to compile "foo.prom" as "foo.prom.spins" if the latter
// does not exist already or is older.
static void
compile_model(std::string& filename, const std::string& ext)
{
std::string command;
std::string compiled_ext;
if (ext == ".gal")
{
command = "gal2c " + filename;
compiled_ext = "2C";
}
else if (ext == ".prom" || ext == ".pm" || ext == ".pml")
{
command = "spins " + filename;
compiled_ext = ".spins";
}
else if (ext == ".dve")
{
command = "divine compile --ltsmin " + filename;
compiled_ext = "2C";
}
else
{
throw std::runtime_error(std::string("Unknown extension '")
+ ext + "'. Use '.prom', '.pm', '.pml', "
"'.dve', '.dve2C', '.gal', '.gal2C' or "
"'.prom.spins'.");
}
struct stat s;
if (stat(filename.c_str(), &s) != 0)
throw std::runtime_error(std::string("Cannot open ") + filename);
filename += compiled_ext;
// Remove any directory, because the new file will
// be compiled in the current directory.
size_t pos = filename.find_last_of("/\\");
if (pos != std::string::npos)
filename = "./" + filename.substr(pos + 1);
struct stat d;
if (stat(filename.c_str(), &d) == 0)
if (s.st_mtime < d.st_mtime)
// The .spins or .dve2C or .gal2C is up-to-date, no need to compile.
return;
int res = system(command.c_str());
if (res)
throw std::runtime_error(std::string("Execution of '")
+ command.c_str() + "' returned exit code "
+ std::to_string(WEXITSTATUS(res)));
}
}
ltsmin_model
ltsmin_model::load(const std::string& file_arg)
{
std::string file;
if (file_arg.find_first_of("/\\") != std::string::npos)
file = file_arg;
else
file = "./" + file_arg;
std::string ext = file.substr(file.find_last_of("."));
if (ext != ".spins" && ext != ".dve2C" && ext != ".gal2C")
{
compile_model(file, ext);
ext = file.substr(file.find_last_of("."));
}
if (lt_dlinit())
throw std::runtime_error("Failed to initialize libltldl.");
lt_dlhandle h = lt_dlopen(file.c_str());
if (!h)
{
std::string lt_error = lt_dlerror();
lt_dlexit();
throw std::runtime_error(std::string("Failed to load '")
+ file + "'.\n" + lt_error);
}
auto d = std::make_shared<spins_interface>();
assert(d); // Superfluous, but Debian's GCC 7 snapshot 20161207-1 warns
// about potential null pointer dereference on the next line.
d->handle = h;
auto sym = [&](auto* dst, const char* name)
{
// Work around -Wpendantic complaining that pointer-to-objects
// should not be converted to pointer-to-functions (we have to
// assume they can for POSIX).
*reinterpret_cast<void**>(dst) = lt_dlsym(h, name);
if (dst == nullptr)
throw std::runtime_error(std::string("Failed to resolve symbol '")
+ name + "' in '" + file + "'.");
};
// SpinS interface.
if (ext == ".spins")
{
sym(&d->get_initial_state, "spins_get_initial_state");
d->have_property = nullptr;
sym(&d->get_successors, "spins_get_successor_all");
sym(&d->get_state_size, "spins_get_state_size");
sym(&d->get_state_variable_name, "spins_get_state_variable_name");
sym(&d->get_state_variable_type, "spins_get_state_variable_type");
sym(&d->get_type_count, "spins_get_type_count");
sym(&d->get_type_name, "spins_get_type_name");
sym(&d->get_type_value_count, "spins_get_type_value_count");
sym(&d->get_type_value_name, "spins_get_type_value_name");
}
// dve2 and gal2C interfaces.
else
{
sym(&d->get_initial_state, "get_initial_state");
*reinterpret_cast<void**>(&d->have_property) =
lt_dlsym(h, "have_property");
sym(&d->get_successors, "get_successors");
sym(&d->get_state_size, "get_state_variable_count");
sym(&d->get_state_variable_name, "get_state_variable_name");
sym(&d->get_state_variable_type, "get_state_variable_type");
sym(&d->get_type_count, "get_state_variable_type_count");
sym(&d->get_type_name, "get_state_variable_type_name");
sym(&d->get_type_value_count, "get_state_variable_type_value_count");
sym(&d->get_type_value_name, "get_state_variable_type_value");
}
if (d->have_property && d->have_property())
throw std::runtime_error("Models with embedded properties "
"are not supported.");
return { d };
}
kripke_ptr
ltsmin_model::kripke(const atomic_prop_set* to_observe,
bdd_dict_ptr dict,
const formula dead, int compress) const
{
spot::prop_set* ps = new spot::prop_set;
try
{
convert_aps(to_observe, iface, dict, dead, *ps);
}
catch (const std::runtime_error&)
{
delete ps;
dict->unregister_all_my_variables(iface.get());
throw;
}
auto res = std::make_shared<spins_kripke>(iface, dict, ps, dead, compress);
// All atomic propositions have been registered to the bdd_dict
// for iface, but we also need to add them to the automaton so
// twa::ap() works.
for (auto ap: *to_observe)
res->register_ap(ap);
if (dead.is(op::ap))
res->register_ap(dead);
return res;
}
ltsmin_model::~ltsmin_model()
{
}
int ltsmin_model::state_size() const
{
return iface->get_state_size();
}
const char* ltsmin_model::state_variable_name(int var) const
{
return iface->get_state_variable_name(var);
}
int ltsmin_model::state_variable_type(int var) const
{
return iface->get_state_variable_type(var);
}
int ltsmin_model::type_count() const
{
return iface->get_type_count();
}
const char* ltsmin_model::type_name(int type) const
{
return iface->get_type_name(type);
}
int ltsmin_model::type_value_count(int type)
{
return iface->get_type_value_count(type);
}
const char* ltsmin_model::type_value_name(int type, int val)
{
return iface->get_type_value_name(type, val);
}
}