spot/spot/gen/formulas.cc
Alexandre Duret-Lutz b4cced9ba8 genltl: add --pps-arbiter-{strict,standard}
* spot/gen/formulas.cc, spot/gen/formulas.hh, bin/genltl.cc: Implement
this.
* NEWS, bin/man/genltl.x, doc/spot.bib: Add documentation.
* tests/core/genltl.test, tests/core/ltlfilt.test: Add some tests.
2019-07-12 16:48:10 +02:00

1609 lines
49 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) 2012-2019 Laboratoire de Recherche et Developpement
// de l'EPITA (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "config.h"
#include <cmath>
#include <spot/gen/formulas.hh>
#include <spot/tl/exclusive.hh>
#include <spot/tl/relabel.hh>
#include <spot/tl/parse.hh>
#define G_(x) formula::G(x)
#define F_(x) formula::F(x)
#define X_(x) formula::X(x)
#define Not_(x) formula::Not(x)
#define Implies_(x, y) formula::Implies((x), (y))
#define Equiv_(x, y) formula::Equiv((x), (y))
#define And_(x, y) formula::And({(x), (y)})
#define Or_(x, y) formula::Or({(x), (y)})
#define U_(x, y) formula::U((x), (y))
namespace spot
{
namespace gen
{
namespace
{
static formula
ms_example(const char* a, const char* b, int n, int m)
{
formula ax = formula::tt();
formula fb = formula::tt();
for (int i = n; i > 0; --i)
ax = And_(formula::ap(a + std::to_string(i)), X_(ax));
for (int i = m; i > 0; --i)
fb = F_(And_(formula::ap(b + std::to_string(i)), fb));
return And_(G_(F_(ax)), fb);
}
static formula
ms_phi_h(const char* a, const char* b, int n)
{
formula fa = formula::ap(a);
formula fb = formula::ap(b);
formula out = formula::ff();
do
{
out = Or_(F_(G_(Or_(fa, fb))), out);
fa = Not_(fa);
fb = X_(fb);
}
while (n--);
return out;
}
static formula
ms_phi_rs(const char* a, const char* b, int n, bool r = true)
{
formula fgan = [=]() {
std::ostringstream ans;
ans << a << n;
return F_(G_(formula::ap(ans.str())));
} ();
formula gfbn = [=]() {
std::ostringstream ans;
ans << b << n;
return G_(F_(formula::ap(ans.str())));
} ();
formula top = r ? And_(fgan, gfbn) : Or_(fgan, gfbn);
if (n == 0)
return top;
formula sub = ms_phi_rs(a, b, n - 1, !r);
return r ? Or_(sub, top) : And_(sub, top);
}
// G(p_0 & XF(p_1 & XF(p_2 & ... XF(p_n))))
// This is a generalization of eh-pattern=9
static formula
GXF_and_n(std::string name, int n)
{
formula result = formula::tt();
for (; n >= 0; --n)
{
std::ostringstream p;
p << name << n;
formula f = formula::ap(p.str());
result = And_(f, X_(F_(result)));
}
return G_(result);
}
// F(p_0 | XG(p_1 | XG(p_2 | ... XG(p_n))))
// This the dual of the above
static formula
FXG_or_n(std::string name, int n)
{
formula result = formula::ff();
for (; n >= 0; --n)
{
std::ostringstream p;
p << name << n;
formula f = formula::ap(p.str());
result = Or_(f, X_(G_(result)));
}
return F_(result);
}
// F(p_1 & F(p_2 & F(p_3 & ... F(p_n))))
static formula
E_n(std::string name, int n)
{
if (n <= 0)
return formula::tt();
formula result = nullptr;
for (; n > 0; --n)
{
std::ostringstream p;
p << name << n;
formula f = formula::ap(p.str());
if (result)
result = And_(f, result);
else
result = f;
result = F_(result);
}
return result;
}
// p & X(p & X(p & ... X(p)))
static formula
phi_n(std::string name, int n,
op oper = op::And)
{
if (n <= 0)
return formula::tt();
formula result = nullptr;
formula p = formula::ap(name);
for (; n > 0; --n)
{
if (result)
result = formula::multop(oper, {p, X_(result)});
else
result = p;
}
return result;
}
static formula
N_n(std::string name, int n)
{
return formula::F(phi_n(name, n));
}
// p & X(p) & XX(p) & XXX(p) & ... X^n(p)
static formula
phi_prime_n(std::string name, int n,
op oper = op::And)
{
if (n <= 0)
return formula::tt();
formula result = nullptr;
formula p = formula::ap(name);
for (; n > 0; --n)
{
if (result)
{
p = X_(p);
result = formula::multop(oper, {result, p});
}
else
{
result = p;
}
}
return result;
}
static formula
N_prime_n(std::string name, int n)
{
return F_(phi_prime_n(name, n));
}
// GF(p_1) & GF(p_2) & ... & GF(p_n) if conj == true
// GF(p_1) | GF(p_2) | ... | GF(p_n) if conj == false
static formula
GF_n(std::string name, int n, bool conj = true)
{
if (n <= 0)
return conj ? formula::tt() : formula::ff();
formula result = nullptr;
op o = conj ? op::And : op::Or;
for (int i = 1; i <= n; ++i)
{
std::ostringstream p;
p << name << i;
formula f = G_(F_(formula::ap(p.str())));
if (result)
result = formula::multop(o, {f, result});
else
result = f;
}
return result;
}
// FG(p_1) | FG(p_2) | ... | FG(p_n) if conj == false
// FG(p_1) & FG(p_2) & ... & FG(p_n) if conj == true
static formula
FG_n(std::string name, int n, bool conj = false)
{
if (n <= 0)
return conj ? formula::tt() : formula::ff();
formula result = nullptr;
op o = conj ? op::And : op::Or;
for (int i = 1; i <= n; ++i)
{
std::ostringstream p;
p << name << i;
formula f = F_(G_(formula::ap(p.str())));
if (result)
result = formula::multop(o, {f, result});
else
result = f;
}
return result;
}
// Builds X(X(...X(p))) with n occurrences of X.
static formula
X_n(formula p, int n)
{
assert(n >= 0);
return formula::X(n, p);
}
static formula
GF_equiv_implies(int n, const std::string& a, const std::string& z,
bool equiv)
{
formula left = GF_n(a, n);
formula right = formula::G(formula::F(formula::ap(z)));
if (equiv)
return formula::Equiv(left, right);
else
return formula::Implies(left, right);
}
static formula
GF_equiv_implies_xn(int n, const std::string& a, bool equiv)
{
formula ap = formula::ap(a);
formula xn = X_n(ap, n);
formula in;
if (equiv)
in = formula::Equiv(ap, xn);
else
in = formula::Implies(ap, xn);
return G_(F_(in));
}
// (((p1 OP p2) OP p3)...OP pn) if right_assoc == false
// (p1 OP (p2 OP (p3 OP (... pn) if right_assoc == true
static formula
bin_n(std::string name, int n, op o, bool right_assoc = false)
{
if (n <= 0)
n = 1;
formula result = nullptr;
for (int i = 1; i <= n; ++i)
{
std::ostringstream p;
p << name << (right_assoc ? (n + 1 - i) : i);
formula f = formula::ap(p.str());
if (!result)
result = f;
else if (right_assoc)
result = formula::binop(o, f, result);
else
result = formula::binop(o, result, f);
}
return result;
}
// (GF(p1)|FG(p2))&(GF(p2)|FG(p3))&...&(GF(pn)|FG(p{n+1}))"
static formula
R_n(std::string name, int n)
{
if (n <= 0)
return formula::tt();
formula pi;
{
std::ostringstream p;
p << name << 1;
pi = formula::ap(p.str());
}
formula result = nullptr;
for (int i = 1; i <= n; ++i)
{
formula gf = G_(F_(pi));
std::ostringstream p;
p << name << i + 1;
pi = formula::ap(p.str());
formula fg = F_(G_(pi));
formula f = Or_(gf, fg);
if (result)
result = And_(f, result);
else
result = f;
}
return result;
}
// (F(p1)|G(p2))&(F(p2)|G(p3))&...&(F(pn)|G(p{n+1}))"
static formula
Q_n(std::string name, int n)
{
if (n <= 0)
return formula::tt();
formula pi;
{
std::ostringstream p;
p << name << 1;
pi = formula::ap(p.str());
}
formula result = nullptr;
for (int i = 1; i <= n; ++i)
{
formula f = F_(pi);
std::ostringstream p;
p << name << i + 1;
pi = formula::ap(p.str());
formula g = G_(pi);
f = Or_(f, g);
if (result)
result = And_(f, result);
else
result = f;
}
return result;
}
// OP(p1) | OP(p2) | ... | OP(Pn) if conj == false
// OP(p1) & OP(p2) & ... & OP(Pn) if conj == true
static formula
combunop_n(std::string name, int n, op o, bool conj = false)
{
if (n <= 0)
return conj ? formula::tt() : formula::ff();
formula result = nullptr;
op cop = conj ? op::And : op::Or;
for (int i = 1; i <= n; ++i)
{
std::ostringstream p;
p << name << i;
formula f = formula::unop(o, formula::ap(p.str()));
if (result)
result = formula::multop(cop, {f, result});
else
result = f;
}
return result;
}
// !((GF(p1)&GF(p2)&...&GF(pn))->G(q -> F(r)))
// From "Fast LTL to Büchi Automata Translation" [gastin.01.cav]
static formula
fair_response(std::string p, std::string q, std::string r, int n)
{
formula fair = GF_n(p, n);
formula resp = G_(Implies_(formula::ap(q), F_(formula::ap(r))));
return Not_(Implies_(fair, resp));
}
// Based on LTLcounter.pl from Kristin Rozier.
// http://shemesh.larc.nasa.gov/people/kyr/benchmarking_scripts/
static formula
ltl_counter(std::string bit, std::string marker, int n, bool linear)
{
formula b = formula::ap(bit);
formula neg_b = Not_(b);
formula m = formula::ap(marker);
formula neg_m = Not_(m);
std::vector<formula> res(4);
// The marker starts with "1", followed by n-1 "0", then "1" again,
// n-1 "0", etc.
if (!linear)
{
// G(m -> X(!m)&XX(!m)&XXX(m)) [if n = 3]
std::vector<formula> v(n);
for (int i = 0; i + 1 < n; ++i)
v[i] = X_n(neg_m, i + 1);
v[n - 1] = X_n(m, n);
res[0] = And_(m, G_(Implies_(m, formula::And(std::move(v)))));
}
else
{
// G(m -> X(!m & X(!m X(m)))) [if n = 3]
formula p = m;
for (int i = n - 1; i > 0; --i)
p = And_(neg_m, X_(p));
res[0] = And_(m, G_(Implies_(m, X_(p))));
}
// All bits are initially zero.
if (!linear)
{
// !b & X(!b) & XX(!b) [if n = 3]
std::vector<formula> v2(n);
for (int i = 0; i < n; ++i)
v2[i] = X_n(neg_b, i);
res[1] = formula::And(std::move(v2));
}
else
{
// !b & X(!b & X(!b)) [if n = 3]
formula p = neg_b;
for (int i = n - 1; i > 0; --i)
p = And_(neg_b, X_(p));
res[1] = p;
}
#define AndX_(x, y) (linear ? X_(And_((x), (y))) : And_(X_(x), X_(y)))
// If the least significant bit is 0, it will be 1 at the next time,
// and other bits stay the same.
formula Xnm1_b = X_n(b, n - 1);
formula Xn_b = X_(Xnm1_b);
res[2] = G_(Implies_(And_(m, neg_b),
AndX_(Xnm1_b,
U_(And_(Not_(m), Equiv_(b, Xn_b)), m))));
// From the least significant bit to the first 0, all the bits
// are flipped on the next value. Remaining bits are identical.
formula Xnm1_negb = X_n(neg_b, n - 1);
formula Xn_negb = X_(Xnm1_negb);
res[3] =
G_(Implies_(And_(m, b),
AndX_(Xnm1_negb,
U_(And_(And_(b, neg_m), Xn_negb),
Or_(m, And_(And_(neg_m, neg_b),
AndX_(Xnm1_b,
U_(And_(neg_m,
Equiv_(b, Xn_b)),
m))))))));
return formula::And(std::move(res));
}
static formula
ltl_counter_carry(std::string bit, std::string marker,
std::string carry, int n, bool linear)
{
formula b = formula::ap(bit);
formula neg_b = Not_(b);
formula m = formula::ap(marker);
formula neg_m = Not_(m);
formula c = formula::ap(carry);
formula neg_c = Not_(c);
std::vector<formula> res(6);
// The marker starts with "1", followed by n-1 "0", then "1" again,
// n-1 "0", etc.
if (!linear)
{
// G(m -> X(!m)&XX(!m)&XXX(m)) [if n = 3]
std::vector<formula> v(n);
for (int i = 0; i + 1 < n; ++i)
v[i] = X_n(neg_m, i + 1);
v[n - 1] = X_n(m, n);
res[0] = And_(m, G_(Implies_(m, formula::And(std::move(v)))));
}
else
{
// G(m -> X(!m & X(!m X(m)))) [if n = 3]
formula p = m;
for (int i = n - 1; i > 0; --i)
p = And_(neg_m, X_(p));
res[0] = And_(m, G_(Implies_(m, X_(p))));
}
// All bits are initially zero.
if (!linear)
{
// !b & X(!b) & XX(!b) [if n = 3]
std::vector<formula> v2(n);
for (int i = 0; i < n; ++i)
v2[i] = X_n(neg_b, i);
res[1] = formula::And(std::move(v2));
}
else
{
// !b & X(!b & X(!b)) [if n = 3]
formula p = neg_b;
for (int i = n - 1; i > 0; --i)
p = And_(neg_b, X_(p));
res[1] = p;
}
formula Xn_b = X_n(b, n);
formula Xn_negb = X_n(neg_b, n);
// If m is 1 and b is 0 then c is 0 and n steps later b is 1.
res[2] = G_(Implies_(And_(m, neg_b), And_(neg_c, Xn_b)));
// If m is 1 and b is 1 then c is 1 and n steps later b is 0.
res[3] = G_(Implies_(And_(m, b), And_(c, Xn_negb)));
if (!linear)
{
// If there's no carry, then all of the bits stay the same
// n steps later.
res[4] = G_(Implies_(And_(neg_c, X_(neg_m)),
And_(X_(Not_(c)), Equiv_(X_(b), X_(Xn_b)))));
// If there's a carry, then add one: flip the bits of b and
// adjust the carry.
res[5] = G_(Implies_(c, And_(Implies_(X_(neg_b),
And_(X_(neg_c), X_(Xn_b))),
Implies_(X_(b),
And_(X_(c), X_(Xn_negb))))));
}
else
{
// If there's no carry, then all of the bits stay the same
// n steps later.
res[4] = G_(Implies_(And_(neg_c, X_(neg_m)),
X_(And_(Not_(c), Equiv_(b, Xn_b)))));
// If there's a carry, then add one: flip the bits of b and
// adjust the carry.
res[5] = G_(Implies_(c, X_(And_(Implies_(neg_b, And_(neg_c, Xn_b)),
Implies_(b, And_(c, Xn_negb))))));
}
return formula::And(std::move(res));
}
static formula
tv_f1(std::string p, std::string q, int n)
{
return G_(Implies_(formula::ap(p), phi_prime_n(q, n, op::Or)));
}
static formula
tv_f2(std::string p, std::string q, int n)
{
return G_(Implies_(formula::ap(p), phi_n(q, n, op::Or)));
}
static formula
tv_g1(std::string p, std::string q, int n)
{
return G_(Implies_(formula::ap(p), phi_prime_n(q, n)));
}
static formula
tv_g2(std::string p, std::string q, int n)
{
return G_(Implies_(formula::ap(p), phi_n(q, n)));
}
static formula
tv_uu(std::string name, int n)
{
std::ostringstream p;
p << name << n + 1;
formula q = formula::ap(p.str());
formula f = q;
for (int i = n; i > 0; --i)
{
p.str("");
p << name << i;
q = formula::ap(p.str());
f = U_(q, f);
if (i > 1)
f = And_(q, f);
}
return G_(Implies_(q, f));
}
static void
bad_number(const char* pattern, int n, int max = 0)
{
std::ostringstream err;
err << "no pattern " << pattern << '=' << n
<< ", supported range is 1..";
if (max)
err << max;
throw std::runtime_error(err.str());
}
static formula
dac_pattern(int n)
{
static const char* formulas[] = {
"[](!p0)",
"<>p2 -> (!p0 U p2)",
"[](p1 -> [](!p0))",
"[]((p1 & !p2 & <>p2) -> (!p0 U p2))",
"[](p1 & !p2 -> (!p0 W p2))",
"<>(p0)",
"!p2 W (p0 & !p2)",
"[](!p1) | <>(p1 & <>p0)",
"[](p1 & !p2 -> (!p2 W (p0 & !p2)))",
"[](p1 & !p2 -> (!p2 U (p0 & !p2)))",
"(!p0 W (p0 W (!p0 W (p0 W []!p0))))",
"<>p2 -> ((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 |"
" ((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 | (!p0 U p2)))))))))",
"<>p1 -> (!p1 U (p1 & (!p0 W (p0 W (!p0 W (p0 W []!p0))))))",
"[]((p1 & <>p2) -> ((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 |"
"((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 | (!p0 U p2))))))))))",
"[](p1 -> ((!p0 & !p2) U (p2 | ((p0 & !p2) U (p2 | ((!p0 & !p2) U"
"(p2 | ((p0 & !p2) U (p2 | (!p0 W p2) | []p0)))))))))",
"[](p0)",
"<>p2 -> (p0 U p2)",
"[](p1 -> [](p0))",
"[]((p1 & !p2 & <>p2) -> (p0 U p2))",
"[](p1 & !p2 -> (p0 W p2))",
"!p0 W p3",
"<>p2 -> (!p0 U (p3 | p2))",
"[]!p1 | <>(p1 & (!p0 W p3))",
"[]((p1 & !p2 & <>p2) -> (!p0 U (p3 | p2)))",
"[](p1 & !p2 -> (!p0 W (p3 | p2)))",
"[](p0 -> <>p3)",
"<>p2 -> (p0 -> (!p2 U (p3 & !p2))) U p2",
"[](p1 -> [](p0 -> <>p3))",
"[]((p1 & !p2 & <>p2) -> ((p0 -> (!p2 U (p3 & !p2))) U p2))",
"[](p1 & !p2 -> ((p0 -> (!p2 U (p3 & !p2))) W p2))",
"<>p0 -> (!p0 U (p3 & !p0 & X(!p0 U p4)))",
"<>p2 -> (!p0 U (p2 | (p3 & !p0 & X(!p0 U p4))))",
"([]!p1) | (!p1 U (p1 & <>p0 -> (!p0 U (p3 & !p0 & X(!p0 U p4)))))",
"[]((p1 & <>p2) -> (!p0 U (p2 | (p3 & !p0 & X(!p0 U p4)))))",
"[](p1 -> (<>p0 -> (!p0 U (p2 | (p3 & !p0 & X(!p0 U p4))))))",
"(<>(p3 & X<>p4)) -> ((!p3) U p0)",
"<>p2 -> ((!(p3 & (!p2) & X(!p2 U (p4 & !p2)))) U (p2 | p0))",
"([]!p1) | ((!p1) U (p1 & ((<>(p3 & X<>p4)) -> ((!p3) U p0))))",
"[]((p1 & <>p2)->((!(p3 & (!p2) & X(!p2 U (p4 & !p2)))) U (p2|p0)))",
"[](p1 -> (!(p3 & (!p2) & X(!p2 U (p4 & !p2))) U (p2 | p0) |"
" [](!(p3 & X<>p4))))",
"[] (p3 & X<> p4 -> X(<>(p4 & <> p0)))",
"<>p2 -> (p3 & X(!p2 U p4) -> X(!p2 U (p4 & <> p0))) U p2",
"[] (p1 -> [] (p3 & X<> p4 -> X(!p4 U (p4 & <> p0))))",
"[] ((p1 & <>p2)->(p3 & X(!p2 U p4) -> X(!p2 U (p4 & <> p0))) U p2)",
"[] (p1 -> (p3 & X(!p2 U p4) -> X(!p2 U (p4 & <> p0))) U (p2 |"
"[] (p3 & X(!p2 U p4) -> X(!p2 U (p4 & <> p0)))))",
"[] (p0 -> <>(p3 & X<>p4))",
"<>p2 -> (p0 -> (!p2 U (p3 & !p2 & X(!p2 U p4)))) U p2",
"[] (p1 -> [] (p0 -> (p3 & X<> p4)))",
"[] ((p1 & <>p2) -> (p0 -> (!p2 U (p3 & !p2 & X(!p2 U p4)))) U p2)",
"[] (p1 -> (p0 -> (!p2 U (p3 & !p2 & X(!p2 U p4)))) U (p2 | []"
"(p0 -> (p3 & X<> p4))))",
"[] (p0 -> <>(p3 & !p5 & X(!p5 U p4)))",
"<>p2 -> (p0 -> (!p2 U (p3 & !p2 & !p5 & X((!p2 & !p5) U p4)))) U p2",
"[] (p1 -> [] (p0 -> (p3 & !p5 & X(!p5 U p4))))",
"[] ((p1 & <>p2) -> (p0 -> (!p2 U (p3 & !p2 & !p5 & X((!p2 & !p5) U"
" p4)))) U p2)",
"[] (p1 -> (p0 -> (!p2 U (p3 & !p2 & !p5 & X((!p2 & !p5) U p4)))) U "
"(p2 | [] (p0 -> (p3 & !p5 & X(!p5 U p4)))))",
};
constexpr unsigned max = (sizeof formulas)/(sizeof *formulas);
if (n < 1 || (unsigned) n > max)
bad_number("dac-patterns", n, max);
return spot::relabel(parse_formula(formulas[n - 1]), Pnn);
}
static formula
hkrss_pattern(int n)
{
static const char* formulas[] = {
"G(Fp0 & F!p0)",
"GFp0 & GF!p0",
"GF(!(p1 <-> Xp1) | !(p0 <-> Xp0))",
"GF(!(p1 <-> Xp1) | !(p0 <-> Xp0) | !(p2 <-> Xp2) | !(p3 <-> Xp3))",
"G!p0",
"G((p0 -> F!p0) & (!p0 -> Fp0))",
"G(p0 -> F(p0 & p1))",
"G(p0 -> F((!p0 & p1 & p2 & p3) -> Fp4))",
"G(p0 -> F!p1)",
"G(p0 -> Fp1)",
"G(p0 -> F(p1 -> Fp2))",
"G(p0 -> F((p1 & p2) -> Fp3))",
"G((p0 -> Fp1) & (p2 -> Fp3) & (p4 -> Fp5) & (p6 -> Fp7))",
"G(!p0 & !p1)",
"G!(p0 & p1)",
"G(p0 -> p1)",
"G((p0 -> !p1) & (p1 -> !p0))",
"G(!p0 -> (p1 <-> !p2))",
"G((!p0 & (p1 | p2 | p3)) -> p4)",
"G((p0 & p1) -> (p2 | !(p3 & p4)))",
"G((!p0 & p1 & !p2 & !p3 & !p4) -> F(!p5 & !p6 & !p7 & !p8))",
"G((p0 & p1 & !p2 & !p3 & !p4) -> F(p5 & !p6 & !p7 & !p8))",
"G(!p0 -> !(p1 & p2 & p3 & p4 & p5))",
"G(!p0 -> ((p1 & p2 & p3 & p4) -> !p5))",
"G((p0 & p1) -> (p2 | p3 | !(p4 & p5)))",
"G((!p0 & (p1 | p2 | p3 | p4)) -> (!p5 <-> p6))",
"G((p0 & p1) -> (p2 | p3 | p4 | !(p5 & p6)))",
"G((p0 & p1) -> (p2 | p3 | p4 | p5 | !(p6 & p7)))",
"G((p0 & p1 & !p2 & Xp2) -> X(p3 | X(!p1 | p3)))",
"G((p0 & p1 & !p2 & Xp2)->X(X!p1 | (p2 U (!p2 U (p2 U (!p1|p3))))))",
"G(p0 & p1 & !p2 & Xp2)->X(X!p1 | (p2 U (!p2 U (p2 U (!p1 | p3)))))",
"G(p0 -> (p1 U (!p1 U (!p2 | p3))))",
"G(p0 -> (p1 U (!p1 U (p2 | p3))))",
"G((!p0 & p1) -> Xp2)",
"G(p0 -> X(p0 | p1))",
("G((!(p1 <-> Xp1) | !(p0 <-> Xp0) | !(p2 <-> Xp2) | !(p3 <-> Xp3)) "
"-> (X!p4 & X(!(!(p1 <-> Xp1) | !(p0 <-> Xp0) | !(p2 <-> Xp2) | "
"!(p3 <-> Xp3)) U p4)))"),
"G((p0 & !p1 & Xp1 & Xp0) -> (p2 -> Xp3))",
"G(p0 -> X(!p0 U p1))",
"G((!p0 & Xp0) -> X((p0 U p1) | Gp0))",
"G((!p0 & Xp0) -> X(p0 U (p0 & !p1 & X(p0 & p1))))",
("G((!p0 & Xp0) -> X(p0 U (p0 & !p1 & X(p0 & p1 & (p0 U (p0 & !p1 & "
"X(p0 & p1)))))))"),
("G((p0 & X!p0) -> X(!p0 U (!p0 & !p1 & X(!p0 & p1 & (!p0 U (!p0 & "
"!p1 & X(!p0 & p1)))))))"),
("G((p0 & X!p0) -> X(!p0 U (!p0 & !p1 & X(!p0 & p1 & (!p0 U (!p0 & "
"!p1 & X(!p0 & p1 & (!p0 U (!p0 & !p1 & X(!p0 & p1))))))))))"),
"G((!p0 & Xp0) -> X(!(!p0 & Xp0) U (!p1 & Xp1)))",
("G(!p0 | X(!p0 | X(!p0 | X(!p0 | X(!p0 | X(!p0 | X(!p0 | X(!p0 | "
"X(!p0 | X(!p0 | X(!p0 | X!p0)))))))))))"),
"G((Xp0 -> p0) -> (p1 <-> Xp1))",
"G((Xp0 -> p0) -> ((p1 -> Xp1) & (!p1 -> X!p1)))",
("!p0 U G!((p1 & p2) | (p3 & p4) | (p2 & p3) | (p2 & p4) | "
"(p1 & p4) | (p1 & p3))"),
"!p0 U p1",
"(p0 U p1) | Gp0",
"p0 & XG!p0",
"XG(p0 -> (G!p1 | (!Xp1 U p2)))",
"XG((p0 & !p1) -> (G!p1 | (!p1 U p2)))",
"XG((p0 & p1) -> ((p1 U p2) | Gp1))",
"Xp0 & G((!p0 & Xp0) -> XXp0)",
};
constexpr unsigned max = (sizeof formulas)/(sizeof *formulas);
if (n < 1 || (unsigned) n > max)
bad_number("hkrss-patterns", n, max);
return spot::relabel(parse_formula(formulas[n - 1]), Pnn);
}
static formula
eh_pattern(int n)
{
static const char* formulas[] = {
"p0 U (p1 & G(p2))",
"p0 U (p1 & X(p2 U p3))",
"p0 U (p1 & X(p2 & (F(p3 & X(F(p4 & X(F(p5 & X(F(p6))))))))))",
"F(p0 & X(G(p1)))",
"F(p0 & X(p1 & X(F(p2))))",
"F(p0 & X(p1 U p2))",
"(F(G(p0))) | (G(F(p1)))",
"G(p0 -> (p1 U p2))",
"G(p0 & X(F(p1 & X(F(p2 & X(F(p3)))))))",
"(G(F(p0))) & (G(F(p1))) & (G(F(p2))) & (G(F(p3))) & (G(F(p4)))",
"(p0 U (p1 U p2)) | (p1 U (p2 U p0)) | (p2 U (p0 U p1))",
"G(p0 -> (p1 U ((G(p2)) | (G(p3)))))",
};
constexpr unsigned max = (sizeof formulas)/(sizeof *formulas);
if (n < 1 || (unsigned) n > max)
bad_number("eh-patterns", n, max);
return spot::relabel(parse_formula(formulas[n - 1]), Pnn);
}
static formula
p_pattern(int n)
{
static const char* formulas[] = {
"G(p0 -> Fp1)",
"(GFp1 & GFp0) -> GFp2",
"G(p0 -> (p1 & (p2 U p3)))",
"F(p0 | p1)",
"GF(p0 | p1)",
"(p0 U p1) -> ((p2 U p3) | Gp2)",
"G(p0 -> (!p1 U (p1 U (!p1 & (p2 R !p1)))))",
"G(p0 -> (p1 R !p2))",
"G(!p0 -> Fp0)",
"G(p0 -> F(p1 | p2))",
"!(!(p0 | p1) U p2) & G(p3 -> !(!(p0 | p1) U p2))",
"G!p0 -> G!p1",
"G(p0 -> (G!p1 | (!p2 U p1)))",
"G(p0 -> (p1 R (p1 | !p2)))",
"G((p0 & p1) -> (!p1 R (p0 | !p1)))",
"G(p0 -> F(p1 & p2))",
"G(p0 -> (!p1 U (p1 U (p1 & p2))))",
"G(p0 -> (!p1 U (p1 U (!p1 U (p1 U (p1 & p2))))))",
"GFp0 -> GFp1",
"GF(p0 | p1) & GF(p1 | p2)",
};
constexpr unsigned max = (sizeof formulas)/(sizeof *formulas);
if (n < 1 || (unsigned) n > max)
bad_number("p-patterns", n, max);
return spot::relabel(parse_formula(formulas[n - 1]), Pnn);
}
static formula
sb_pattern(int n)
{
static const char* formulas[] = {
"p0 U p1",
"p0 U (p1 U p2)",
"!(p0 U (p1 U p2))",
"G(F(p0)) -> G(F(p1))",
"(F(p0)) U (G(p1))",
"(G(p0)) U p1",
"!((F(F(p0))) <-> (F(p)))",
"!((G(F(p0))) -> (G(F(p))))",
"!((G(F(p0))) <-> (G(F(p))))",
"p0 R (p0 | p1)",
"(Xp0 U Xp1) | !X(p0 U p1)",
"(Xp0 U p1) | !X(p0 U (p0 & p1))",
"G(p0 -> F(p1)) & (((X(p0)) U p1) | !X(p0 U (p0 & p1)))",
"G(p0 -> F(p1)) & (((X(p0)) U X(p1)) | !X(p0 U p1))",
"G(p0 -> F(p1))",
"!G(p0 -> X(p1 R p2))",
"!(F(G(p0)) | F(G(p1)))",
"G(F(p0) & F(p1))",
"F(p0) & F(!p0)",
"(X(p1) & p2) R X(((p3 U p0) R p2) U (p3 R p2))",
"(G(p1 | G(F(p0))) & G(p2 | G(F(!p0)))) | G(p1) | G(p2)",
"(G(p1 | F(G(p0))) & G(p2 | F(G(!p0)))) | G(p1) | G(p2)",
"!((G(p1 | G(F(p0))) & G(p2 | G(F(!p0)))) | G(p1) | G(p2))",
"!((G(p1 | F(G(p0))) & G(p2 | F(G(!p0)))) | G(p1) | G(p2))",
"(G(p1 | X(G p0))) & (G (p2 | X(G !p0)))",
"G(p1 | (Xp0 & X!p0))",
// p0 U p0 can't be represented other than as p0 in Spot
"(p0 U p0) | (p1 U p0)",
};
constexpr unsigned max = (sizeof formulas)/(sizeof *formulas);
if (n < 1 || (unsigned) n > max)
bad_number("sb-patterns", n, max);
return spot::relabel(parse_formula(formulas[n - 1]), Pnn);
}
static formula
X_n_kv_exp(formula a, int n, formula b)
{
formula f = X_n(a, n);
return And_(f, G_(Implies_(b, f)));
}
static formula
kv_exp(int n, std::string a, std::string b, std::string c, std::string d)
{
formula fa = formula::ap(a);
formula fb = formula::ap(b);
formula fc = formula::ap(c);
formula fd = formula::ap(d);
exclusive_ap m;
m.add_group({ fa, fb, fc, fd });
formula xn = X_(G_(fc));
for (int i = 0; i < n; i++)
xn = X_(And_(Or_(fa, fb), xn));
formula f1 = U_(Not_(fd), And_(fd, xn));
formula f_and = nullptr;
for (int i = 1; i <= n; i++)
f_and = And_(f_and, Or_(X_n_kv_exp(fa, i, fd),
X_n_kv_exp(fb, i, fd)));
formula f2 = F_(And_(fc, And_(f_and, X_n(fc, n + 1))));
return m.constrain(And_(f1, f2));
}
static formula
bit_ni(unsigned i, unsigned j, formula fbin[2])
{
return fbin[((1u << j) & (i - 1)) != 0];
}
static formula
binary_ki(int k, unsigned i, formula fbin[2])
{
formula res = bit_ni(i, k - 1, fbin);
for (int j = k - 1; j >= 1; j--)
res = And_(bit_ni(i, j - 1, fbin), X_(res));
return res;
}
static formula
kr1_exp_1(int k, formula fc, formula fd, formula fbin[2])
{
return And_(fc, X_(Or_(binary_ki(k, 1, fbin), fd)));
}
static formula
kr1_exp_2(int n, int k, formula fa, formula fb, formula fbin[2])
{
formula res = formula::tt();
for (int i = 1; i <= n - 1; i++)
res = And_(res,
Implies_(binary_ki(k, i, fbin),
X_n(And_(Or_(fa, fb),
X_(binary_ki(k, i + 1, fbin))), k)));
return G_(res);
}
static formula
kr1_exp_3(int n, int k, formula fa, formula fb, formula fc, formula fd,
formula fbin[2])
{
return G_(Implies_(binary_ki(k, n, fbin),
X_n(And_(Or_(fa, fb),
X_(And_(fc,
X_(Or_(binary_ki(k, 1, fbin),
Or_(fd,
G_(fc))))))), k)));
}
static formula
kr1_exp_4(int n, int k, formula fc, formula fd, formula fbin[2])
{
return U_(Not_(fd),
And_(fd, X_(And_(binary_ki(k, 1, fbin),
X_n(G_(fc), n * (k + 1))))));
}
static formula
kr1_exp_5_r(int k, int i, formula fr, formula fd, formula fbin[2])
{
return And_(fr, F_(And_(fd, F_(And_(binary_ki(k, i, fbin),
X_n(fr, k))))));
}
static formula
kr1_exp_5(int n, int k, formula fa, formula fb, formula fc, formula fd,
formula fbin[2])
{
formula fand = formula::tt();
for (int i = 1; i <= n; i++)
{
formula for1 = kr1_exp_5_r(k, i, fa, fd, fbin);
formula for2 = kr1_exp_5_r(k, i, fb, fd, fbin);
fand = And_(fand, Implies_(binary_ki(k, i, fbin),
X_n(Or_(for1, for2), k)));
}
return F_(And_(fc,
X_(And_(Not_(fc),
U_(fand, fc)))));
}
static formula
kr1_exp(int n, std::string a, std::string b, std::string c, std::string d,
std::string bin0, std::string bin1)
{
int k = ceil(log2(n)) + (n == 1);
if (n <= 0)
bad_number("kr-nlogn", n);
formula fa = formula::ap(a);
formula fb = formula::ap(b);
formula fc = formula::ap(c);
formula fd = formula::ap(d);
formula fbin0 = formula::ap(bin0);
formula fbin1 = formula::ap(bin1);
exclusive_ap m;
m.add_group({ fa, fb, fc, fd, fbin0, fbin1 });
formula fbin[2] = { fbin0, fbin1 };
formula res = formula::And({ kr1_exp_1(k, fc, fd, fbin),
kr1_exp_2(n, k, fa, fb, fbin),
kr1_exp_3(n, k, fa, fb, fc, fd, fbin),
kr1_exp_4(n, k, fc, fd, fbin),
kr1_exp_5(n, k, fa, fb, fc, fd, fbin) });
return m.constrain(res);
}
static formula
kr2_exp_1(formula* fa, formula* fb, formula fc, formula fd)
{
(void) fd;
return And_(fc,
X_(Or_(fa[0],
Or_(fb[0], fd))));
}
static formula
kr2_exp_2(int n, formula* fa, formula* fb)
{
formula res = formula::tt();
for (int i = 1; i <= n - 1; i++)
res = And_(res, Implies_(Or_(fa[i - 1], fb[i - 1]),
X_(Or_(fa[i], fb[i]))));
return G_(res);
}
static formula
kr2_exp_3(int n, formula* fa, formula* fb, formula fc, formula fd)
{
return G_(Implies_(Or_(fa[n - 1], fb[n - 1]),
X_(And_(fc,
X_(Or_(fa[0],
Or_(fb[0],
Or_(fd, G_(fc)))))))));
}
static formula
kr2_exp_4(int n, formula* fa, formula* fb, formula fc, formula fd)
{
return U_(Not_(fd),
And_(fd, X_(And_(Or_(fa[0], fb[0]), X_n(G_(fc), n)))));
}
static formula
kr2_exp_5_r(int i, formula* fr, formula fd)
{
return And_(fr[i - 1], F_(And_(fd, F_(fr[i - 1]))));
}
static formula
kr2_exp_5(int n, formula* fa, formula* fb, formula fc, formula fd)
{
formula facc = formula::ff();
for (int i = 1; i <= n; i++)
{
formula for1 = kr2_exp_5_r(i, fa, fd);
formula for2 = kr2_exp_5_r(i, fb, fd);
facc = Or_(facc, (Or_(for1, for2)));
}
return F_(And_(fc,
X_(And_(Not_(fc), U_(facc, fc)))));
}
static formula
kr2_exp_mutex(int n, formula* fa, formula* fb, formula fc, formula fd)
{
formula f1or = formula::ff();
formula f3and = formula::tt();
for (int i = 1; i <= n; i++)
{
f1or = Or_(f1or, Or_(fa[i - 1], fb[i - 1]));
f3and = And_(f3and, Implies_(fa[i - 1], Not_(fb[i - 1])));
}
formula f1 = G_(Implies_(Or_(fc, fd), Not_(f1or)));
formula f2 = G_(Implies_(fc, Not_(fd)));
formula f3 = G_(f3and);
return And_(f1, And_(f2, f3));
}
static formula
kr2_exp(int n, std::string a, std::string b, std::string c, std::string d)
{
if (n <= 0)
bad_number("kr-n", n);
formula fc = formula::ap(c);
formula fd = formula::ap(d);
formula* fa = new formula[n];
formula* fb = new formula[n];
for (int i = 0; i < n; i++)
{
fa[i] = formula::ap(a + std::to_string(i + 1));
fb[i] = formula::ap(b + std::to_string(i + 1));
}
formula res = formula::And({ kr2_exp_1(fa, fb, fc, fd),
kr2_exp_2(n, fa, fb),
kr2_exp_3(n, fa, fb, fc, fd),
kr2_exp_4(n, fa, fb, fc, fd),
kr2_exp_5(n, fa, fb, fc, fd),
kr2_exp_mutex(n, fa, fb, fc, fd) });
delete[] fa;
delete[] fb;
return res;
}
static formula
sejk_f(std::string a, std::string b, int n, int m)
{
formula left = G_(F_(formula::ap(a + std::to_string(0))));
formula right = X_n(formula::ap(b), m);
formula f0 = U_(left, right);
for (int i = 1; i <= n; ++i)
{
formula left = G_(F_(formula::ap(a + std::to_string(i))));
f0 = U_(left, G_(f0));
}
return f0;
}
static formula
sejk_j(std::string a, std::string b, int n)
{
return formula::Implies(GF_n(a, n), GF_n(b, n));
}
static formula
sejk_k(std::string a, std::string b, int n)
{
formula result = formula::tt();
for (int i = 1; i <= n; ++i)
{
formula ai = formula::ap(a + std::to_string(i));
formula bi = formula::ap(b + std::to_string(i));
result = formula::And({result,
formula::Or({G_(F_(ai)), F_(G_(bi))})});
}
return result;
}
static formula
sejk_pattern(int n)
{
static const char* formulas[] = {
"GF(Fa | Gb | FG(a | Xb))",
"FG(Ga | F!b | GF(a & Xb))",
"GF(Fa | GXb | FG(a | XXb))",
};
constexpr unsigned max = (sizeof formulas)/(sizeof *formulas);
if (n < 1 || (unsigned) n > max)
bad_number("sejk-patterns", n, max);
return spot::relabel(parse_formula(formulas[n - 1]), Pnn);
}
}
static formula
pps_arbiter(std::string r_, std::string g_, int n, bool strict_)
{
formula* r = new formula[n];
formula* g = new formula[n];
std::vector<formula> res;
for (int i = 0; i < n; ++i)
{
r[i] = formula::ap(r_ + std::to_string(i + 1));
g[i] = formula::ap(g_ + std::to_string(i + 1));
}
formula theta_e;
formula theta_s;
formula psi_e;
formula psi_s;
formula phi_e;
formula phi_s;
{
std::vector<formula> res;
for (int i = 0; i < n; ++i)
res.push_back(formula::Not(r[i]));
theta_e = formula::And(res);
res.clear();
for (int i = 0; i < n; ++i)
res.push_back(formula::Not(g[i]));
theta_s = formula::And(res);
res.clear();
for (int i = 0; i < n; ++i)
{
formula left = formula::Xor(r[i], g[i]);
formula right = formula::Equiv(r[i], formula::X(r[i]));
res.push_back(formula::Implies(left, right));
}
psi_e = formula::And(res);
res.clear();
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < i; ++j)
res.push_back(formula::Not(formula::And({g[i], g[j]})));
formula left = formula::Equiv(r[i], g[i]);
formula right = formula::Equiv(g[i], formula::X(g[i]));
res.push_back(formula::Implies(left, right));
}
psi_s = formula::And(res);
res.clear();
for (int i = 0; i < n; ++i)
{
formula f = formula::Not(formula::And({r[i], g[i]}));
res.push_back(formula::G(formula::F(f)));
}
phi_e = formula::And(res);
res.clear();
for (int i = 0; i < n; ++i)
{
res.push_back(formula::G(formula::F(formula::Equiv(r[i], g[i]))));
}
phi_s = formula::And(res);
}
delete[] r;
delete[] g;
if (!strict_)
{
formula imp =
formula::Implies(formula::And({formula::G(psi_e), phi_e}),
formula::And({formula::G(psi_s), phi_s}));
return formula::Implies(theta_e, formula::And({theta_s, imp}));
}
else
{
formula e = formula::W(psi_s, formula::Not(psi_e));
formula imp =
formula::Implies(formula::And({formula::G(psi_e), phi_e}), phi_s);
return formula::Implies(theta_e, formula::And({theta_s, e, imp}));
}
}
formula ltl_pattern(ltl_pattern_id pattern, int n, int m)
{
if (n < 0)
{
std::ostringstream err;
err << "pattern argument for " << ltl_pattern_name(pattern)
<< " should be positive";
throw std::runtime_error(err.str());
}
if ((m >= 0) ^ (ltl_pattern_argc(pattern) == 2))
{
std::ostringstream err;
err << "unexpected number of arguments for "
<< ltl_pattern_name(pattern);
throw std::runtime_error(err.str());
}
switch (pattern)
{
// Keep this alphabetically-ordered!
case LTL_AND_F:
return combunop_n("p", n, op::F, true);
case LTL_AND_FG:
return FG_n("p", n, true);
case LTL_AND_GF:
return GF_n("p", n, true);
case LTL_CCJ_ALPHA:
return formula::And({E_n("p", n), E_n("q", n)});
case LTL_CCJ_BETA:
return formula::And({N_n("p", n), N_n("q", n)});
case LTL_CCJ_BETA_PRIME:
return formula::And({N_prime_n("p", n), N_prime_n("q", n)});
case LTL_DAC_PATTERNS:
return dac_pattern(n);
case LTL_EH_PATTERNS:
return eh_pattern(n);
case LTL_FXG_OR:
return FXG_or_n("p", n);
case LTL_GF_EQUIV:
return GF_equiv_implies(n, "a", "z", true);
case LTL_GF_EQUIV_XN:
return GF_equiv_implies_xn(n, "a", true);
case LTL_GF_IMPLIES:
return GF_equiv_implies(n, "a", "z", false);
case LTL_GF_IMPLIES_XN:
return GF_equiv_implies_xn(n, "a", false);
case LTL_GH_Q:
return Q_n("p", n);
case LTL_GH_R:
return R_n("p", n);
case LTL_GO_THETA:
return fair_response("p", "q", "r", n);
case LTL_GXF_AND:
return GXF_and_n("p", n);
case LTL_HKRSS_PATTERNS:
return hkrss_pattern(n);
case LTL_KR_N:
return kr2_exp(n, "a", "b", "c", "d");
case LTL_KR_NLOGN:
return kr1_exp(n, "a", "b", "c", "d", "y", "z");
case LTL_KV_PSI:
return kv_exp(n, "a", "b", "c", "d");
case LTL_OR_FG:
return FG_n("p", n, false);
case LTL_OR_G:
return combunop_n("p", n, op::G, false);
case LTL_OR_GF:
return GF_n("p", n, false);
case LTL_MS_EXAMPLE:
return ms_example("a", "b", n, m);
case LTL_MS_PHI_H:
return ms_phi_h("a", "b", n);
case LTL_MS_PHI_R:
return ms_phi_rs("a", "b", n, true);
case LTL_MS_PHI_S:
return ms_phi_rs("a", "b", n, false);
case LTL_P_PATTERNS:
return p_pattern(n);
case LTL_PPS_ARBITER_STANDARD:
return pps_arbiter("r", "g", n, false);
case LTL_PPS_ARBITER_STRICT:
return pps_arbiter("r", "g", n, true);
case LTL_R_LEFT:
return bin_n("p", n, op::R, false);
case LTL_R_RIGHT:
return bin_n("p", n, op::R, true);
case LTL_RV_COUNTER_CARRY:
return ltl_counter_carry("b", "m", "c", n, false);
case LTL_RV_COUNTER_CARRY_LINEAR:
return ltl_counter_carry("b", "m", "c", n, true);
case LTL_RV_COUNTER:
return ltl_counter("b", "m", n, false);
case LTL_RV_COUNTER_LINEAR:
return ltl_counter("b", "m", n, true);
case LTL_SB_PATTERNS:
return sb_pattern(n);
case LTL_SEJK_F:
return sejk_f("a", "b", n, m);
case LTL_SEJK_J:
return sejk_j("a", "b", n);
case LTL_SEJK_K:
return sejk_k("a", "b", n);
case LTL_SEJK_PATTERNS:
return sejk_pattern(n);
case LTL_TV_F1:
return tv_f1("p", "q", n);
case LTL_TV_F2:
return tv_f2("p", "q", n);
case LTL_TV_G1:
return tv_g1("p", "q", n);
case LTL_TV_G2:
return tv_g2("p", "q", n);
case LTL_TV_UU:
return tv_uu("p", n);
case LTL_U_LEFT:
return bin_n("p", n, op::U, false);
case LTL_U_RIGHT:
return bin_n("p", n, op::U, true);
case LTL_END:
break;
}
throw std::runtime_error("unsupported pattern");
}
const char* ltl_pattern_name(ltl_pattern_id pattern)
{
static const char* const class_name[] =
{
"and-f",
"and-fg",
"and-gf",
"ccj-alpha",
"ccj-beta",
"ccj-beta-prime",
"dac-patterns",
"eh-patterns",
"fxg-or",
"gf-equiv",
"gf-equiv-xn",
"gf-implies",
"gf-implies-xn",
"gh-q",
"gh-r",
"go-theta",
"gxf-and",
"hkrss-patterns",
"kr-n",
"kr-nlogn",
"kv-psi",
"ms-example",
"ms-phi-h",
"ms-phi-r",
"ms-phi-s",
"or-fg",
"or-g",
"or-gf",
"p-patterns",
"pps-arbiter-standard",
"pps-arbiter-strict",
"r-left",
"r-right",
"rv-counter",
"rv-counter-carry",
"rv-counter-carry-linear",
"rv-counter-linear",
"sb-patterns",
"sejk-f",
"sejk-j",
"sejk-k",
"sejk-patterns",
"tv-f1",
"tv-f2",
"tv-g1",
"tv-g2",
"tv-uu",
"u-left",
"u-right",
};
// Make sure we do not forget to update the above table every
// time a new pattern is added.
static_assert(sizeof(class_name)/sizeof(*class_name)
== LTL_END - LTL_BEGIN, "size mismatch");
if (pattern < LTL_BEGIN || pattern >= LTL_END)
throw std::runtime_error("unsupported pattern");
return class_name[pattern - LTL_BEGIN];
}
int ltl_pattern_max(ltl_pattern_id pattern)
{
switch (pattern)
{
// Keep this alphabetically-ordered!
case LTL_AND_F:
case LTL_AND_FG:
case LTL_AND_GF:
case LTL_CCJ_ALPHA:
case LTL_CCJ_BETA:
case LTL_CCJ_BETA_PRIME:
return 0;
case LTL_DAC_PATTERNS:
return 55;
case LTL_EH_PATTERNS:
return 12;
case LTL_FXG_OR:
case LTL_GF_EQUIV:
case LTL_GF_EQUIV_XN:
case LTL_GF_IMPLIES:
case LTL_GF_IMPLIES_XN:
case LTL_GH_Q:
case LTL_GH_R:
case LTL_GO_THETA:
case LTL_GXF_AND:
return 0;
case LTL_HKRSS_PATTERNS:
return 55;
case LTL_KR_N:
case LTL_KR_NLOGN:
case LTL_KV_PSI:
case LTL_MS_EXAMPLE:
case LTL_MS_PHI_H:
case LTL_MS_PHI_R:
case LTL_MS_PHI_S:
case LTL_OR_FG:
case LTL_OR_G:
case LTL_OR_GF:
return 0;
case LTL_P_PATTERNS:
return 20;
case LTL_PPS_ARBITER_STANDARD:
case LTL_PPS_ARBITER_STRICT:
case LTL_R_LEFT:
case LTL_R_RIGHT:
case LTL_RV_COUNTER_CARRY:
case LTL_RV_COUNTER_CARRY_LINEAR:
case LTL_RV_COUNTER:
case LTL_RV_COUNTER_LINEAR:
return 0;
case LTL_SB_PATTERNS:
return 27;
case LTL_SEJK_F:
case LTL_SEJK_J:
case LTL_SEJK_K:
return 0;
case LTL_SEJK_PATTERNS:
return 3;
case LTL_TV_F1:
case LTL_TV_F2:
case LTL_TV_G1:
case LTL_TV_G2:
case LTL_TV_UU:
case LTL_U_LEFT:
case LTL_U_RIGHT:
return 0;
case LTL_END:
break;
}
throw std::runtime_error("unsupported pattern");
}
int ltl_pattern_argc(ltl_pattern_id pattern)
{
switch (pattern)
{
// Keep this alphabetically-ordered!
case LTL_AND_F:
case LTL_AND_FG:
case LTL_AND_GF:
case LTL_CCJ_ALPHA:
case LTL_CCJ_BETA:
case LTL_CCJ_BETA_PRIME:
case LTL_DAC_PATTERNS:
case LTL_EH_PATTERNS:
case LTL_FXG_OR:
case LTL_GF_EQUIV:
case LTL_GF_EQUIV_XN:
case LTL_GF_IMPLIES:
case LTL_GF_IMPLIES_XN:
case LTL_GH_Q:
case LTL_GH_R:
case LTL_GO_THETA:
case LTL_GXF_AND:
case LTL_HKRSS_PATTERNS:
case LTL_KR_N:
case LTL_KR_NLOGN:
case LTL_KV_PSI:
return 1;
case LTL_MS_EXAMPLE:
return 2;
case LTL_MS_PHI_H:
case LTL_MS_PHI_R:
case LTL_MS_PHI_S:
case LTL_OR_FG:
case LTL_OR_G:
case LTL_OR_GF:
case LTL_P_PATTERNS:
case LTL_PPS_ARBITER_STANDARD:
case LTL_PPS_ARBITER_STRICT:
case LTL_R_LEFT:
case LTL_R_RIGHT:
case LTL_RV_COUNTER_CARRY:
case LTL_RV_COUNTER_CARRY_LINEAR:
case LTL_RV_COUNTER:
case LTL_RV_COUNTER_LINEAR:
case LTL_SB_PATTERNS:
return 1;
case LTL_SEJK_F:
return 2;
case LTL_SEJK_J:
case LTL_SEJK_K:
case LTL_SEJK_PATTERNS:
case LTL_TV_F1:
case LTL_TV_F2:
case LTL_TV_G1:
case LTL_TV_G2:
case LTL_TV_UU:
case LTL_U_LEFT:
case LTL_U_RIGHT:
return 1;
case LTL_END:
break;
}
throw std::runtime_error("unsupported pattern");
}
}
}