spot/spot/parsetl/parsetl.yy
Alexandre Duret-Lutz b9808144b3 Upgrade parsers to Bison >= 3.0
Bison 3.0 was released in 2013, and the current Debian stable (buster)
has version 3.3.2.

* m4/bison.m4: Remove -Wno-precedence and -Wno-empty-rule, keep
-Wno-deprecated just to protect from future deprecation warnings that
would be interpreted as errors.
* spot/parseaut/parseaut.yy, spot/parsetl/parsetl.yy: Use %empty
rules, prefer %precedence over %nonassoc, update %error-versbose and
%name-prefix to their more modern equivalent.
* spot/misc/trival.hh (maybe): Mark this function as noexcept to
please the compiler while compiling the parsers.
2019-08-26 17:07:15 +02:00

1127 lines
36 KiB
Text

/* -*- coding: utf-8 -*-
** Copyright (C) 2009-2019 Laboratoire de Recherche et Développement
** de l'Epita (LRDE).
** Copyright (C) 2003-2006 Laboratoire d'Informatique de Paris 6
** (LIP6), département Systèmes Répartis Coopératifs (SRC), Université
** Pierre et Marie Curie.
**
** This file is part of Spot, a model checking library.
**
** Spot is free software; you can redistribute it and/or modify it
** under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 3 of the License, or
** (at your option) any later version.
**
** Spot is distributed in the hope that it will be useful, but WITHOUT
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
** or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
** License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
%require "3.0"
%language "C++"
%locations
%defines
%define api.prefix {tlyy}
%debug
%define parse.error verbose
%expect 0
%lex-param { spot::parse_error_list& error_list }
%define api.location.type {spot::location}
%code requires
{
#include "config.h"
#include <string>
#include <sstream>
#include <spot/tl/parse.hh>
#include <spot/tl/formula.hh>
#include <spot/tl/print.hh>
struct minmax_t { unsigned min, max; };
}
%parse-param {spot::parse_error_list &error_list}
%parse-param {spot::environment &parse_environment}
%parse-param {spot::formula &result}
%union
{
std::string* str;
const spot::fnode* ltl;
unsigned num;
minmax_t minmax;
}
%code {
/* parsetl.hh and parsedecl.hh include each other recursively.
We mut ensure that YYSTYPE is declared (by the above %union)
before parsedecl.hh uses it. */
#include <spot/parsetl/parsedecl.hh>
using namespace spot;
#define missing_right_op_msg(op, str) \
error_list.emplace_back(op, \
"missing right operand for \"" str "\"");
#define missing_right_op(res, op, str) \
do \
{ \
missing_right_op_msg(op, str); \
res = fnode::ff(); \
} \
while (0);
// right is missing, so complain and use left.
#define missing_right_binop(res, left, op, str) \
do \
{ \
missing_right_op_msg(op, str); \
res = left; \
} \
while (0);
// right is missing, so complain and use false.
#define missing_right_binop_hard(res, left, op, str) \
do \
{ \
left->destroy(); \
missing_right_op(res, op, str); \
} \
while (0);
static bool
sere_ensure_bool(const fnode* f, const spot::location& loc,
const char* oper, spot::parse_error_list& error_list)
{
if (f->is_boolean())
return true;
std::string s;
s.reserve(80);
s = "not a Boolean expression: in a SERE ";
s += oper;
s += " can only be applied to a Boolean expression";
error_list.emplace_back(loc, s);
return false;
}
static const fnode*
error_false_block(const spot::location& loc,
spot::parse_error_list& error_list)
{
error_list.emplace_back(loc, "treating this block as false");
return fnode::ff();
}
static const fnode*
parse_ap(const std::string& str,
const spot::location& location,
spot::environment& env,
spot::parse_error_list& error_list)
{
auto res = env.require(str);
if (!res)
{
std::string s;
s.reserve(64);
s = "unknown atomic proposition `";
s += str;
s += "' in ";
s += env.name();
error_list.emplace_back(location, s);
}
return res.to_node_();
}
enum parser_type { parser_ltl, parser_bool, parser_sere };
static const fnode*
try_recursive_parse(const std::string& str,
const spot::location& location,
spot::environment& env,
bool debug,
parser_type type,
spot::parse_error_list& error_list)
{
// We want to parse a U (b U c) as two until operators applied
// to the atomic propositions a, b, and c. We also want to
// parse a U (b == c) as one until operator applied to the
// atomic propositions "a" and "b == c". The only problem is
// that we do not know anything about "==" or in general about
// the syntax of atomic proposition of our users.
//
// To support that, the lexer will return "b U c" and "b == c"
// as PAR_BLOCK tokens. We then try to parse such tokens
// recursively. If, as in the case of "b U c", the block is
// successfully parsed as a formula, we return this formula.
// Otherwise, we convert the string into an atomic proposition
// (it's up to the environment to check the syntax of this
// proposition, and maybe reject it).
if (str.empty())
{
error_list.emplace_back(location, "unexpected empty block");
return nullptr;
}
spot::parsed_formula pf;
switch (type)
{
case parser_sere:
pf = spot::parse_infix_sere(str, env, debug, true);
break;
case parser_bool:
pf = spot::parse_infix_boolean(str, env, debug, true);
break;
case parser_ltl:
pf = spot::parse_infix_psl(str, env, debug, true);
break;
}
if (pf.errors.empty())
return pf.f.to_node_();
return parse_ap(str, location, env, error_list);
}
}
/* All tokens. */
%token START_LTL "LTL start marker"
%token START_LBT "LBT start marker"
%token START_SERE "SERE start marker"
%token START_BOOL "BOOLEAN start marker"
%token PAR_OPEN "opening parenthesis" PAR_CLOSE "closing parenthesis"
%token <str> PAR_BLOCK "(...) block"
%token <str> BRA_BLOCK "{...} block"
%token <str> BRA_BANG_BLOCK "{...}! block"
%token BRACE_OPEN "opening brace" BRACE_CLOSE "closing brace"
%token BRACE_BANG_CLOSE "closing brace-bang"
%token OP_OR "or operator" OP_XOR "xor operator"
%token OP_AND "and operator" OP_SHORT_AND "short and operator"
%token OP_IMPLIES "implication operator" OP_EQUIV "equivalent operator"
%token OP_U "until operator" OP_R "release operator"
%token OP_W "weak until operator" OP_M "strong release operator"
%token OP_F "sometimes operator" OP_G "always operator"
%token OP_X "next operator" OP_NOT "not operator"
%token OP_XREP "X[.] operator" OP_FREP "F[.] operator" OP_GREP "G[.] operator"
%token OP_STAR "star operator" OP_BSTAR "bracket star operator"
%token OP_BFSTAR "bracket fusion-star operator"
%token OP_PLUS "plus operator"
%token OP_FPLUS "fusion-plus operator"
%token OP_STAR_OPEN "opening bracket for star operator"
%token OP_FSTAR_OPEN "opening bracket for fusion-star operator"
%token OP_EQUAL_OPEN "opening bracket for equal operator"
%token OP_GOTO_OPEN "opening bracket for goto operator"
%token OP_SQBKT_CLOSE "closing bracket"
%token <num> OP_SQBKT_NUM "number for square bracket operator"
%token OP_UNBOUNDED "unbounded mark"
%token OP_SQBKT_SEP "separator for square bracket operator"
%token OP_UCONCAT "universal concat operator"
%token OP_ECONCAT "existential concat operator"
%token OP_UCONCAT_NONO "universal non-overlapping concat operator"
%token OP_ECONCAT_NONO "existential non-overlapping concat operator"
%token OP_FIRST_MATCH "first_match"
%token <str> ATOMIC_PROP "atomic proposition"
%token OP_CONCAT "concat operator" OP_FUSION "fusion operator"
%token CONST_TRUE "constant true" CONST_FALSE "constant false"
%token END_OF_INPUT "end of formula"
%token OP_POST_NEG "negative suffix" OP_POST_POS "positive suffix"
%token <num> OP_DELAY_N "SVA delay operator"
%token OP_DELAY_OPEN "opening bracket for SVA delay operator"
%token OP_DELAY_PLUS "##[+] operator"
%token OP_DELAY_STAR "##[*] operator"
/* Priorities. */
/* Low priority SERE-LTL binding operator. */
%precedence OP_UCONCAT OP_ECONCAT OP_UCONCAT_NONO OP_ECONCAT_NONO
%left OP_CONCAT
%left OP_FUSION
%left OP_DELAY_N OP_DELAY_OPEN OP_DELAY_PLUS OP_DELAY_STAR
/* Logical operators. */
%right OP_IMPLIES OP_EQUIV
%left OP_OR
%left OP_XOR
%left OP_AND OP_SHORT_AND
/* OP_STAR can be used as an AND when occurring in some LTL formula in
Wring's syntax (so it has to be close to OP_AND), and as a Kleen
Star in SERE (so it has to be close to OP_BSTAR -- luckily
U/R/M/W/F/G/X are not used in SERE). */
%left OP_STAR
/* LTL operators. */
%right OP_U OP_R OP_M OP_W
%precedence OP_F OP_G OP_FREP OP_GREP
%precedence OP_X OP_XREP
/* High priority regex operator. */
%precedence OP_BSTAR OP_STAR_OPEN OP_PLUS
OP_BFSTAR OP_FSTAR_OPEN OP_FPLUS
OP_EQUAL_OPEN OP_GOTO_OPEN
/* Not has the most important priority (after Wring's `=0' and `=1',
but as those can only attach to atomic proposition, they do not
need any precedence). */
%precedence OP_NOT
%type <ltl> subformula atomprop booleanatom sere lbtformula boolformula
%type <ltl> bracedsere parenthesedsubformula
%type <minmax> starargs fstarargs equalargs sqbracketargs gotoargs delayargs
%destructor { delete $$; } <str>
%destructor { $$->destroy(); } <ltl>
%printer { debug_stream() << *$$; } <str>
%printer { print_psl(debug_stream(), formula($$->clone())); } <ltl>
%printer { print_sere(debug_stream(), formula($$->clone())); } sere bracedsere
%printer { debug_stream() << $$; } <num>
%printer { debug_stream() << $$.min << ".." << $$.max; } <minmax>
%%
result: START_LTL subformula END_OF_INPUT
{
result = formula($2);
YYACCEPT;
}
| START_LTL enderror
{
result = nullptr;
YYABORT;
}
| START_LTL subformula enderror
{
result = formula($2);
YYACCEPT;
}
| START_LTL emptyinput
{ YYABORT; }
| START_BOOL boolformula END_OF_INPUT
{
result = formula($2);
YYACCEPT;
}
| START_BOOL enderror
{
result = nullptr;
YYABORT;
}
| START_BOOL boolformula enderror
{
result = formula($2);
YYACCEPT;
}
| START_BOOL emptyinput
{ YYABORT; }
| START_SERE sere END_OF_INPUT
{
result = formula($2);
YYACCEPT;
}
| START_SERE enderror
{
result = nullptr;
YYABORT;
}
| START_SERE sere enderror
{
result = formula($2);
YYACCEPT;
}
| START_SERE emptyinput
{ YYABORT; }
| START_LBT lbtformula END_OF_INPUT
{
result = formula($2);
YYACCEPT;
}
| START_LBT enderror
{
result = nullptr;
YYABORT;
}
| START_LBT lbtformula enderror
{
result = formula($2);
YYACCEPT;
}
| START_LBT emptyinput
{ YYABORT; }
emptyinput: END_OF_INPUT
{
error_list.emplace_back(@$, "empty input");
result = nullptr;
}
enderror: error END_OF_INPUT
{
error_list.emplace_back(@1, "ignoring trailing garbage");
}
OP_SQBKT_SEP_unbounded: OP_SQBKT_SEP | OP_SQBKT_SEP OP_UNBOUNDED
OP_SQBKT_SEP_opt: %empty
| OP_SQBKT_SEP_unbounded
error_opt: %empty
| error
/* for [*i..j] and [=i..j] */
sqbracketargs: OP_SQBKT_NUM OP_SQBKT_SEP OP_SQBKT_NUM OP_SQBKT_CLOSE
{ $$.min = $1; $$.max = $3; }
| OP_SQBKT_NUM OP_SQBKT_SEP_unbounded OP_SQBKT_CLOSE
{ $$.min = $1; $$.max = fnode::unbounded(); }
| OP_SQBKT_SEP OP_SQBKT_NUM OP_SQBKT_CLOSE
{ $$.min = 0U; $$.max = $2; }
| OP_SQBKT_SEP_opt OP_SQBKT_CLOSE
{ $$.min = 0U; $$.max = fnode::unbounded(); }
| OP_SQBKT_NUM OP_SQBKT_CLOSE
{ $$.min = $$.max = $1; }
/* [->i..j] has default values that are different than [*] and [=]. */
gotoargs: OP_GOTO_OPEN OP_SQBKT_NUM OP_SQBKT_SEP OP_SQBKT_NUM OP_SQBKT_CLOSE
{ $$.min = $2; $$.max = $4; }
| OP_GOTO_OPEN OP_SQBKT_NUM OP_SQBKT_SEP_unbounded OP_SQBKT_CLOSE
{ $$.min = $2; $$.max = fnode::unbounded(); }
| OP_GOTO_OPEN OP_SQBKT_SEP OP_SQBKT_NUM OP_SQBKT_CLOSE
{ $$.min = 1U; $$.max = $3; }
| OP_GOTO_OPEN OP_SQBKT_SEP_unbounded OP_SQBKT_CLOSE
{ $$.min = 1U; $$.max = fnode::unbounded(); }
| OP_GOTO_OPEN OP_SQBKT_CLOSE
{ $$.min = $$.max = 1U; }
| OP_GOTO_OPEN OP_SQBKT_NUM OP_SQBKT_CLOSE
{ $$.min = $$.max = $2; }
| OP_GOTO_OPEN error OP_SQBKT_CLOSE
{ error_list.emplace_back(@$, "treating this goto block as [->]");
$$.min = $$.max = 1U; }
| OP_GOTO_OPEN error_opt END_OF_INPUT
{ error_list.
emplace_back(@$, "missing closing bracket for goto operator");
$$.min = $$.max = 0U; }
kleen_star: OP_STAR | OP_BSTAR
starargs: kleen_star
{ $$.min = 0U; $$.max = fnode::unbounded(); }
| OP_PLUS
{ $$.min = 1U; $$.max = fnode::unbounded(); }
| OP_STAR_OPEN sqbracketargs
{ $$ = $2; }
| OP_STAR_OPEN error OP_SQBKT_CLOSE
{ error_list.emplace_back(@$, "treating this star block as [*]");
$$.min = 0U; $$.max = fnode::unbounded(); }
| OP_STAR_OPEN error_opt END_OF_INPUT
{ error_list.emplace_back(@$, "missing closing bracket for star");
$$.min = $$.max = 0U; }
fstarargs: OP_BFSTAR
{ $$.min = 0U; $$.max = fnode::unbounded(); }
| OP_FPLUS
{ $$.min = 1U; $$.max = fnode::unbounded(); }
| OP_FSTAR_OPEN sqbracketargs
{ $$ = $2; }
| OP_FSTAR_OPEN error OP_SQBKT_CLOSE
{ error_list.emplace_back
(@$, "treating this fusion-star block as [:*]");
$$.min = 0U; $$.max = fnode::unbounded(); }
| OP_FSTAR_OPEN error_opt END_OF_INPUT
{ error_list.emplace_back
(@$, "missing closing bracket for fusion-star");
$$.min = $$.max = 0U; }
equalargs: OP_EQUAL_OPEN sqbracketargs
{ $$ = $2; }
| OP_EQUAL_OPEN error OP_SQBKT_CLOSE
{ error_list.emplace_back(@$, "treating this equal block as [=]");
$$.min = 0U; $$.max = fnode::unbounded(); }
| OP_EQUAL_OPEN error_opt END_OF_INPUT
{ error_list.
emplace_back(@$, "missing closing bracket for equal operator");
$$.min = $$.max = 0U; }
delayargs: OP_DELAY_OPEN sqbracketargs
{ $$ = $2; }
| OP_DELAY_OPEN error OP_SQBKT_CLOSE
{ error_list.emplace_back(@$, "treating this delay block as ##1");
$$.min = $$.max = 1U; }
| OP_DELAY_OPEN error_opt END_OF_INPUT
{ error_list.
emplace_back(@$, "missing closing bracket for ##[");
$$.min = $$.max = 1U; }
| OP_DELAY_PLUS
{ $$.min = 1; $$.max = fnode::unbounded(); }
| OP_DELAY_STAR
{ $$.min = 0; $$.max = fnode::unbounded(); }
atomprop: ATOMIC_PROP
{
$$ = parse_ap(*$1, @1, parse_environment, error_list);
delete $1;
if (!$$)
YYERROR;
}
booleanatom: atomprop
| atomprop OP_POST_POS
| atomprop OP_POST_NEG
{
$$ = fnode::unop(op::Not, $1);
}
| CONST_TRUE
{ $$ = fnode::tt(); }
| CONST_FALSE
{ $$ = fnode::ff(); }
sere: booleanatom
| OP_NOT sere
{
if (sere_ensure_bool($2, @2, "`!'", error_list))
{
$$ = fnode::unop(op::Not, $2);
}
else
{
$2->destroy();
$$ = error_false_block(@$, error_list);
}
}
| bracedsere
| PAR_BLOCK
{
$$ =
try_recursive_parse(*$1, @1, parse_environment,
debug_level(), parser_sere, error_list);
delete $1;
if (!$$)
YYERROR;
}
| PAR_OPEN sere PAR_CLOSE
{ $$ = $2; }
| PAR_OPEN error PAR_CLOSE
{ error_list.
emplace_back(@$,
"treating this parenthetical block as false");
$$ = fnode::ff();
}
| PAR_OPEN sere END_OF_INPUT
{ error_list.emplace_back(@1 + @2, "missing closing parenthesis");
$$ = $2;
}
| PAR_OPEN error END_OF_INPUT
{ error_list.emplace_back(@$,
"missing closing parenthesis, "
"treating this parenthetical block as false");
$$ = fnode::ff();
}
| sere OP_AND sere
{ $$ = fnode::multop(op::AndRat, {$1, $3}); }
| sere OP_AND error
{ missing_right_binop($$, $1, @2,
"length-matching and operator"); }
| sere OP_SHORT_AND sere
{ $$ = fnode::multop(op::AndNLM, {$1, $3}); }
| sere OP_SHORT_AND error
{ missing_right_binop($$, $1, @2,
"non-length-matching and operator"); }
| sere OP_OR sere
{ $$ = fnode::multop(op::OrRat, {$1, $3}); }
| sere OP_OR error
{ missing_right_binop($$, $1, @2, "or operator"); }
| sere OP_CONCAT sere
{ $$ = fnode::multop(op::Concat, {$1, $3}); }
| sere OP_CONCAT error
{ missing_right_binop($$, $1, @2, "concat operator"); }
| sere OP_FUSION sere
{ $$ = fnode::multop(op::Fusion, {$1, $3}); }
| sere OP_FUSION error
{ missing_right_binop($$, $1, @2, "fusion operator"); }
| OP_DELAY_N sere
{ $$ = formula::sugar_delay(formula($2), $1, $1).to_node_(); }
| OP_DELAY_N error
{ missing_right_binop($$, fnode::tt(), @1, "SVA delay operator"); }
| sere OP_DELAY_N sere
{ $$ = formula::sugar_delay(formula($1), formula($3),
$2, $2).to_node_(); }
| sere OP_DELAY_N error
{ missing_right_binop($$, $1, @2, "SVA delay operator"); }
| delayargs sere %prec OP_DELAY_OPEN
{
if ($1.max < $1.min)
{
error_list.emplace_back(@1, "reversed range");
std::swap($1.max, $1.min);
}
$$ = formula::sugar_delay(formula($2),
$1.min, $1.max).to_node_();
}
| delayargs error
{ missing_right_binop($$, fnode::tt(), @1, "SVA delay operator"); }
| sere delayargs sere %prec OP_DELAY_OPEN
{
if ($2.max < $2.min)
{
error_list.emplace_back(@1, "reversed range");
std::swap($2.max, $2.min);
}
$$ = formula::sugar_delay(formula($1), formula($3),
$2.min, $2.max).to_node_();
}
| sere delayargs error
{ missing_right_binop($$, $1, @2, "SVA delay operator"); }
| starargs
{
if ($1.max < $1.min)
{
error_list.emplace_back(@1, "reversed range");
std::swap($1.max, $1.min);
}
$$ = fnode::bunop(op::Star, fnode::tt(), $1.min, $1.max);
}
| sere starargs
{
if ($2.max < $2.min)
{
error_list.emplace_back(@2, "reversed range");
std::swap($2.max, $2.min);
}
$$ = fnode::bunop(op::Star, $1, $2.min, $2.max);
}
| sere fstarargs
{
if ($2.max < $2.min)
{
error_list.emplace_back(@2, "reversed range");
std::swap($2.max, $2.min);
}
$$ = fnode::bunop(op::FStar, $1, $2.min, $2.max);
}
| sere equalargs
{
if ($2.max < $2.min)
{
error_list.emplace_back(@2, "reversed range");
std::swap($2.max, $2.min);
}
if (sere_ensure_bool($1, @1, "[=...]", error_list))
{
$$ = formula::sugar_equal(formula($1),
$2.min, $2.max).to_node_();
}
else
{
$1->destroy();
$$ = error_false_block(@$, error_list);
}
}
| sere gotoargs
{
if ($2.max < $2.min)
{
error_list.emplace_back(@2, "reversed range");
std::swap($2.max, $2.min);
}
if (sere_ensure_bool($1, @1, "[->...]", error_list))
{
$$ = formula::sugar_goto(formula($1),
$2.min, $2.max).to_node_();
}
else
{
$1->destroy();
$$ = error_false_block(@$, error_list);
}
}
| sere OP_XOR sere
{
if (sere_ensure_bool($1, @1, "`^'", error_list)
&& sere_ensure_bool($3, @3, "`^'", error_list))
{
$$ = fnode::binop(op::Xor, $1, $3);
}
else
{
$1->destroy();
$3->destroy();
$$ = error_false_block(@$, error_list);
}
}
| sere OP_XOR error
{ missing_right_binop($$, $1, @2, "xor operator"); }
| sere OP_IMPLIES sere
{
if (sere_ensure_bool($1, @1, "`->'", error_list))
{
$$ = fnode::binop(op::Implies, $1, $3);
}
else
{
$1->destroy();
$3->destroy();
$$ = error_false_block(@$, error_list);
}
}
| sere OP_IMPLIES error
{ missing_right_binop($$, $1, @2, "implication operator"); }
| sere OP_EQUIV sere
{
if (sere_ensure_bool($1, @1, "`<->'", error_list)
&& sere_ensure_bool($3, @3, "`<->'", error_list))
{
$$ = fnode::binop(op::Equiv, $1, $3);
}
else
{
$1->destroy();
$3->destroy();
$$ = error_false_block(@$, error_list);
}
}
| sere OP_EQUIV error
{ missing_right_binop($$, $1, @2, "equivalent operator"); }
| OP_FIRST_MATCH PAR_OPEN sere PAR_CLOSE
{ $$ = fnode::unop(op::first_match, $3); }
bracedsere: BRACE_OPEN sere BRACE_CLOSE
{ $$ = $2; }
| BRACE_OPEN sere error BRACE_CLOSE
{ error_list.emplace_back(@3, "ignoring this");
$$ = $2;
}
| BRACE_OPEN error BRACE_CLOSE
{ error_list.emplace_back(@$,
"treating this brace block as false");
$$ = fnode::ff();
}
| BRACE_OPEN sere END_OF_INPUT
{ error_list.emplace_back(@1 + @2,
"missing closing brace");
$$ = $2;
}
| BRACE_OPEN sere error END_OF_INPUT
{ error_list. emplace_back(@3,
"ignoring trailing garbage and missing closing brace");
$$ = $2;
}
| BRACE_OPEN error END_OF_INPUT
{ error_list.emplace_back(@$,
"missing closing brace, "
"treating this brace block as false");
$$ = fnode::ff();
}
| BRA_BLOCK
{
$$ = try_recursive_parse(*$1, @1, parse_environment,
debug_level(),
parser_sere, error_list);
delete $1;
if (!$$)
YYERROR;
}
parenthesedsubformula: PAR_BLOCK
{
$$ = try_recursive_parse(*$1, @1, parse_environment,
debug_level(), parser_ltl, error_list);
delete $1;
if (!$$)
YYERROR;
}
| PAR_OPEN subformula PAR_CLOSE
{ $$ = $2; }
| PAR_OPEN subformula error PAR_CLOSE
{ error_list.emplace_back(@3, "ignoring this");
$$ = $2;
}
| PAR_OPEN error PAR_CLOSE
{ error_list.emplace_back(@$,
"treating this parenthetical block as false");
$$ = fnode::ff();
}
| PAR_OPEN subformula END_OF_INPUT
{ error_list.emplace_back(@1 + @2, "missing closing parenthesis");
$$ = $2;
}
| PAR_OPEN subformula error END_OF_INPUT
{ error_list.emplace_back(@3,
"ignoring trailing garbage and missing closing parenthesis");
$$ = $2;
}
| PAR_OPEN error END_OF_INPUT
{ error_list.emplace_back(@$,
"missing closing parenthesis, "
"treating this parenthetical block as false");
$$ = fnode::ff();
}
boolformula: booleanatom
| PAR_BLOCK
{
$$ = try_recursive_parse(*$1, @1, parse_environment,
debug_level(),
parser_bool, error_list);
delete $1;
if (!$$)
YYERROR;
}
| PAR_OPEN boolformula PAR_CLOSE
{ $$ = $2; }
| PAR_OPEN boolformula error PAR_CLOSE
{ error_list.emplace_back(@3, "ignoring this");
$$ = $2;
}
| PAR_OPEN error PAR_CLOSE
{ error_list.emplace_back(@$,
"treating this parenthetical block as false");
$$ = fnode::ff();
}
| PAR_OPEN boolformula END_OF_INPUT
{ error_list.emplace_back(@1 + @2,
"missing closing parenthesis");
$$ = $2;
}
| PAR_OPEN boolformula error END_OF_INPUT
{ error_list.emplace_back(@3,
"ignoring trailing garbage and missing closing parenthesis");
$$ = $2;
}
| PAR_OPEN error END_OF_INPUT
{ error_list.emplace_back(@$,
"missing closing parenthesis, "
"treating this parenthetical block as false");
$$ = fnode::ff();
}
| boolformula OP_AND boolformula
{ $$ = fnode::multop(op::And, {$1, $3}); }
| boolformula OP_AND error
{ missing_right_binop($$, $1, @2, "and operator"); }
| boolformula OP_SHORT_AND boolformula
{ $$ = fnode::multop(op::And, {$1, $3}); }
| boolformula OP_SHORT_AND error
{ missing_right_binop($$, $1, @2, "and operator"); }
| boolformula OP_STAR boolformula
{ $$ = fnode::multop(op::And, {$1, $3}); }
| boolformula OP_STAR error
{ missing_right_binop($$, $1, @2, "and operator"); }
| boolformula OP_OR boolformula
{ $$ = fnode::multop(op::Or, {$1, $3}); }
| boolformula OP_OR error
{ missing_right_binop($$, $1, @2, "or operator"); }
| boolformula OP_XOR boolformula
{ $$ = fnode::binop(op::Xor, $1, $3); }
| boolformula OP_XOR error
{ missing_right_binop($$, $1, @2, "xor operator"); }
| boolformula OP_IMPLIES boolformula
{ $$ = fnode::binop(op::Implies, $1, $3); }
| boolformula OP_IMPLIES error
{ missing_right_binop($$, $1, @2, "implication operator"); }
| boolformula OP_EQUIV boolformula
{ $$ = fnode::binop(op::Equiv, $1, $3); }
| boolformula OP_EQUIV error
{ missing_right_binop($$, $1, @2, "equivalent operator"); }
| OP_NOT boolformula
{ $$ = fnode::unop(op::Not, $2); }
| OP_NOT error
{ missing_right_op($$, @1, "not operator"); }
subformula: booleanatom
| parenthesedsubformula
| subformula OP_AND subformula
{ $$ = fnode::multop(op::And, {$1, $3}); }
| subformula OP_AND error
{ missing_right_binop($$, $1, @2, "and operator"); }
| subformula OP_SHORT_AND subformula
{ $$ = fnode::multop(op::And, {$1, $3}); }
| subformula OP_SHORT_AND error
{ missing_right_binop($$, $1, @2, "and operator"); }
| subformula OP_STAR subformula
{ $$ = fnode::multop(op::And, {$1, $3}); }
| subformula OP_STAR error
{ missing_right_binop($$, $1, @2, "and operator"); }
| subformula OP_OR subformula
{ $$ = fnode::multop(op::Or, {$1, $3}); }
| subformula OP_OR error
{ missing_right_binop($$, $1, @2, "or operator"); }
| subformula OP_XOR subformula
{ $$ = fnode::binop(op::Xor, $1, $3); }
| subformula OP_XOR error
{ missing_right_binop($$, $1, @2, "xor operator"); }
| subformula OP_IMPLIES subformula
{ $$ = fnode::binop(op::Implies, $1, $3); }
| subformula OP_IMPLIES error
{ missing_right_binop($$, $1, @2, "implication operator"); }
| subformula OP_EQUIV subformula
{ $$ = fnode::binop(op::Equiv, $1, $3); }
| subformula OP_EQUIV error
{ missing_right_binop($$, $1, @2, "equivalent operator"); }
| subformula OP_U subformula
{ $$ = fnode::binop(op::U, $1, $3); }
| subformula OP_U error
{ missing_right_binop($$, $1, @2, "until operator"); }
| subformula OP_R subformula
{ $$ = fnode::binop(op::R, $1, $3); }
| subformula OP_R error
{ missing_right_binop($$, $1, @2, "release operator"); }
| subformula OP_W subformula
{ $$ = fnode::binop(op::W, $1, $3); }
| subformula OP_W error
{ missing_right_binop($$, $1, @2, "weak until operator"); }
| subformula OP_M subformula
{ $$ = fnode::binop(op::M, $1, $3); }
| subformula OP_M error
{ missing_right_binop($$, $1, @2, "strong release operator"); }
| OP_F subformula
{ $$ = fnode::unop(op::F, $2); }
| OP_F error
{ missing_right_op($$, @1, "sometimes operator"); }
| OP_FREP OP_SQBKT_NUM OP_SQBKT_CLOSE subformula %prec OP_FREP
{ $$ = fnode::nested_unop_range(op::X, op::Or, $2, $2, $4);
error_list.emplace_back(@1 + @3,
"F[n:m] expects two parameters");
}
| OP_FREP OP_SQBKT_NUM OP_SQBKT_SEP OP_SQBKT_NUM OP_SQBKT_CLOSE
subformula %prec OP_FREP
{ $$ = fnode::nested_unop_range(op::X, op::Or, $2, $4, $6); }
| OP_FREP OP_SQBKT_NUM OP_SQBKT_SEP_unbounded OP_SQBKT_CLOSE
subformula %prec OP_FREP
{ $$ = fnode::nested_unop_range(op::X, op::Or, $2,
fnode::unbounded(), $5); }
| OP_FREP OP_SQBKT_NUM OP_SQBKT_SEP OP_SQBKT_NUM OP_SQBKT_CLOSE
error
{ missing_right_op($$, @1 + @5, "F[.] operator"); }
| OP_FREP error_opt END_OF_INPUT
{ error_list.emplace_back(@$, "missing closing bracket for F[.]");
$$ = fnode::ff(); }
| OP_FREP error OP_SQBKT_CLOSE subformula %prec OP_FREP
{ error_list.emplace_back(@1 + @3,
"treating this F[.] as a simple F");
$$ = fnode::unop(op::F, $4); }
| OP_G subformula
{ $$ = fnode::unop(op::G, $2); }
| OP_G error
{ missing_right_op($$, @1, "always operator"); }
| OP_GREP OP_SQBKT_NUM OP_SQBKT_SEP OP_SQBKT_NUM OP_SQBKT_CLOSE
subformula %prec OP_GREP
{ $$ = fnode::nested_unop_range(op::X, op::And, $2, $4, $6); }
| OP_GREP OP_SQBKT_NUM OP_SQBKT_SEP_unbounded OP_SQBKT_CLOSE
subformula %prec OP_GREP
{ $$ = fnode::nested_unop_range(op::X, op::And, $2,
fnode::unbounded(), $5); }
| OP_GREP OP_SQBKT_NUM OP_SQBKT_CLOSE subformula %prec OP_GREP
{ $$ = fnode::nested_unop_range(op::X, op::And, $2, $2, $4);
error_list.emplace_back(@1 + @3,
"G[n:m] expects two parameters");
}
| OP_GREP OP_SQBKT_NUM OP_SQBKT_SEP OP_SQBKT_NUM OP_SQBKT_CLOSE
error
{ missing_right_op($$, @1 + @5, "G[.] operator"); }
| OP_GREP error_opt END_OF_INPUT
{ error_list.emplace_back(@$, "missing closing bracket for G[.]");
$$ = fnode::ff(); }
| OP_GREP error OP_SQBKT_CLOSE subformula %prec OP_GREP
{ error_list.emplace_back(@1 + @3,
"treating this G[.] as a simple G");
$$ = fnode::unop(op::F, $4); }
| OP_X subformula
{ $$ = fnode::unop(op::X, $2); }
| OP_X error
{ missing_right_op($$, @1, "next operator"); }
| OP_XREP OP_SQBKT_NUM OP_SQBKT_CLOSE subformula %prec OP_XREP
{ $$ = fnode::nested_unop_range(op::X, op::Or, $2, $2, $4); }
| OP_XREP OP_SQBKT_NUM OP_SQBKT_CLOSE error
{ missing_right_op($$, @1 + @3, "X[.] operator"); }
| OP_XREP error OP_SQBKT_CLOSE subformula %prec OP_XREP
{ error_list.emplace_back(@$, "treating this X[.] as a simple X");
$$ = fnode::unop(op::X, $4); }
| OP_XREP error_opt END_OF_INPUT
{ error_list.emplace_back(@$, "missing closing bracket for X[.]");
$$ = fnode::ff(); }
| OP_NOT subformula
{ $$ = fnode::unop(op::Not, $2); }
| OP_NOT error
{ missing_right_op($$, @1, "not operator"); }
| bracedsere
{ $$ = fnode::unop(op::Closure, $1); }
| bracedsere OP_UCONCAT subformula
{ $$ = fnode::binop(op::UConcat, $1, $3); }
| bracedsere parenthesedsubformula
{ $$ = fnode::binop(op::UConcat, $1, $2); }
| bracedsere OP_UCONCAT error
{ missing_right_binop_hard($$, $1, @2,
"universal overlapping concat operator"); }
| bracedsere OP_ECONCAT subformula
{ $$ = fnode::binop(op::EConcat, $1, $3); }
| bracedsere OP_ECONCAT error
{ missing_right_binop_hard($$, $1, @2,
"existential overlapping concat operator");
}
| bracedsere OP_UCONCAT_NONO subformula
/* {SERE}[]=>EXP = {SERE;1}[]->EXP */
{ $$ = fnode::binop(op::UConcat,
fnode::multop(op::Concat, {$1, fnode::tt()}),
$3); }
| bracedsere OP_UCONCAT_NONO error
{ missing_right_binop_hard($$, $1, @2,
"universal non-overlapping concat operator");
}
| bracedsere OP_ECONCAT_NONO subformula
/* {SERE}<>=>EXP = {SERE;1}<>->EXP */
{ $$ = fnode::binop(op::EConcat,
fnode::multop(op::Concat, {$1, fnode::tt()}),
$3); }
| bracedsere OP_ECONCAT_NONO error
{ missing_right_binop_hard($$, $1, @2,
"existential non-overlapping concat operator");
}
| BRACE_OPEN sere BRACE_BANG_CLOSE
/* {SERE}! = {SERE} <>-> 1 */
{ $$ = fnode::binop(op::EConcat, $2, fnode::tt()); }
| BRA_BANG_BLOCK
{
$$ = try_recursive_parse(*$1, @1, parse_environment,
debug_level(),
parser_sere, error_list);
delete $1;
if (!$$)
YYERROR;
$$ = fnode::binop(op::EConcat, $$, fnode::tt());
}
lbtformula: atomprop
| '!' lbtformula
{ $$ = fnode::unop(op::Not, $2); }
| '&' lbtformula lbtformula
{ $$ = fnode::multop(op::And, {$2, $3}); }
| '|' lbtformula lbtformula
{ $$ = fnode::multop(op::Or, {$2, $3}); }
| '^' lbtformula lbtformula
{ $$ = fnode::binop(op::Xor, $2, $3); }
| 'i' lbtformula lbtformula
{ $$ = fnode::binop(op::Implies, $2, $3); }
| 'e' lbtformula lbtformula
{ $$ = fnode::binop(op::Equiv, $2, $3); }
| 'X' lbtformula
{ $$ = fnode::unop(op::X, $2); }
| 'F' lbtformula
{ $$ = fnode::unop(op::F, $2); }
| 'G' lbtformula
{ $$ = fnode::unop(op::G, $2); }
| 'U' lbtformula lbtformula
{ $$ = fnode::binop(op::U, $2, $3); }
| 'V' lbtformula lbtformula
{ $$ = fnode::binop(op::R, $2, $3); }
| 'R' lbtformula lbtformula
{ $$ = fnode::binop(op::R, $2, $3); }
| 'W' lbtformula lbtformula
{ $$ = fnode::binop(op::W, $2, $3); }
| 'M' lbtformula lbtformula
{ $$ = fnode::binop(op::M, $2, $3); }
| 't'
{ $$ = fnode::tt(); }
| 'f'
{ $$ = fnode::ff(); }
;
%%
void
tlyy::parser::error(const location_type& location, const std::string& message)
{
error_list.emplace_back(location, message);
}
namespace spot
{
parsed_formula
parse_infix_psl(const std::string& ltl_string,
environment& env,
bool debug, bool lenient)
{
parsed_formula result(ltl_string);
flex_set_buffer(ltl_string,
tlyy::parser::token::START_LTL,
lenient);
tlyy::parser parser(result.errors, env, result.f);
parser.set_debug_level(debug);
parser.parse();
flex_unset_buffer();
return result;
}
parsed_formula
parse_infix_boolean(const std::string& ltl_string,
environment& env,
bool debug, bool lenient)
{
parsed_formula result(ltl_string);
flex_set_buffer(ltl_string,
tlyy::parser::token::START_BOOL,
lenient);
tlyy::parser parser(result.errors, env, result.f);
parser.set_debug_level(debug);
parser.parse();
flex_unset_buffer();
return result;
}
parsed_formula
parse_prefix_ltl(const std::string& ltl_string,
environment& env,
bool debug)
{
parsed_formula result(ltl_string);
flex_set_buffer(ltl_string,
tlyy::parser::token::START_LBT,
false);
tlyy::parser parser(result.errors, env, result.f);
parser.set_debug_level(debug);
parser.parse();
flex_unset_buffer();
return result;
}
parsed_formula
parse_infix_sere(const std::string& sere_string,
environment& env,
bool debug,
bool lenient)
{
parsed_formula result(sere_string);
flex_set_buffer(sere_string,
tlyy::parser::token::START_SERE,
lenient);
tlyy::parser parser(result.errors, env, result.f);
parser.set_debug_level(debug);
parser.parse();
flex_unset_buffer();
return result;
}
formula
parse_formula(const std::string& ltl_string, environment& env)
{
parsed_formula pf = parse_infix_psl(ltl_string, env);
std::ostringstream s;
if (pf.format_errors(s))
{
parsed_formula pg = parse_prefix_ltl(ltl_string, env);
if (pg.errors.empty())
return pg.f;
else
throw parse_error(s.str());
}
return pf.f;
}
}
// Local Variables:
// mode: c++
// End: