spot/spot/graph/graph.hh

1527 lines
42 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) 2014-2018, 2020-2022 Laboratoire de Recherche et
// Développement de l'Epita.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#pragma once
#include <spot/misc/common.hh>
#include <spot/misc/_config.h>
#include <vector>
#include <type_traits>
#include <tuple>
#include <cassert>
#include <iterator>
#include <algorithm>
#include <map>
#include <iostream>
#ifdef SPOT_ENABLE_PTHREAD
# include <thread>
#endif // SPOT_ENABLE_PTHREAD
namespace spot
{
template <typename State_Data, typename Edge_Data>
class SPOT_API digraph;
namespace internal
{
#ifndef SWIG
template <typename Of, typename ...Args>
struct first_is_base_of
{
static const bool value = false;
};
template <typename Of, typename Arg1, typename ...Args>
struct first_is_base_of<Of, Arg1, Args...>
{
static const bool value =
std::is_base_of<Of, typename std::decay<Arg1>::type>::value;
};
#endif
// The boxed_label class stores Data as an attribute called
// "label" if boxed is true. It is an empty class if Data is
// void, and it simply inherits from Data if boxed is false.
//
// The data() method offers an homogeneous access to the Data
// instance.
template <typename Data, bool boxed = !std::is_class<Data>::value>
struct SPOT_API boxed_label
{
typedef Data data_t;
Data label;
#ifndef SWIG
template <typename... Args,
typename = typename std::enable_if<
!first_is_base_of<boxed_label, Args...>::value>::type>
boxed_label(Args&&... args)
noexcept(std::is_nothrow_constructible<Data, Args...>::value)
: label{std::forward<Args>(args)...}
{
}
#endif
// if Data is a POD type, G++ 4.8.2 wants default values for all
// label fields unless we define this default constructor here.
explicit boxed_label()
noexcept(std::is_nothrow_constructible<Data>::value)
{
}
Data& data()
{
return label;
}
const Data& data() const
{
return label;
}
bool operator<(const boxed_label& other) const
{
return label < other.label;
}
};
template <>
struct SPOT_API boxed_label<void, true>: public std::tuple<>
{
typedef std::tuple<> data_t;
std::tuple<>& data()
{
return *this;
}
const std::tuple<>& data() const
{
return *this;
}
};
template <typename Data>
struct SPOT_API boxed_label<Data, false>: public Data
{
typedef Data data_t;
#ifndef SWIG
template <typename... Args,
typename = typename std::enable_if<
!first_is_base_of<boxed_label, Args...>::value>::type>
boxed_label(Args&&... args)
noexcept(std::is_nothrow_constructible<Data, Args...>::value)
: Data{std::forward<Args>(args)...}
{
}
#endif
// if Data is a POD type, G++ 4.8.2 wants default values for all
// label fields unless we define this default constructor here.
explicit boxed_label()
noexcept(std::is_nothrow_constructible<Data>::value)
{
}
Data& data()
{
return *this;
}
const Data& data() const
{
return *this;
}
};
//////////////////////////////////////////////////
// State storage for digraphs
//////////////////////////////////////////////////
// We have two implementations, one with attached State_Data, and
// one without.
template <typename Edge, typename State_Data>
struct SPOT_API distate_storage final: public State_Data
{
Edge succ = 0; // First outgoing edge (used when iterating)
Edge succ_tail = 0; // Last outgoing edge (used for
// appending new edges)
#ifndef SWIG
template <typename... Args,
typename = typename std::enable_if<
!first_is_base_of<distate_storage, Args...>::value>::type>
distate_storage(Args&&... args)
noexcept(std::is_nothrow_constructible<State_Data, Args...>::value)
: State_Data{std::forward<Args>(args)...}
{
}
#endif
};
//////////////////////////////////////////////////
// Edge storage
//////////////////////////////////////////////////
// Again two implementation: one with label, and one without.
template <typename StateIn,
typename StateOut, typename Edge, typename Edge_Data>
struct SPOT_API edge_storage final: public Edge_Data
{
typedef Edge edge;
StateOut dst; // destination
Edge next_succ; // next outgoing edge with same
// source, or 0
StateIn src; // source
explicit edge_storage()
noexcept(std::is_nothrow_constructible<Edge_Data>::value)
: Edge_Data{}
{
}
#ifndef SWIG
template <typename... Args>
edge_storage(StateOut dst, Edge next_succ,
StateIn src, Args&&... args)
noexcept(std::is_nothrow_constructible<Edge_Data, Args...>::value
&& std::is_nothrow_constructible<StateOut, StateOut>::value
&& std::is_nothrow_constructible<Edge, Edge>::value)
: Edge_Data{std::forward<Args>(args)...},
dst(dst), next_succ(next_succ), src(src)
{
}
#endif
bool operator<(const edge_storage& other) const
{
if (src < other.src)
return true;
if (src > other.src)
return false;
// This might be costly if the destination is a vector
if (dst < other.dst)
return true;
if (dst > other.dst)
return false;
return this->data() < other.data();
}
bool operator==(const edge_storage& other) const
{
return src == other.src &&
dst == other.dst &&
this->data() == other.data();
}
};
//////////////////////////////////////////////////
// Edge iterator
//////////////////////////////////////////////////
// This holds a graph and a edge number that is the start of
// a list, and it iterates over all the edge_storage_t elements
// of that list.
template <typename Graph>
class SPOT_API edge_iterator
{
public:
typedef typename std::conditional<std::is_const<Graph>::value,
const typename Graph::edge_storage_t,
typename Graph::edge_storage_t>::type
value_type;
typedef value_type& reference;
typedef value_type* pointer;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
typedef typename Graph::edge edge;
edge_iterator() noexcept
: g_(nullptr), t_(0)
{
}
edge_iterator(Graph* g, edge t) noexcept
: g_(g), t_(t)
{
}
bool operator==(edge_iterator o) const
{
return t_ == o.t_;
}
bool operator!=(edge_iterator o) const
{
return t_ != o.t_;
}
reference operator*() const
{
return g_->edge_storage(t_);
}
pointer operator->() const
{
return &g_->edge_storage(t_);
}
edge_iterator operator++()
{
t_ = operator*().next_succ;
return *this;
}
edge_iterator operator++(int)
{
edge_iterator ti = *this;
t_ = operator*().next_succ;
return ti;
}
operator bool() const
{
return t_;
}
edge trans() const
{
return t_;
}
protected:
Graph* g_;
edge t_;
};
template <typename Graph>
class SPOT_API killer_edge_iterator: public edge_iterator<Graph>
{
typedef edge_iterator<Graph> super;
public:
typedef typename Graph::state_storage_t state_storage_t;
typedef typename Graph::edge edge;
killer_edge_iterator(Graph* g, edge t, state_storage_t& src) noexcept
: super(g, t), src_(src), prev_(0)
{
}
killer_edge_iterator operator++()
{
prev_ = this->t_;
this->t_ = this->operator*().next_succ;
return *this;
}
killer_edge_iterator operator++(int)
{
killer_edge_iterator ti = *this;
++*this;
return ti;
}
// Erase the current edge and advance the iterator.
void erase()
{
edge next = this->operator*().next_succ;
// Update source state and previous edges
if (prev_)
{
this->g_->edge_storage(prev_).next_succ = next;
}
else
{
if (src_.succ == this->t_)
src_.succ = next;
}
if (src_.succ_tail == this->t_)
{
src_.succ_tail = prev_;
SPOT_ASSERT(next == 0);
}
// Erased edges have themselves as next_succ.
this->operator*().next_succ = this->t_;
// Advance iterator to next edge.
this->t_ = next;
++this->g_->killed_edge_;
}
protected:
state_storage_t& src_;
edge prev_;
};
//////////////////////////////////////////////////
// State OUT
//////////////////////////////////////////////////
// Fake container listing the outgoing edges of a state.
template <typename Graph>
class SPOT_API state_out
{
public:
typedef typename Graph::edge edge;
state_out(Graph* g, edge t) noexcept
: g_(g), t_(t)
{
}
edge_iterator<Graph> begin() const
{
return {g_, t_};
}
edge_iterator<Graph> end() const
{
return {};
}
void recycle(edge t)
{
t_ = t;
}
protected:
Graph* g_;
edge t_;
};
//////////////////////////////////////////////////
// all_trans
//////////////////////////////////////////////////
template <typename Graph>
class SPOT_API all_edge_iterator
{
public:
typedef typename std::conditional<std::is_const<Graph>::value,
const typename Graph::edge_storage_t,
typename Graph::edge_storage_t>::type
value_type;
typedef value_type& reference;
typedef value_type* pointer;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
protected:
typedef typename std::conditional<std::is_const<Graph>::value,
const typename Graph::edge_vector_t,
typename Graph::edge_vector_t>::type
tv_t;
unsigned t_;
tv_t& tv_;
void skip_()
{
unsigned s = tv_.size();
do
++t_;
while (t_ < s && tv_[t_].next_succ == t_);
}
public:
all_edge_iterator(unsigned pos, tv_t& tv) noexcept
: t_(pos), tv_(tv)
{
skip_();
}
all_edge_iterator(tv_t& tv) noexcept
: t_(tv.size()), tv_(tv)
{
}
all_edge_iterator& operator++()
{
skip_();
return *this;
}
all_edge_iterator operator++(int)
{
all_edge_iterator old = *this;
++*this;
return old;
}
bool operator==(all_edge_iterator o) const
{
return t_ == o.t_;
}
bool operator!=(all_edge_iterator o) const
{
return t_ != o.t_;
}
reference operator*() const
{
return tv_[t_];
}
pointer operator->() const
{
return &tv_[t_];
}
};
template <typename Graph>
class SPOT_API all_trans
{
public:
typedef typename std::conditional<std::is_const<Graph>::value,
const typename Graph::edge_vector_t,
typename Graph::edge_vector_t>::type
tv_t;
typedef all_edge_iterator<Graph> iter_t;
private:
tv_t& tv_;
public:
all_trans(tv_t& tv) noexcept
: tv_(tv)
{
}
iter_t begin() const
{
return {0, tv_};
}
iter_t end() const
{
return {tv_};
}
};
class SPOT_API const_universal_dests
{
private:
const unsigned* begin_;
const unsigned* end_;
unsigned tmp_;
public:
const_universal_dests(const unsigned* begin, const unsigned* end) noexcept
: begin_(begin), end_(end)
{
}
const_universal_dests(unsigned state) noexcept
: begin_(&tmp_), end_(&tmp_ + 1), tmp_(state)
{
}
const unsigned* begin() const
{
return begin_;
}
const unsigned* end() const
{
return end_;
}
};
template<class G>
class univ_dest_mapper
{
std::map<std::vector<unsigned>, unsigned> uniq_;
G& g_;
unsigned acc_sink_;
public:
univ_dest_mapper(G& graph, unsigned sink = -1u)
: g_(graph), acc_sink_(sink)
{
}
template<class I>
unsigned new_univ_dests(I begin, I end)
{
std::vector<unsigned> tmp(begin, end);
std::sort(tmp.begin(), tmp.end());
tmp.erase(std::unique(tmp.begin(), tmp.end()), tmp.end());
if (acc_sink_ != -1u && tmp.size() > 1)
tmp.erase(std::remove(tmp.begin(), tmp.end(), acc_sink_),
tmp.end());
auto p = uniq_.emplace(tmp, 0);
if (p.second)
p.first->second = g_.new_univ_dests(tmp.begin(), tmp.end());
return p.first->second;
}
};
} // namespace internal
/// \brief A directed graph
///
/// \tparam State_Data data to attach to states
/// \tparam Edge_Data data to attach to edges
template <typename State_Data, typename Edge_Data>
class digraph
{
friend class internal::edge_iterator<digraph>;
friend class internal::edge_iterator<const digraph>;
friend class internal::killer_edge_iterator<digraph>;
public:
typedef internal::edge_iterator<digraph> iterator;
typedef internal::edge_iterator<const digraph> const_iterator;
// Extra data to store on each state or edge.
typedef State_Data state_data_t;
typedef Edge_Data edge_data_t;
// State and edges are identified by their indices in some
// vector.
typedef unsigned state;
typedef unsigned edge;
typedef internal::distate_storage<edge,
internal::boxed_label<State_Data>>
state_storage_t;
typedef internal::edge_storage<state, state, edge,
internal::boxed_label<Edge_Data>>
edge_storage_t;
typedef std::vector<state_storage_t> state_vector;
typedef std::vector<edge_storage_t> edge_vector_t;
// A sequence of universal destination groups of the form:
// (n state_1 state_2 ... state_n)*
typedef std::vector<unsigned> dests_vector_t;
protected:
state_vector states_;
edge_vector_t edges_;
dests_vector_t dests_; // Only used by alternating automata.
// Number of erased edges.
unsigned killed_edge_;
public:
/// \brief Construct an empty graph
///
/// Construct an empty graph, and reserve space for \a max_states
/// states and \a max_trans edges. These are not hard
/// limits, but just hints to pre-allocate a data structure that
/// may hold that much items.
digraph(unsigned max_states = 10, unsigned max_trans = 0)
: killed_edge_(0)
{
states_.reserve(max_states);
if (max_trans == 0)
max_trans = max_states * 2;
edges_.reserve(max_trans + 1);
// Edge number 0 is not used, because we use this index
// to mark the absence of a edge.
edges_.resize(1);
// This causes edge 0 to be considered as dead.
edges_[0].next_succ = 0;
}
/// The number of states in the automaton
unsigned num_states() const
{
return states_.size();
}
/// \brief The number of edges in the automaton
///
/// Killed edges are omitted.
unsigned num_edges() const
{
return edges_.size() - killed_edge_ - 1;
}
/// Whether the automaton uses only existential branching.
bool is_existential() const
{
return dests_.empty();
}
/// \brief Create a new states
///
/// All arguments are forwarded to the State_Data constructor.
///
/// \return a state number
template <typename... Args>
state new_state(Args&&... args)
{
state s = states_.size();
states_.emplace_back(std::forward<Args>(args)...);
return s;
}
/// \brief Create n new states
///
/// All arguments are forwarded to the State_Data constructor of
/// each of the n states.
///
/// \return the first state number
template <typename... Args>
state new_states(unsigned n, Args&&... args)
{
state s = states_.size();
states_.reserve(s + n);
while (n--)
states_.emplace_back(std::forward<Args>(args)...);
return s;
}
/// @{
/// \brief return a reference to the storage of a state
///
/// The storage includes any of the user-supplied State_Data, plus
/// some custom fields needed to find the outgoing transitions.
state_storage_t&
state_storage(state s)
{
return states_[s];
}
const state_storage_t&
state_storage(state s) const
{
return states_[s];
}
///@}
///@{
/// \brief return the State_Data associated to a state
///
/// This does not use State_Data& as return type, because
/// State_Data might be void.
typename state_storage_t::data_t&
state_data(state s)
{
return states_[s].data();
}
const typename state_storage_t::data_t&
state_data(state s) const
{
return states_[s].data();
}
///@}
///@{
/// \brief return a reference to the storage of an edge
///
/// The storage includes any of the user-supplied Edge_Data, plus
/// some custom fields needed to find the next transitions.
edge_storage_t&
edge_storage(edge s)
{
return edges_[s];
}
const edge_storage_t&
edge_storage(edge s) const
{
return edges_[s];
}
///@}
///@{
/// \brief return the Edgeg_Data of an edge.
///
/// This does not use Edge_Data& as return type, because
/// Edge_Data might be void.
typename edge_storage_t::data_t&
edge_data(edge s)
{
return edges_[s].data();
}
const typename edge_storage_t::data_t&
edge_data(edge s) const
{
return edges_[s].data();
}
///@}
/// \brief Create a new edge
///
/// \param src the source state
/// \param dst the destination state
/// \param args arguments to forward to the Edge_Data constructor
template <typename... Args>
edge
new_edge(state src, state dst, Args&&... args)
{
edge t = edges_.size();
edges_.emplace_back(dst, 0, src, std::forward<Args>(args)...);
edge st = states_[src].succ_tail;
SPOT_ASSERT(st < t || !st);
if (!st)
states_[src].succ = t;
else
edges_[st].next_succ = t;
states_[src].succ_tail = t;
return t;
}
/// \brief Create a new universal destination group
///
/// The resulting state number can be used as the destination of
/// an edge.
///
/// \param dst_begin start of a non-empty container of destination states
/// \param dst_end end of a non-empty container of destination states
template <typename I>
state
new_univ_dests(I dst_begin, I dst_end)
{
unsigned sz = std::distance(dst_begin, dst_end);
if (sz == 1)
return *dst_begin;
SPOT_ASSERT(sz > 1);
unsigned d = dests_.size();
if (!dests_.empty()
&& &*dst_begin >= &dests_.front()
&& &*dst_begin <= &dests_.back()
&& (dests_.capacity() - dests_.size()) < (sz + 1))
{
// If dst_begin...dst_end points into dests_ and dests_ risk
// being reallocated, we have to savea the destination
// states before we lose them.
std::vector<unsigned> tmp(dst_begin, dst_end);
dests_.emplace_back(sz);
dests_.insert(dests_.end(), tmp.begin(), tmp.end());
}
else
{
dests_.emplace_back(sz);
dests_.insert(dests_.end(), dst_begin, dst_end);
}
return ~d;
}
/// \brief Create a new universal edge
///
/// \param src the source state
/// \param dst_begin start of a non-empty container of destination states
/// \param dst_end end of a non-empty container of destination states
/// \param args arguments to forward to the Edge_Data constructor
template <typename I, typename... Args>
edge
new_univ_edge(state src, I dst_begin, I dst_end, Args&&... args)
{
return new_edge(src, new_univ_dests(dst_begin, dst_end),
std::forward<Args>(args)...);
}
/// \brief Create a new universal edge
///
/// \param src the source state
/// \param dsts a non-empty list of destination states
/// \param args arguments to forward to the Edge_Data constructor
template <typename... Args>
edge
new_univ_edge(state src, const std::initializer_list<state>& dsts,
Args&&... args)
{
return new_univ_edge(src, dsts.begin(), dsts.end(),
std::forward<Args>(args)...);
}
internal::const_universal_dests univ_dests(state src) const
{
if ((int)src < 0)
{
unsigned pos = ~src;
const unsigned* d = dests_.data();
d += pos;
unsigned num = *d;
return { d + 1, d + num + 1 };
}
else
{
return src;
}
}
internal::const_universal_dests univ_dests(const edge_storage_t& e) const
{
return univ_dests(e.dst);
}
/// Convert a storage reference into a state number
state index_of_state(const state_storage_t& ss) const
{
SPOT_ASSERT(!states_.empty());
return &ss - &states_.front();
}
/// Convert a storage reference into an edge number
edge index_of_edge(const edge_storage_t& tt) const
{
SPOT_ASSERT(!edges_.empty());
return &tt - &edges_.front();
}
/// @{
/// \brief Return a fake container with all edges leaving \a src
internal::state_out<digraph>
out(state src)
{
return {this, states_[src].succ};
}
internal::state_out<digraph>
out(state_storage_t& src)
{
return out(index_of_state(src));
}
internal::state_out<const digraph>
out(state src) const
{
return {this, states_[src].succ};
}
internal::state_out<const digraph>
out(state_storage_t& src) const
{
return out(index_of_state(src));
}
/// @}
/// @{
///
/// \brief Return a fake container with all edges leaving \a src,
/// allowing erasure.
internal::killer_edge_iterator<digraph>
out_iteraser(state_storage_t& src)
{
return {this, src.succ, src};
}
internal::killer_edge_iterator<digraph>
out_iteraser(state src)
{
return out_iteraser(state_storage(src));
}
///@}
/// @{
///
/// \brief Return the vector of states.
const state_vector& states() const
{
return states_;
}
state_vector& states()
{
return states_;
}
/// @}
/// @{
///
/// \brief Return a fake container with all edges (exluding erased
/// edges)
internal::all_trans<const digraph> edges() const
{
return edges_;
}
internal::all_trans<digraph> edges()
{
return edges_;
}
/// @}
/// @{
/// \brief Return the vector of all edges.
///
/// When using this method, beware that the first entry (edge #0)
/// is not a real edge, and that any edge with next_succ pointing
/// to itself is an erased edge.
///
/// You should probably use edges() instead.
const edge_vector_t& edge_vector() const
{
return edges_;
}
edge_vector_t& edge_vector()
{
return edges_;
}
/// @}
/// \brief Test whether the given edge is valid.
///
/// An edge is valid if its number is less than the total number
/// of edges, and it does not correspond to an erased (dead) edge.
///
/// \see is_dead_edge()
bool is_valid_edge(edge t) const
{
// Erased edges have their next_succ pointing to
// themselves.
return (t < edges_.size() &&
edges_[t].next_succ != t);
}
/// @{
/// \brief Tests whether an edge has been erased.
///
/// \see is_valid_edge
bool is_dead_edge(unsigned t) const
{
return edges_[t].next_succ == t;
}
bool is_dead_edge(const edge_storage_t& t) const
{
return t.next_succ == index_of_edge(t);
}
/// @}
/// @{
/// \brief The vector used to store universal destinations.
///
/// The actual way those destinations are stored is an
/// implementation detail you should not rely on.
const dests_vector_t& dests_vector() const
{
return dests_;
}
dests_vector_t& dests_vector()
{
return dests_;
}
/// @}
/// Dump the state and edge storage for debugging
void dump_storage(std::ostream& o) const
{
unsigned tend = edges_.size();
for (unsigned t = 1; t < tend; ++t)
{
o << 't' << t << ": (s"
<< edges_[t].src << ", ";
int d = edges_[t].dst;
if (d < 0)
o << 'd' << ~d;
else
o << 's' << d;
o << ") t" << edges_[t].next_succ << '\n';
}
unsigned send = states_.size();
for (unsigned s = 0; s < send; ++s)
{
o << 's' << s << ": t"
<< states_[s].succ << " t"
<< states_[s].succ_tail << '\n';
}
unsigned dend = dests_.size();
unsigned size = 0;
for (unsigned s = 0; s < dend; ++s)
{
o << 'd' << s << ": ";
if (size == 0)
{
o << '#';
size = dests_[s];
}
else
{
o << 's';
--size;
}
o << dests_[s] << '\n';
}
}
enum dump_storage_items {
DSI_GraphHeader = 1,
DSI_GraphFooter = 2,
DSI_StatesHeader = 4,
DSI_StatesBody = 8,
DSI_StatesFooter = 16,
DSI_States = DSI_StatesHeader | DSI_StatesBody | DSI_StatesFooter,
DSI_EdgesHeader = 32,
DSI_EdgesBody = 64,
DSI_EdgesFooter = 128,
DSI_Edges = DSI_EdgesHeader | DSI_EdgesBody | DSI_EdgesFooter,
DSI_DestsHeader = 256,
DSI_DestsBody = 512,
DSI_DestsFooter = 1024,
DSI_Dests = DSI_DestsHeader | DSI_DestsBody | DSI_DestsFooter,
DSI_All =
DSI_GraphHeader | DSI_States | DSI_Edges | DSI_Dests | DSI_GraphFooter,
};
/// Dump the state and edge storage for debugging
void dump_storage_as_dot(std::ostream& o, int dsi = DSI_All) const
{
if (dsi & DSI_GraphHeader)
o << "digraph g { \nnode [shape=plaintext]\n";
unsigned send = states_.size();
if (dsi & DSI_StatesHeader)
{
o << ("states [label=<\n"
"<table border='0' cellborder='1' cellspacing='0'>\n"
"<tr><td sides='b' bgcolor='yellow' port='s'>states</td>\n");
for (unsigned s = 0; s < send; ++s)
o << "<td sides='b' bgcolor='yellow' port='s" << s << "'>"
<< s << "</td>\n";
o << "</tr>\n";
}
if (dsi & DSI_StatesBody)
{
o << "<tr><td port='ss'>succ</td>\n";
for (unsigned s = 0; s < send; ++s)
{
o << "<td port='ss" << s;
if (states_[s].succ)
o << "' bgcolor='cyan";
o << "'>" << states_[s].succ << "</td>\n";
}
o << "</tr><tr><td port='st'>succ_tail</td>\n";
for (unsigned s = 0; s < send; ++s)
{
o << "<td port='st" << s;
if (states_[s].succ_tail)
o << "' bgcolor='cyan";
o << "'>" << states_[s].succ_tail << "</td>\n";
}
o << "</tr>\n";
}
if (dsi & DSI_StatesFooter)
o << "</table>>]\n";
unsigned eend = edges_.size();
if (dsi & DSI_EdgesHeader)
{
o << ("edges [label=<\n"
"<table border='0' cellborder='1' cellspacing='0'>\n"
"<tr><td sides='b' bgcolor='cyan' port='e'>edges</td>\n");
for (unsigned e = 1; e < eend; ++e)
{
o << "<td sides='b' bgcolor='"
<< (e != edges_[e].next_succ ? "cyan" : "gray")
<< "' port='e" << e << "'>" << e << "</td>\n";
}
o << "</tr>";
}
if (dsi & DSI_EdgesBody)
{
o << "<tr><td port='ed'>dst</td>\n";
for (unsigned e = 1; e < eend; ++e)
{
o << "<td port='ed" << e;
int d = edges_[e].dst;
if (d < 0)
o << "' bgcolor='pink'>~" << ~d;
else
o << "' bgcolor='yellow'>" << d;
o << "</td>\n";
}
o << "</tr><tr><td port='en'>next_succ</td>\n";
for (unsigned e = 1; e < eend; ++e)
{
o << "<td port='en" << e;
if (edges_[e].next_succ)
{
if (edges_[e].next_succ != e)
o << "' bgcolor='cyan";
else
o << "' bgcolor='gray";
}
o << "'>" << edges_[e].next_succ << "</td>\n";
}
o << "</tr><tr><td port='es'>src</td>\n";
for (unsigned e = 1; e < eend; ++e)
o << "<td port='es" << e << "' bgcolor='yellow'>"
<< edges_[e].src << "</td>\n";
o << "</tr>\n";
}
if (dsi & DSI_EdgesFooter)
o << "</table>>]\n";
if (!dests_.empty())
{
unsigned dend = dests_.size();
if (dsi & DSI_DestsHeader)
{
o << ("dests [label=<\n"
"<table border='0' cellborder='1' cellspacing='0'>\n"
"<tr><td sides='b' bgcolor='pink' port='d'>dests</td>\n");
unsigned d = 0;
while (d < dend)
{
o << "<td sides='b' bgcolor='pink' port='d"
<< d << "'>~" << d << "</td>\n";
unsigned cnt = dests_[d];
d += cnt + 1;
while (cnt--)
o << "<td sides='b'></td>\n";
}
o << "</tr>\n";
}
if (dsi & DSI_DestsBody)
{
o << "<tr><td port='dd'>#cnt/dst</td>\n";
unsigned d = 0;
while (d < dend)
{
unsigned cnt = dests_[d];
o << "<td port='d'>#" << cnt << "</td>\n";
++d;
while (cnt--)
{
o << "<td bgcolor='yellow' port='dd"
<< d << "'>" << dests_[d] << "</td>\n";
++d;
}
}
o << "</tr>\n";
}
if (dsi & DSI_DestsFooter)
o << "</table>>]\n";
}
if (dsi & DSI_GraphFooter)
o << "}\n";
}
/// \brief Remove all dead edges.
///
/// The edges_ vector is left in a state that is incorrect and
/// should eventually be fixed by a call to chain_edges_() before
/// any iteration on the successor of a state is performed.
void remove_dead_edges_()
{
if (killed_edge_ == 0)
return;
auto i = std::remove_if(edges_.begin() + 1, edges_.end(),
[this](const edge_storage_t& t) {
return this->is_dead_edge(t);
});
edges_.erase(i, edges_.end());
killed_edge_ = 0;
}
/// \brief Sort all edges according to a predicate
///
/// This will invalidate all iterators, and also destroy edge
/// chains. Call chain_edges_() immediately afterwards unless you
/// know what you are doing.
template<class Predicate = std::less<edge_storage_t>>
void sort_edges_(Predicate p = Predicate())
{
//std::cerr << "\nbefore\n";
//dump_storage(std::cerr);
std::stable_sort(edges_.begin() + 1, edges_.end(), p);
}
/// \brief Sort all edges by src first, then, within edges of the same
/// source use the predicate
///
/// This will invalidate all iterators, and also destroy edge
/// chains. Call chain_edges_() immediately afterwards unless you
/// know what you are doing.
/// \note: for performance this will work in parallel (if enabled)
/// and make a temporary copy of the edges (needs more ram)
/// \pre This needs the edge_vector to be in a coherent state when called
template<class Predicate = std::less<edge_storage_t>>
void sort_edges_srcfirst_(Predicate p = Predicate(),
parallel_policy ppolicy = parallel_policy())
{
SPOT_ASSERT(!edges_.empty());
const unsigned ns = num_states();
std::vector<unsigned> idx_list(ns+1);
edge_vector_t new_edges;
new_edges.reserve(edges_.size());
new_edges.resize(1);
// This causes edge 0 to be considered as dead.
new_edges[0].next_succ = 0;
// Copy all edges so that they are sorted by src
for (unsigned s = 0; s < ns; ++s)
{
idx_list[s] = new_edges.size();
for (const auto& e : out(s))
new_edges.push_back(e);
}
idx_list[ns] = new_edges.size();
// New edge sorted by source
// If we have few edge or only one threads
// Benchmark few?
auto bne = new_edges.begin();
#ifndef SPOT_ENABLE_PTHREAD
(void) ppolicy;
#else
unsigned nthreads = ppolicy.nthreads();
if (nthreads <= 1)
#endif
{
for (unsigned s = 0u; s < ns; ++s)
std::stable_sort(bne + idx_list[s],
bne + idx_list[s+1], p);
}
#ifdef SPOT_ENABLE_PTHREAD
else
{
static std::vector<std::thread> tv;
SPOT_ASSERT(tv.empty());
tv.resize(nthreads);
// FIXME: Due to the way these thread advance into the state
// vector, they access very close memory location. It would
// seems more cache friendly to have threads work on blocks
// of continuous states.
for (unsigned id = 0; id < nthreads; ++id)
tv[id] = std::thread(
[bne, id, ns, &idx_list, p, nthreads]()
{
for (unsigned s = id; s < ns; s += nthreads)
std::stable_sort(bne + idx_list[s],
bne + idx_list[s+1], p);
return;
});
for (auto& t : tv)
t.join();
tv.clear();
}
#endif
std::swap(edges_, new_edges);
// Like after normal sort_edges, they need to be chained before usage
}
/// \brief Sort edges of the given states
///
/// \tparam Predicate : Comparison type
/// \param p : Comparison callable
/// \param to_sort_ptr : which states to sort. If null, all will be sorted
/// \note No need to call chain_edges_, they are in a coherent state.
/// todo: If pred does not involve bdd action other than id -> parallelize
template<bool Stable = false, class Predicate = std::less<edge_storage_t>>
void sort_edges_of_(Predicate p = Predicate(),
const std::vector<bool>* to_sort_ptr = nullptr)
{
SPOT_ASSERT((to_sort_ptr == nullptr)
|| (to_sort_ptr->size() == num_states()));
//std::cerr << "\nbefore\n";
//dump_storage(std::cerr);
auto pi = [&](unsigned t1, unsigned t2)
{return p(edges_[t1], edges_[t2]); };
// Sort the outgoing edges of each selected state according
// to predicate p. Do that in place.
std::vector<unsigned> sort_idx_;
unsigned ns = num_states();
for (unsigned i = 0; i < ns; ++i)
{
if (to_sort_ptr && !(*to_sort_ptr)[i])
continue;
unsigned t = states_[i].succ;
if (t == 0)
continue;
sort_idx_.clear();
do
{
sort_idx_.push_back(t);
t = edges_[t].next_succ;
} while (t != 0);
if constexpr (Stable)
std::stable_sort(sort_idx_.begin(), sort_idx_.end(), pi);
else
std::sort(sort_idx_.begin(), sort_idx_.end(), pi);
// Update the graph
states_[i].succ = sort_idx_.front();
states_[i].succ_tail = sort_idx_.back();
const unsigned n_outs_n1 = sort_idx_.size() - 1;
for (unsigned k = 0; k < n_outs_n1; ++k)
edges_[sort_idx_[k]].next_succ = sort_idx_[k+1];
edges_[sort_idx_.back()].next_succ = 0; // terminal
}
// Done
}
/// \brief Reconstruct the chain of outgoing edges
///
/// Should be called only when it is known that all edges
/// with the same source are consecutive in the vector.
void chain_edges_()
{
state last_src = -1U;
edge tend = edges_.size();
for (edge t = 1; t < tend; ++t)
{
state src = edges_[t].src;
if (src != last_src)
{
states_[src].succ = t;
if (last_src != -1U)
{
states_[last_src].succ_tail = t - 1;
edges_[t - 1].next_succ = 0;
}
while (++last_src != src)
{
states_[last_src].succ = 0;
states_[last_src].succ_tail = 0;
}
}
else
{
edges_[t - 1].next_succ = t;
}
}
if (last_src != -1U)
{
states_[last_src].succ_tail = tend - 1;
edges_[tend - 1].next_succ = 0;
}
unsigned send = states_.size();
while (++last_src != send)
{
states_[last_src].succ = 0;
states_[last_src].succ_tail = 0;
}
//std::cerr << "\nafter\n";
//dump_storage(std::cerr);
}
/// \brief Rename all the states in the edge vector.
///
/// The edges_ vector is left in a state that is incorrect and
/// should eventually be fixed by a call to chain_edges_() before
/// any iteration on the successor of a state is performed.
void rename_states_(const std::vector<unsigned>& newst)
{
SPOT_ASSERT(newst.size() == states_.size());
unsigned tend = edges_.size();
for (unsigned t = 1; t < tend; t++)
{
edges_[t].dst = newst[edges_[t].dst];
edges_[t].src = newst[edges_[t].src];
}
}
/// \brief Rename and remove states.
///
/// This method is used to remove some states that have been
/// previously detected to be unreachable in order to "defragment"
/// the state vector. When a state is removed, all its outgoing
/// transition are removed as well. Removing reachable states
/// should NOT be attempted, because the incoming edges will be
/// dangling.
///
/// \param newst A vector indicating how each state should be
/// renumbered. Use -1U to erase an unreachable state. All other
/// numbers are expected to satisfy newst[i] ≤ i for all i.
///
/// \param used_states the number of states used (after
/// renumbering)
///
///@{
void defrag_states(const std::vector<unsigned>& newst, unsigned used_states)
{
SPOT_ASSERT(newst.size() >= states_.size());
SPOT_ASSERT(used_states > 0);
//std::cerr << "\nbefore defrag\n";
//dump_storage(std::cerr);
// Shift all states in states_, as indicated by newst.
unsigned send = states_.size();
for (state s = 0; s < send; ++s)
{
state dst = newst[s];
if (dst == s)
continue;
if (dst == -1U)
{
// This is an erased state. Mark all its edges as
// dead (i.e., t.next_succ should point to t for each of
// them).
auto t = states_[s].succ;
while (t)
std::swap(t, edges_[t].next_succ);
continue;
}
states_[dst] = std::move(states_[s]);
}
states_.resize(used_states);
// Shift all edges in edges_. The algorithm is
// similar to remove_if, but it also keeps the correspondence
// between the old and new index as newidx[old] = new.
unsigned tend = edges_.size();
std::vector<edge> newidx(tend);
unsigned dest = 1;
for (edge t = 1; t < tend; ++t)
{
if (is_dead_edge(t))
continue;
if (t != dest)
edges_[dest] = std::move(edges_[t]);
newidx[t] = dest;
++dest;
}
edges_.resize(dest);
killed_edge_ = 0;
// Adjust next_succ and dst pointers in all edges.
for (edge t = 1; t < dest; ++t)
{
auto& tr = edges_[t];
tr.src = newst[tr.src];
tr.dst = newst[tr.dst];
tr.next_succ = newidx[tr.next_succ];
}
// Adjust succ and succ_tails pointers in all states.
for (auto& s: states_)
{
s.succ = newidx[s.succ];
s.succ_tail = newidx[s.succ_tail];
}
//std::cerr << "\nafter defrag\n";
//dump_storage(std::cerr);
}
// prototype was changed in Spot 2.10
SPOT_DEPRECATED("use reference version of this method")
void defrag_states(std::vector<unsigned>&& newst, unsigned used_states)
{
return defrag_states(newst, used_states);
}
///@}
};
}