spot/iface/gspn/ssp.cc
Alexandre Duret-Lutz b8fd421232 * iface/gspn/ltlgspn.cc: New option -L.
* iface/gspn/ssp.cc, iface/gspn/ssp.hh (gspn_ssp_interface)
support for a new option "pushfront".
2008-02-25 14:37:54 +01:00

1256 lines
28 KiB
C++

// Copyright (C) 2003, 2004, 2005, 2006, 2007 Laboratoire d'Informatique de
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#include <cstring>
#include <map>
#include <cassert>
#include <gspnlib.h>
#include "ssp.hh"
#include "misc/bddlt.hh"
#include "misc/hash.hh"
#include <bdd.h>
#include "tgbaalgos/gtec/explscc.hh"
#include "tgbaalgos/gtec/nsheap.hh"
namespace spot
{
namespace
{
static bdd*
bdd_realloc(bdd* t, int size, int new_size)
{
assert(new_size);
bdd* tmp = new bdd[new_size];
for (int i = 0; i < size; i++)
tmp[i] = t[i];
delete[] t;
return tmp;
}
static bool doublehash;
static bool pushfront;
}
// state_gspn_ssp
//////////////////////////////////////////////////////////////////////
class state_gspn_ssp: public state
{
public:
state_gspn_ssp(State left, const state* right)
: left_(left), right_(right)
{
}
virtual
~state_gspn_ssp()
{
delete right_;
}
virtual int
compare(const state* other) const
{
const state_gspn_ssp* o = dynamic_cast<const state_gspn_ssp*>(other);
assert(o);
int res = (reinterpret_cast<char*>(o->left())
- reinterpret_cast<char*>(left()));
if (res != 0)
return res;
return right_->compare(o->right());
}
virtual size_t
hash() const
{
return (reinterpret_cast<char*>(left())
- static_cast<char*>(0)) << 10 + right_->hash();
}
virtual state_gspn_ssp* clone() const
{
return new state_gspn_ssp(left(), right()->clone());
}
State
left() const
{
return left_;
}
const state*
right() const
{
return right_;
}
private:
State left_;
const state* right_;
}; // state_gspn_ssp
// tgba_gspn_ssp_private_
//////////////////////////////////////////////////////////////////////
struct tgba_gspn_ssp_private_
{
int refs; // reference count
bdd_dict* dict;
typedef std::map<int, AtomicProp> prop_map;
prop_map prop_dict;
signed char* all_props;
size_t prop_count;
const tgba* operand;
tgba_gspn_ssp_private_(bdd_dict* dict,
const ltl::declarative_environment& env,
const tgba* operand)
: refs(1), dict(dict), all_props(0),
operand(operand)
{
const ltl::declarative_environment::prop_map& p = env.get_prop_map();
try
{
AtomicProp max_prop = 0;
for (ltl::declarative_environment::prop_map::const_iterator i
= p.begin(); i != p.end(); ++i)
{
int var = dict->register_proposition(i->second, this);
AtomicProp index;
int err = prop_index(i->first.c_str(), &index);
if (err)
throw gspn_exception("prop_index(" + i->first + ")", err);
prop_dict[var] = index;
max_prop = std::max(max_prop, index);
}
prop_count = 1 + max_prop;
all_props = new signed char[prop_count];
}
catch (...)
{
// If an exception occurs during the loop, we need to clean
// all BDD variables which have been registered so far.
dict->unregister_all_my_variables(this);
throw;
}
}
~tgba_gspn_ssp_private_()
{
dict->unregister_all_my_variables(this);
delete[] all_props;
}
};
// tgba_succ_iterator_gspn_ssp
//////////////////////////////////////////////////////////////////////
class tgba_succ_iterator_gspn_ssp: public tgba_succ_iterator
{
public:
tgba_succ_iterator_gspn_ssp(Succ_* succ_tgba,
size_t size_tgba,
bdd* bdd_array,
state** state_array,
size_t size_states,
Props_* prop,
int size_prop)
: successors_(succ_tgba),
size_succ_(size_tgba),
current_succ_(0),
bdd_array_(bdd_array),
state_array_(state_array),
size_states_(size_states),
props_(prop),
size_prop_(size_prop)
{
}
virtual
~tgba_succ_iterator_gspn_ssp()
{
for (size_t i = 0; i < size_states_; i++)
delete state_array_[i];
delete[] bdd_array_;
free(state_array_);
if (props_)
{
for (int i = 0; i < size_prop_; i++)
free(props_[i].arc);
free(props_);
}
if (size_succ_ != 0)
succ_free(successors_);
}
virtual void
first()
{
if (!successors_)
return;
current_succ_=0;
}
virtual void
next()
{
++current_succ_;
}
virtual bool
done() const
{
return current_succ_ + 1 > size_succ_;
}
virtual state*
current_state() const
{
return
new state_gspn_ssp(successors_[current_succ_].succ_,
(state_array_[successors_[current_succ_]
.arc->curr_state])->clone());
}
virtual bdd
current_condition() const
{
return bddtrue;
}
virtual bdd
current_acceptance_conditions() const
{
// There is no acceptance conditions in GSPN systems, so we just
// return those from operand_.
return bdd_array_[successors_[current_succ_].arc->curr_acc_conds];
}
private:
// All successors of STATE matching a selection conjunctions from
// ALL_CONDS.
Succ_* successors_; /// array of successors
size_t size_succ_; /// size of successors_
size_t current_succ_; /// current position in successors_
bdd * bdd_array_;
state** state_array_;
size_t size_states_;
Props_* props_;
int size_prop_;
}; // tgba_succ_iterator_gspn_ssp
// tgba_gspn_ssp
//////////////////////////////////////////////////////////////////////
class tgba_gspn_ssp: public tgba
{
public:
tgba_gspn_ssp(bdd_dict* dict, const ltl::declarative_environment& env,
const tgba* operand);
tgba_gspn_ssp(const tgba_gspn_ssp& other);
tgba_gspn_ssp& operator=(const tgba_gspn_ssp& other);
virtual ~tgba_gspn_ssp();
virtual state* get_init_state() const;
virtual tgba_succ_iterator*
succ_iter(const state* local_state,
const state* global_state = 0,
const tgba* global_automaton = 0) const;
virtual bdd_dict* get_dict() const;
virtual std::string format_state(const state* state) const;
virtual state* project_state(const state* s, const tgba* t) const;
virtual bdd all_acceptance_conditions() const;
virtual bdd neg_acceptance_conditions() const;
protected:
virtual bdd compute_support_conditions(const spot::state* state) const;
virtual bdd compute_support_variables(const spot::state* state) const;
private:
tgba_gspn_ssp_private_* data_;
};
tgba_gspn_ssp::tgba_gspn_ssp(bdd_dict* dict,
const ltl::declarative_environment& env,
const tgba* operand)
{
data_ = new tgba_gspn_ssp_private_(dict, env, operand);
}
tgba_gspn_ssp::tgba_gspn_ssp(const tgba_gspn_ssp& other)
: tgba()
{
data_ = other.data_;
++data_->refs;
}
tgba_gspn_ssp::~tgba_gspn_ssp()
{
if (--data_->refs == 0)
delete data_;
}
tgba_gspn_ssp&
tgba_gspn_ssp::operator=(const tgba_gspn_ssp& other)
{
if (&other == this)
return *this;
this->~tgba_gspn_ssp();
new (this) tgba_gspn_ssp(other);
return *this;
}
state* tgba_gspn_ssp::get_init_state() const
{
// Use 0 as initial state for the SSP side. State 0 does not
// exists, but when passed to succ() it will produce the list
// of initial states.
return new state_gspn_ssp(0, data_->operand->get_init_state());
}
tgba_succ_iterator*
tgba_gspn_ssp::succ_iter(const state* state_,
const state* global_state,
const tgba* global_automaton) const
{
const state_gspn_ssp* s = dynamic_cast<const state_gspn_ssp*>(state_);
assert(s);
(void) global_state;
(void) global_automaton;
bdd all_conds_;
bdd outside_;
bdd cond;
Props_* props_ = 0;
int nb_arc_props = 0;
bdd* bdd_array = 0;
int size_bdd = 0;
state** state_array = 0;
size_t size_states = 0;
tgba_succ_iterator* i = data_->operand->succ_iter(s->right());
for (i->first(); !i->done(); i->next())
{
all_conds_ = i->current_condition();
outside_ = !all_conds_;
if (all_conds_ != bddfalse)
{
props_ = (Props_*) realloc(props_,
(nb_arc_props + 1) * sizeof(Props_));
props_[nb_arc_props].nb_conj = 0;
props_[nb_arc_props].prop = 0;
props_[nb_arc_props].arc =
(Arc_Ident_*) malloc(sizeof(Arc_Ident_));
bdd_array = bdd_realloc(bdd_array, size_bdd, size_bdd + 1);
bdd_array[size_bdd] = i->current_acceptance_conditions();
props_[nb_arc_props].arc->curr_acc_conds = size_bdd;
++size_bdd;
state_array =
(state**) realloc(state_array,
(size_states + 1) * sizeof(state*));
state_array[size_states] = i->current_state();
props_[nb_arc_props].arc->curr_state = size_states;
++size_states;
while (all_conds_ != bddfalse)
{
cond = bdd_satone(all_conds_);
cond = bdd_simplify(cond, cond | outside_);
all_conds_ -= cond;
props_[nb_arc_props].prop =
(signed char **) realloc(props_[nb_arc_props].prop,
(props_[nb_arc_props].nb_conj + 1)
* sizeof(signed char *));
props_[nb_arc_props].prop[props_[nb_arc_props].nb_conj]
= (signed char*) calloc(data_->prop_count,
sizeof(signed char));
memset(props_[nb_arc_props].prop[props_[nb_arc_props].nb_conj],
-1, data_->prop_count);
while (cond != bddtrue)
{
int var = bdd_var(cond);
bdd high = bdd_high(cond);
int res;
if (high == bddfalse)
{
cond = bdd_low(cond);
res = 0;
}
else
{
cond = high;
res = 1;
}
tgba_gspn_ssp_private_::prop_map::iterator k
= data_->prop_dict.find(var);
if (k != data_->prop_dict.end())
props_[nb_arc_props]
.prop[props_[nb_arc_props].nb_conj][k->second] = res;
assert(cond != bddfalse);
}
++props_[nb_arc_props].nb_conj;
}
++nb_arc_props;
}
}
Succ_* succ_tgba_ = 0;
size_t size_tgba_ = 0;
int j, conj;
succ(s->left(), props_, nb_arc_props, &succ_tgba_, &size_tgba_);
for (j = 0; j < nb_arc_props; j++)
{
for (conj = 0; conj < props_[j].nb_conj; conj++)
free(props_[j].prop[conj]);
free(props_[j].prop);
}
delete i;
return new tgba_succ_iterator_gspn_ssp(succ_tgba_, size_tgba_,
bdd_array, state_array,
size_states, props_,
nb_arc_props);
}
bdd
tgba_gspn_ssp::compute_support_conditions(const spot::state* state) const
{
(void) state;
return bddtrue;
}
bdd
tgba_gspn_ssp::compute_support_variables(const spot::state* state) const
{
(void) state;
return bddtrue;
}
bdd_dict*
tgba_gspn_ssp::get_dict() const
{
return data_->dict;
}
std::string
tgba_gspn_ssp::format_state(const state* state) const
{
const state_gspn_ssp* s = dynamic_cast<const state_gspn_ssp*>(state);
assert(s);
char* str;
State gs = s->left();
if (gs)
{
int err = print_state(gs, &str);
if (err)
throw gspn_exception("print_state()", err);
// Strip trailing \n...
unsigned len = strlen(str);
while (str[--len] == '\n')
str[len] = 0;
}
else
{
str = strdup("-1");
}
std::string res(str);
free(str);
return res + " * " + data_->operand->format_state(s->right());
}
state*
tgba_gspn_ssp::project_state(const state* s, const tgba* t) const
{
const state_gspn_ssp* s2 = dynamic_cast<const state_gspn_ssp*>(s);
assert(s2);
if (t == this)
return s2->clone();
return data_->operand->project_state(s2->right(), t);
}
bdd
tgba_gspn_ssp::all_acceptance_conditions() const
{
// There is no acceptance conditions in GSPN systems, they all
// come from the operand automaton.
return data_->operand->all_acceptance_conditions();
}
bdd
tgba_gspn_ssp::neg_acceptance_conditions() const
{
// There is no acceptance conditions in GSPN systems, they all
// come from the operand automaton.
return data_->operand->neg_acceptance_conditions();
}
// gspn_ssp_interface
//////////////////////////////////////////////////////////////////////
gspn_ssp_interface::gspn_ssp_interface(int argc, char **argv,
bdd_dict* dict,
const
ltl::declarative_environment& env,
bool inclusion,
bool doublehash_,
bool pushfront_)
: dict_(dict), env_(env)
{
doublehash = doublehash_;
pushfront = pushfront_;
if (inclusion)
inclusion_version();
int res = initialize(argc, argv);
if (res)
throw gspn_exception("initialize()", res);
}
gspn_ssp_interface::~gspn_ssp_interface()
{
int res = finalize();
if (res)
throw gspn_exception("finalize()", res);
}
tgba*
gspn_ssp_interface::automaton(const tgba* operand) const
{
return new tgba_gspn_ssp(dict_, env_, operand);
}
//////////////////////////////////////////////////////////////////////
class connected_component_ssp: public explicit_connected_component
{
public:
virtual
~connected_component_ssp()
{
}
virtual const state*
has_state(const state* s) const
{
set_type::iterator i;
for (i = states.begin(); i !=states.end(); i++)
{
const state_gspn_ssp* old_state = (const state_gspn_ssp*)(*i);
const state_gspn_ssp* new_state = (const state_gspn_ssp*)(s);
if ((old_state->right())->compare(new_state->right()) == 0
&& old_state->left()
&& new_state->left())
if (spot_inclusion(new_state->left(), old_state->left()))
{
if (*i != s)
delete s;
return *i;
}
}
return 0;
}
virtual void
insert(const state* s)
{
states.insert(s);
}
protected:
typedef Sgi::hash_set<const state*,
state_ptr_hash, state_ptr_equal> set_type;
set_type states;
};
class connected_component_ssp_factory :
public explicit_connected_component_factory
{
public:
virtual connected_component_ssp*
build() const
{
return new connected_component_ssp();
}
/// Get the unique instance of this class.
static const connected_component_ssp_factory*
instance()
{
static connected_component_ssp_factory f;
return &f;
}
protected:
virtual
~connected_component_ssp_factory()
{
}
/// Construction is forbiden.
connected_component_ssp_factory()
{
}
};
//////////////////////////////////////////////////////////////////////
namespace
{
inline void*
container_(const State s)
{
return doublehash ? container(s) : 0;
}
}
class numbered_state_heap_ssp_semi : public numbered_state_heap
{
public:
virtual
~numbered_state_heap_ssp_semi()
{
// Free keys in H.
hash_type::iterator i = h.begin();
while (i != h.end())
{
// Advance the iterator before deleting the key.
const state* s = i->first;
++i;
delete s;
}
}
virtual numbered_state_heap::state_index
find(const state* s) const
{
const state_gspn_ssp* s_ = dynamic_cast<const state_gspn_ssp*>(s);
const void* cont = container_(s_->left());
contained_map::const_iterator i = contained.find(cont);
if (i != contained.end())
{
f_map::const_iterator k = i->second.find(s_->right());
if (k != i->second.end())
{
const state_list& l = k->second;
state_list::const_iterator j;
for (j = l.begin(); j != l.end(); ++j)
{
const state_gspn_ssp* old_state =
dynamic_cast<const state_gspn_ssp*>(*j);
const state_gspn_ssp* new_state =
dynamic_cast<const state_gspn_ssp*>(s);
assert(old_state);
assert(new_state);
if (old_state->left() == new_state->left())
break;
if (old_state->left()
&& new_state->left()
&& spot_inclusion(new_state->left(), old_state->left()))
break;
}
if (j != l.end())
{
if (s != *j)
{
delete s;
s = *j;
}
}
else
{
s = 0;
}
}
else
{
s = 0;
}
}
else
{
s = 0;
}
state_index res;
if (s == 0)
{
res.first = 0;
res.second = 0;
}
else
{
hash_type::const_iterator i = h.find(s);
assert(i != h.end());
assert(s == i->first);
res.first = i->first;
res.second = i->second;
}
return res;
}
virtual numbered_state_heap::state_index_p
find(const state* s)
{
const state_gspn_ssp* s_ = dynamic_cast<const state_gspn_ssp*>(s);
const void* cont = container_(s_->left());
contained_map::const_iterator i = contained.find(cont);
if (i != contained.end())
{
f_map::const_iterator k = i->second.find(s_->right());
if (k != i->second.end())
{
const state_list& l = k->second;
state_list::const_iterator j;
for (j = l.begin(); j != l.end(); ++j)
{
const state_gspn_ssp* old_state =
dynamic_cast<const state_gspn_ssp*>(*j);
const state_gspn_ssp* new_state =
dynamic_cast<const state_gspn_ssp*>(s);
assert(old_state);
assert(new_state);
if (old_state->left() == new_state->left())
break;
if (old_state->left()
&& new_state->left()
&& spot_inclusion(new_state->left(), old_state->left()))
break;
}
if (j != l.end())
{
if (s != *j)
{
delete s;
s = *j;
}
}
else
{
s = 0;
}
}
else
{
s = 0;
}
}
else
{
s = 0;
}
state_index_p res;
if (s == 0)
{
res.first = 0;
res.second = 0;
}
else
{
hash_type::iterator i = h.find(s);
assert(i != h.end());
assert(s == i->first);
res.first = i->first;
res.second = &i->second;
}
return res;
}
virtual numbered_state_heap::state_index
index(const state* s) const
{
state_index res;
hash_type::const_iterator i = h.find(s);
if (i == h.end())
{
res.first = 0;
res.second = 0;
}
else
{
res.first = i->first;
res.second = i->second;
if (s != i->first)
delete s;
}
return res;
}
virtual numbered_state_heap::state_index_p
index(const state* s)
{
state_index_p res;
hash_type::iterator i = h.find(s);
if (i == h.end())
{
res.first = 0;
res.second = 0;
}
else
{
res.first = i->first;
res.second = &i->second;
if (s != i->first)
delete s;
}
return res;
}
virtual void
insert(const state* s, int index)
{
h[s] = index;
const state_gspn_ssp* s_ = dynamic_cast<const state_gspn_ssp*>(s);
State sg = s_->left();
if (sg)
{
const void* cont = container_(sg);
if (pushfront)
contained[cont][s_->right()].push_front(s);
else
contained[cont][s_->right()].push_back(s);
}
}
virtual int
size() const
{
return h.size();
}
virtual numbered_state_heap_const_iterator* iterator() const;
protected:
typedef Sgi::hash_map<const state*, int,
state_ptr_hash, state_ptr_equal> hash_type;
hash_type h; ///< Map of visited states.
typedef std::list<const state*> state_list;
typedef Sgi::hash_map<const state*, state_list,
state_ptr_hash, state_ptr_equal> f_map;
typedef Sgi::hash_map<const void*, f_map,
ptr_hash<void> > contained_map;
contained_map contained;
friend class numbered_state_heap_ssp_const_iterator;
friend class couvreur99_check_shy_ssp;
friend class couvreur99_check_shy_semi_ssp;
};
class numbered_state_heap_ssp_const_iterator :
public numbered_state_heap_const_iterator
{
public:
numbered_state_heap_ssp_const_iterator
(const numbered_state_heap_ssp_semi::hash_type& h)
: numbered_state_heap_const_iterator(), h(h)
{
}
~numbered_state_heap_ssp_const_iterator()
{
}
virtual void
first()
{
i = h.begin();
}
virtual void
next()
{
++i;
}
virtual bool
done() const
{
return i == h.end();
}
virtual const state*
get_state() const
{
return i->first;
}
virtual int
get_index() const
{
return i->second;
}
private:
numbered_state_heap_ssp_semi::hash_type::const_iterator i;
const numbered_state_heap_ssp_semi::hash_type& h;
};
numbered_state_heap_const_iterator*
numbered_state_heap_ssp_semi::iterator() const
{
return new numbered_state_heap_ssp_const_iterator(h);
}
/// \brief Factory for numbered_state_heap_ssp_semi
///
/// This class is a singleton. Retrieve the instance using instance().
class numbered_state_heap_ssp_factory_semi:
public numbered_state_heap_factory
{
public:
virtual numbered_state_heap_ssp_semi*
build() const
{
return new numbered_state_heap_ssp_semi();
}
/// Get the unique instance of this class.
static const numbered_state_heap_ssp_factory_semi*
instance()
{
static numbered_state_heap_ssp_factory_semi f;
return &f;
}
protected:
virtual
~numbered_state_heap_ssp_factory_semi()
{
}
numbered_state_heap_ssp_factory_semi()
{
}
};
class couvreur99_check_shy_ssp : public couvreur99_check_shy
{
public:
couvreur99_check_shy_ssp(const tgba* a, bool stack_inclusion)
: couvreur99_check_shy(a,
option_map(),
numbered_state_heap_ssp_factory_semi::instance()),
inclusion_count_heap(0),
inclusion_count_stack(0),
stack_inclusion(stack_inclusion)
{
onepass_ = true;
stats["inclusion count heap"] =
static_cast<spot::unsigned_statistics::unsigned_fun>
(&couvreur99_check_shy_ssp::get_inclusion_count_heap);
stats["inclusion count stack"] =
static_cast<spot::unsigned_statistics::unsigned_fun>
(&couvreur99_check_shy_ssp::get_inclusion_count_stack);
stats["contained map size"] =
static_cast<spot::unsigned_statistics::unsigned_fun>
(&couvreur99_check_shy_ssp::get_contained_map_size);
}
private:
unsigned inclusion_count_heap;
unsigned inclusion_count_stack;
bool stack_inclusion;
protected:
unsigned
get_inclusion_count_heap() const
{
return inclusion_count_heap;
};
unsigned
get_inclusion_count_stack() const
{
return inclusion_count_stack;
};
unsigned
get_contained_map_size() const
{
return
dynamic_cast<numbered_state_heap_ssp_semi*>(ecs_->h)->contained.size();
}
// If a new state includes an older state, we may have to add new
// children to the list of children of that older state. We cannot
// to this by sub-classing numbered_state_heap since TODO is not
// available. So we override find_state() instead.
virtual numbered_state_heap::state_index_p
find_state(const state* s)
{
typedef numbered_state_heap_ssp_semi::hash_type hash_type;
hash_type& h = dynamic_cast<numbered_state_heap_ssp_semi*>(ecs_->h)->h;
typedef numbered_state_heap_ssp_semi::contained_map contained_map;
typedef numbered_state_heap_ssp_semi::f_map f_map;
typedef numbered_state_heap_ssp_semi::state_list state_list;
const contained_map& contained =
dynamic_cast<numbered_state_heap_ssp_semi*>(ecs_->h)->contained;
const state_gspn_ssp* s_ = dynamic_cast<const state_gspn_ssp*>(s);
const void* cont = container_(s_->left());
contained_map::const_iterator i = contained.find(cont);
if (i != contained.end())
{
f_map::const_iterator k = i->second.find(s_->right());
if (k != i->second.end())
{
const state_list& l = k->second;
state_list::const_iterator j;
for (j = l.begin(); j != l.end(); ++j)
{
const state_gspn_ssp* old_state =
dynamic_cast<const state_gspn_ssp*>(*j);
const state_gspn_ssp* new_state =
dynamic_cast<const state_gspn_ssp*>(s);
assert(old_state);
assert(new_state);
if (old_state->left() == new_state->left())
break;
if (old_state->left() && new_state->left())
{
hash_type::const_iterator i = h.find(*j);
assert(i != h.end());
if (i->second == -1)
{
if (spot_inclusion(new_state->left(),
old_state->left()))
{
++inclusion_count_heap;
break;
}
}
else
{
if (stack_inclusion
&& spot_inclusion(old_state->left(),
new_state->left()))
{
++inclusion_count_stack;
State* succ_tgba_ = 0;
size_t size_tgba_ = 0;
succ_queue& queue = todo.back().q;
Diff_succ(old_state->left(), new_state->left(),
&succ_tgba_, &size_tgba_);
succ_queue::iterator old;
if (pos == queue.end())
old = queue.begin();
else
old = pos;
for (size_t i = 0; i < size_tgba_; i++)
{
state_gspn_ssp* s =
new state_gspn_ssp
(succ_tgba_[i],
old_state->right()->clone());
queue.push_back(successor(old->acc,
s));
inc_depth();
}
if (size_tgba_ != 0)
diff_succ_free(succ_tgba_);
break;
}
}
}
}
if (j != l.end())
{
if (s != *j)
{
delete s;
s = *j;
}
}
else
{
s = 0;
}
}
else
{
s = 0;
}
}
else
{
s = 0;
}
// s points to the resulting state, or to 0 if we didn't find
// the state in the list.
numbered_state_heap::state_index_p res;
if (s == 0)
{
res.first = 0;
res.second = 0;
}
else
{
hash_type::iterator k = h.find(s);
assert(k != h.end());
assert(s == k->first);
res.first = k->first;
res.second = &k->second;
}
return res;
}
};
// The only purpose of this class is the inclusion_count counter.
class couvreur99_check_shy_semi_ssp : public couvreur99_check_shy
{
public:
couvreur99_check_shy_semi_ssp(const tgba* a)
: couvreur99_check_shy(a,
option_map(),
numbered_state_heap_ssp_factory_semi::instance()),
inclusion_count(0)
{
onepass_ = true;
stats["find_state count"] =
static_cast<spot::unsigned_statistics::unsigned_fun>
(&couvreur99_check_shy_semi_ssp::get_inclusion_count);
stats["contained map size"] =
static_cast<spot::unsigned_statistics::unsigned_fun>
(&couvreur99_check_shy_semi_ssp::get_contained_map_size);
}
private:
unsigned inclusion_count;
protected:
unsigned
get_inclusion_count() const
{
return inclusion_count;
};
unsigned
get_contained_map_size() const
{
return
dynamic_cast<numbered_state_heap_ssp_semi*>(ecs_->h)->contained.size();
}
virtual numbered_state_heap::state_index_p
find_state(const state* s)
{
++inclusion_count;
return couvreur99_check_shy::find_state(s);
}
};
couvreur99_check*
couvreur99_check_ssp_semi(const tgba* ssp_automata)
{
assert(dynamic_cast<const tgba_gspn_ssp*>(ssp_automata));
return
new couvreur99_check(ssp_automata,
option_map(),
numbered_state_heap_ssp_factory_semi::instance());
}
couvreur99_check*
couvreur99_check_ssp_shy_semi(const tgba* ssp_automata)
{
assert(dynamic_cast<const tgba_gspn_ssp*>(ssp_automata));
return
new couvreur99_check_shy_semi_ssp(ssp_automata);
}
couvreur99_check*
couvreur99_check_ssp_shy(const tgba* ssp_automata, bool stack_inclusion)
{
assert(dynamic_cast<const tgba_gspn_ssp*>(ssp_automata));
return new couvreur99_check_shy_ssp(ssp_automata, stack_inclusion);
}
#if 0
// I rewrote couvreur99_check_result today, and it no longer uses
// connected_component_ssp_factory. So this cannot work anymore.
// -- adl 2004-12-10.
couvreur99_check_result*
counter_example_ssp(const couvreur99_check_status* status)
{
return new
couvreur99_check_result(status,
connected_component_ssp_factory::instance());
}
#endif
}