* NEWS, spot/twa/twa.hh: Document the change. * spot/twa/twagraph.hh, spot/kripke/kripkegraph.hh: Add an exception in get_init_state_number(). get_init_state() now calls get_init_state_number(). * spot/twa/twagraph.cc, spot/twaalgos/simulation.cc, spot/twaalgos/powerset.cc, spot/twaalgos/complete.cc, spot/twaalgos/sccfilter.cc: Remove now useless tests. * spot/twaalgos/hoa.cc: Remove now useless comment. * spot/twaalgos/minimize.cc: Never return an automaton with no state.
319 lines
9.5 KiB
C++
319 lines
9.5 KiB
C++
// -*- coding: utf-8 -*-
|
|
// Copyright (C) 2014, 2015, 2016 Laboratoire de Recherche et Développement de
|
|
// l'Epita.
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include <spot/twa/twagraph.hh>
|
|
#include <spot/tl/print.hh>
|
|
|
|
namespace spot
|
|
{
|
|
void
|
|
twa_graph::release_formula_namer(namer<formula>* namer,
|
|
bool keep_names)
|
|
{
|
|
if (keep_names)
|
|
{
|
|
auto v = new std::vector<std::string>(num_states());
|
|
auto& n = namer->names();
|
|
unsigned ns = n.size();
|
|
assert(n.size() <= v->size());
|
|
for (unsigned i = 0; i < ns; ++i)
|
|
{
|
|
auto f = n[i];
|
|
if (f)
|
|
(*v)[i] = str_psl(f);
|
|
}
|
|
set_named_prop("state-names", v);
|
|
}
|
|
delete namer;
|
|
}
|
|
|
|
void twa_graph::merge_edges()
|
|
{
|
|
set_named_prop("highlight-edges", nullptr);
|
|
g_.remove_dead_edges_();
|
|
|
|
typedef graph_t::edge_storage_t tr_t;
|
|
g_.sort_edges_([](const tr_t& lhs, const tr_t& rhs)
|
|
{
|
|
if (lhs.src < rhs.src)
|
|
return true;
|
|
if (lhs.src > rhs.src)
|
|
return false;
|
|
if (lhs.dst < rhs.dst)
|
|
return true;
|
|
if (lhs.dst > rhs.dst)
|
|
return false;
|
|
return lhs.acc < rhs.acc;
|
|
// Do not sort on conditions, we'll merge
|
|
// them.
|
|
});
|
|
|
|
auto& trans = this->edge_vector();
|
|
unsigned tend = trans.size();
|
|
unsigned out = 0;
|
|
unsigned in = 1;
|
|
// Skip any leading false edge.
|
|
while (in < tend && trans[in].cond == bddfalse)
|
|
++in;
|
|
if (in < tend)
|
|
{
|
|
++out;
|
|
if (out != in)
|
|
trans[out] = trans[in];
|
|
for (++in; in < tend; ++in)
|
|
{
|
|
if (trans[in].cond == bddfalse) // Unusable edge
|
|
continue;
|
|
// Merge edges with the same source, destination, and
|
|
// acceptance. (We test the source last, because this is the
|
|
// most likely test to be true as edges are ordered by
|
|
// sources and then destinations.)
|
|
if (trans[out].dst == trans[in].dst
|
|
&& trans[out].acc == trans[in].acc
|
|
&& trans[out].src == trans[in].src)
|
|
{
|
|
trans[out].cond |= trans[in].cond;
|
|
}
|
|
else
|
|
{
|
|
++out;
|
|
if (in != out)
|
|
trans[out] = trans[in];
|
|
}
|
|
}
|
|
}
|
|
if (++out != tend)
|
|
trans.resize(out);
|
|
|
|
tend = out;
|
|
out = in = 2;
|
|
|
|
// FIXME: We could should also merge edges when using
|
|
// fin_acceptance, but the rule for Fin sets are different than
|
|
// those for Inf sets, (and we need to be careful if a set is used
|
|
// both as Inf and Fin)
|
|
if ((in < tend) && !acc().uses_fin_acceptance())
|
|
{
|
|
typedef graph_t::edge_storage_t tr_t;
|
|
g_.sort_edges_([](const tr_t& lhs, const tr_t& rhs)
|
|
{
|
|
if (lhs.src < rhs.src)
|
|
return true;
|
|
if (lhs.src > rhs.src)
|
|
return false;
|
|
if (lhs.dst < rhs.dst)
|
|
return true;
|
|
if (lhs.dst > rhs.dst)
|
|
return false;
|
|
return lhs.cond.id() < rhs.cond.id();
|
|
// Do not sort on acceptance, we'll merge
|
|
// them.
|
|
});
|
|
|
|
for (; in < tend; ++in)
|
|
{
|
|
// Merge edges with the same source, destination,
|
|
// and conditions. (We test the source last, for the
|
|
// same reason as above.)
|
|
if (trans[out].dst == trans[in].dst
|
|
&& trans[out].cond.id() == trans[in].cond.id()
|
|
&& trans[out].src == trans[in].src)
|
|
{
|
|
trans[out].acc |= trans[in].acc;
|
|
}
|
|
else
|
|
{
|
|
++out;
|
|
if (in != out)
|
|
trans[out] = trans[in];
|
|
}
|
|
}
|
|
if (++out != tend)
|
|
trans.resize(out);
|
|
}
|
|
|
|
g_.chain_edges_();
|
|
}
|
|
|
|
void twa_graph::purge_unreachable_states()
|
|
{
|
|
unsigned num_states = g_.num_states();
|
|
// The TODO vector serves two purposes:
|
|
// - it is a stack of state to process,
|
|
// - it is a set of processed states.
|
|
// The lower 31 bits of each entry is a state on the stack. (The
|
|
// next usable entry on the stack is indicated by todo_pos.) The
|
|
// 32th bit (i.e., the sign bit) of todo[x] indicates whether
|
|
// states number x has been seen.
|
|
std::vector<unsigned> todo(num_states, 0);
|
|
const unsigned seen = 1 << (sizeof(unsigned)*8-1);
|
|
const unsigned mask = seen - 1;
|
|
todo[0] = get_init_state_number();
|
|
todo[init_number_] |= seen;
|
|
unsigned todo_pos = 1;
|
|
do
|
|
{
|
|
unsigned cur = todo[--todo_pos] & mask;
|
|
todo[todo_pos] ^= cur; // Zero the state
|
|
for (auto& t: g_.out(cur))
|
|
if (!(todo[t.dst] & seen))
|
|
{
|
|
todo[t.dst] |= seen;
|
|
todo[todo_pos++] |= t.dst;
|
|
}
|
|
}
|
|
while (todo_pos > 0);
|
|
// Now renumber each used state.
|
|
unsigned current = 0;
|
|
for (auto& v: todo)
|
|
if (!(v & seen))
|
|
v = -1U;
|
|
else
|
|
v = current++;
|
|
if (current == todo.size())
|
|
return; // No unreachable state.
|
|
init_number_ = todo[init_number_];
|
|
defrag_states(std::move(todo), current);
|
|
}
|
|
|
|
void twa_graph::purge_dead_states()
|
|
{
|
|
unsigned num_states = g_.num_states();
|
|
std::vector<unsigned> useful(num_states, 0);
|
|
|
|
// Make a DFS to compute a topological order.
|
|
std::vector<unsigned> order;
|
|
order.reserve(num_states);
|
|
std::vector<std::pair<unsigned, unsigned>> todo; // state, trans
|
|
useful[get_init_state_number()] = 1;
|
|
todo.emplace_back(init_number_, g_.state_storage(init_number_).succ);
|
|
do
|
|
{
|
|
unsigned src;
|
|
unsigned tid;
|
|
std::tie(src, tid) = todo.back();
|
|
if (tid == 0U)
|
|
{
|
|
todo.pop_back();
|
|
order.emplace_back(src);
|
|
continue;
|
|
}
|
|
auto& t = g_.edge_storage(tid);
|
|
todo.back().second = t.next_succ;
|
|
unsigned dst = t.dst;
|
|
if (useful[dst] != 1)
|
|
{
|
|
todo.emplace_back(dst, g_.state_storage(dst).succ);
|
|
useful[dst] = 1;
|
|
}
|
|
}
|
|
while (!todo.empty());
|
|
|
|
// Process states in topological order
|
|
for (auto s: order)
|
|
{
|
|
auto t = g_.out_iteraser(s);
|
|
bool useless = true;
|
|
while (t)
|
|
{
|
|
// Erase any edge to a useless state.
|
|
if (!useful[t->dst])
|
|
{
|
|
t.erase();
|
|
continue;
|
|
}
|
|
// if we have a edge to a useful state, then the
|
|
// state is useful.
|
|
useless = false;
|
|
++t;
|
|
}
|
|
if (useless)
|
|
useful[s] = 0;
|
|
}
|
|
|
|
// Make sure the initial state is useful (even if it has been
|
|
// marked as useless by the previous loop because it has no
|
|
// successor).
|
|
useful[init_number_] = 1;
|
|
|
|
// Now renumber each used state.
|
|
unsigned current = 0;
|
|
for (unsigned s = 0; s < num_states; ++s)
|
|
if (useful[s])
|
|
useful[s] = current++;
|
|
else
|
|
useful[s] = -1U;
|
|
if (current == num_states)
|
|
return; // No useless state.
|
|
init_number_ = useful[init_number_];
|
|
defrag_states(std::move(useful), current);
|
|
}
|
|
|
|
void twa_graph::defrag_states(std::vector<unsigned>&& newst,
|
|
unsigned used_states)
|
|
{
|
|
if (auto* names = get_named_prop<std::vector<std::string>>("state-names"))
|
|
{
|
|
unsigned size = names->size();
|
|
for (unsigned s = 0; s < size; ++s)
|
|
{
|
|
unsigned dst = newst[s];
|
|
if (dst == s || dst == -1U)
|
|
continue;
|
|
(*names)[dst] = std::move((*names)[s]);
|
|
}
|
|
names->resize(used_states);
|
|
}
|
|
if (auto hs = get_named_prop<std::map<unsigned, unsigned>>
|
|
("highlight-states"))
|
|
{
|
|
std::map<unsigned, unsigned> hs2;
|
|
for (auto p: *hs)
|
|
{
|
|
unsigned dst = newst[p.first];
|
|
if (dst != -1U)
|
|
hs2[dst] = p.second;
|
|
}
|
|
std::swap(*hs, hs2);
|
|
}
|
|
g_.defrag_states(std::move(newst), used_states);
|
|
}
|
|
|
|
void twa_graph::remove_unused_ap()
|
|
{
|
|
if (ap().empty())
|
|
return;
|
|
std::set<bdd> conds;
|
|
bdd all = ap_vars();
|
|
for (auto& e: g_.edges())
|
|
{
|
|
all = bdd_exist(all, bdd_support(e.cond));
|
|
if (all == bddtrue) // All APs are used.
|
|
return;
|
|
}
|
|
auto d = get_dict();
|
|
while (all != bddtrue)
|
|
{
|
|
unregister_ap(bdd_var(all));
|
|
all = bdd_high(all);
|
|
}
|
|
}
|
|
|
|
|
|
}
|