* src/misc/Makefile.am: Add them. * src/tgbaalgos/gtec/gtec.cc, src/tgbaalgos/gtec/gtec.hh: Add a "vmsize" statistic.
586 lines
16 KiB
C++
586 lines
16 KiB
C++
// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire d'Informatique de
|
|
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
|
|
// Université Pierre et Marie Curie.
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Spot; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
|
// 02111-1307, USA.
|
|
|
|
#include "gtec.hh"
|
|
#include "ce.hh"
|
|
#include "misc/memusage.hh"
|
|
|
|
namespace spot
|
|
{
|
|
namespace
|
|
{
|
|
typedef std::pair<const spot::state*, tgba_succ_iterator*> pair_state_iter;
|
|
}
|
|
|
|
couvreur99_check::couvreur99_check(const tgba* a,
|
|
option_map o,
|
|
const numbered_state_heap_factory* nshf)
|
|
: emptiness_check(a, o),
|
|
removed_components(0)
|
|
{
|
|
poprem_ = o.get("poprem", 1);
|
|
ecs_ = new couvreur99_check_status(a, nshf);
|
|
stats["removed components"] =
|
|
static_cast<spot::unsigned_statistics::unsigned_fun>
|
|
(&couvreur99_check::get_removed_components);
|
|
stats["vmsize"] =
|
|
static_cast<spot::unsigned_statistics::unsigned_fun>
|
|
(&couvreur99_check::get_vmsize);
|
|
}
|
|
|
|
couvreur99_check::~couvreur99_check()
|
|
{
|
|
delete ecs_;
|
|
}
|
|
|
|
unsigned
|
|
couvreur99_check::get_removed_components() const
|
|
{
|
|
return removed_components;
|
|
}
|
|
|
|
unsigned
|
|
couvreur99_check::get_vmsize() const
|
|
{
|
|
int size = memusage();
|
|
if (size > 0)
|
|
return size;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
couvreur99_check::remove_component(const state* from)
|
|
{
|
|
++removed_components;
|
|
// If rem has been updated, removing states is very easy.
|
|
if (poprem_)
|
|
{
|
|
assert(!ecs_->root.rem().empty());
|
|
dec_depth(ecs_->root.rem().size());
|
|
std::list<const state*>::iterator i;
|
|
for (i = ecs_->root.rem().begin(); i != ecs_->root.rem().end(); ++i)
|
|
{
|
|
numbered_state_heap::state_index_p spi = ecs_->h->index(*i);
|
|
assert(spi.first == *i);
|
|
assert(*spi.second != -1);
|
|
*spi.second = -1;
|
|
}
|
|
// ecs_->root.rem().clear();
|
|
return;
|
|
}
|
|
|
|
// Remove from H all states which are reachable from state FROM.
|
|
|
|
// Stack of iterators towards states to remove.
|
|
std::stack<tgba_succ_iterator*> to_remove;
|
|
|
|
// Remove FROM itself, and prepare to remove its successors.
|
|
// (FROM should be in H, otherwise it means all reachable
|
|
// states from FROM have already been removed and there is no
|
|
// point in calling remove_component.)
|
|
numbered_state_heap::state_index_p spi = ecs_->h->index(from);
|
|
assert(spi.first == from);
|
|
assert(*spi.second != -1);
|
|
*spi.second = -1;
|
|
tgba_succ_iterator* i = ecs_->aut->succ_iter(from);
|
|
|
|
for (;;)
|
|
{
|
|
// Remove each destination of this iterator.
|
|
for (i->first(); !i->done(); i->next())
|
|
{
|
|
inc_transitions();
|
|
|
|
state* s = i->current_state();
|
|
numbered_state_heap::state_index_p spi = ecs_->h->index(s);
|
|
|
|
// This state is not necessary in H, because if we were
|
|
// doing inclusion checking during the emptiness-check
|
|
// (redefining find()), the index `s' can be included in a
|
|
// larger state and will not be found by index(). We can
|
|
// safely ignore such states.
|
|
if (!spi.first)
|
|
continue;
|
|
|
|
if (*spi.second != -1)
|
|
{
|
|
*spi.second = -1;
|
|
to_remove.push(ecs_->aut->succ_iter(spi.first));
|
|
}
|
|
}
|
|
delete i;
|
|
if (to_remove.empty())
|
|
break;
|
|
i = to_remove.top();
|
|
to_remove.pop();
|
|
}
|
|
}
|
|
|
|
emptiness_check_result*
|
|
couvreur99_check::check()
|
|
{
|
|
// We use five main data in this algorithm:
|
|
// * couvreur99_check::root, a stack of strongly connected components (SCC),
|
|
// * couvreur99_check::h, a hash of all visited nodes, with their order,
|
|
// (it is called "Hash" in Couvreur's paper)
|
|
// * arc, a stack of acceptance conditions between each of these SCC,
|
|
std::stack<bdd> arc;
|
|
// * num, the number of visited nodes. Used to set the order of each
|
|
// visited node,
|
|
int num = 1;
|
|
// * todo, the depth-first search stack. This holds pairs of the
|
|
// form (STATE, ITERATOR) where ITERATOR is a tgba_succ_iterator
|
|
// over the successors of STATE. In our use, ITERATOR should
|
|
// always be freed when TODO is popped, but STATE should not because
|
|
// it is also used as a key in H.
|
|
std::stack<pair_state_iter> todo;
|
|
|
|
// Setup depth-first search from the initial state.
|
|
{
|
|
state* init = ecs_->aut->get_init_state();
|
|
ecs_->h->insert(init, 1);
|
|
ecs_->root.push(1);
|
|
arc.push(bddfalse);
|
|
tgba_succ_iterator* iter = ecs_->aut->succ_iter(init);
|
|
iter->first();
|
|
todo.push(pair_state_iter(init, iter));
|
|
inc_depth();
|
|
}
|
|
|
|
while (!todo.empty())
|
|
{
|
|
assert(ecs_->root.size() == arc.size());
|
|
|
|
// We are looking at the next successor in SUCC.
|
|
tgba_succ_iterator* succ = todo.top().second;
|
|
|
|
// If there is no more successor, backtrack.
|
|
if (succ->done())
|
|
{
|
|
// We have explored all successors of state CURR.
|
|
const state* curr = todo.top().first;
|
|
|
|
// Backtrack TODO.
|
|
todo.pop();
|
|
dec_depth();
|
|
|
|
// If poprem is used, fill rem with any component removed,
|
|
// so that remove_component() does not have to traverse
|
|
// the SCC again.
|
|
numbered_state_heap::state_index_p spi = ecs_->h->index(curr);
|
|
assert(spi.first);
|
|
if (poprem_)
|
|
{
|
|
ecs_->root.rem().push_front(spi.first);
|
|
inc_depth();
|
|
}
|
|
// When backtracking the root of an SCC, we must also
|
|
// remove that SCC from the ARC/ROOT stacks. We must
|
|
// discard from H all reachable states from this SCC.
|
|
assert(!ecs_->root.empty());
|
|
if (ecs_->root.top().index == *spi.second)
|
|
{
|
|
assert(!arc.empty());
|
|
arc.pop();
|
|
remove_component(curr);
|
|
ecs_->root.pop();
|
|
}
|
|
|
|
delete succ;
|
|
// Do not delete CURR: it is a key in H.
|
|
continue;
|
|
}
|
|
|
|
// We have a successor to look at.
|
|
inc_transitions();
|
|
// Fetch the values (destination state, acceptance conditions
|
|
// of the arc) we are interested in...
|
|
const state* dest = succ->current_state();
|
|
bdd acc = succ->current_acceptance_conditions();
|
|
// ... and point the iterator to the next successor, for
|
|
// the next iteration.
|
|
succ->next();
|
|
// We do not need SUCC from now on.
|
|
|
|
// Are we going to a new state?
|
|
numbered_state_heap::state_index_p spi = ecs_->h->find(dest);
|
|
if (!spi.first)
|
|
{
|
|
// Yes. Number it, stack it, and register its successors
|
|
// for later processing.
|
|
ecs_->h->insert(dest, ++num);
|
|
ecs_->root.push(num);
|
|
arc.push(acc);
|
|
tgba_succ_iterator* iter = ecs_->aut->succ_iter(dest);
|
|
iter->first();
|
|
todo.push(pair_state_iter(dest, iter));
|
|
inc_depth();
|
|
continue;
|
|
}
|
|
|
|
// If we have reached a dead component, ignore it.
|
|
if (*spi.second == -1)
|
|
continue;
|
|
|
|
// Now this is the most interesting case. We have reached a
|
|
// state S1 which is already part of a non-dead SCC. Any such
|
|
// non-dead SCC has necessarily been crossed by our path to
|
|
// this state: there is a state S2 in our path which belongs
|
|
// to this SCC too. We are going to merge all states between
|
|
// this S1 and S2 into this SCC.
|
|
//
|
|
// This merge is easy to do because the order of the SCC in
|
|
// ROOT is ascending: we just have to merge all SCCs from the
|
|
// top of ROOT that have an index greater to the one of
|
|
// the SCC of S2 (called the "threshold").
|
|
int threshold = *spi.second;
|
|
std::list<const state*> rem;
|
|
while (threshold < ecs_->root.top().index)
|
|
{
|
|
assert(!ecs_->root.empty());
|
|
assert(!arc.empty());
|
|
acc |= ecs_->root.top().condition;
|
|
acc |= arc.top();
|
|
rem.splice(rem.end(), ecs_->root.rem());
|
|
ecs_->root.pop();
|
|
arc.pop();
|
|
}
|
|
// Note that we do not always have
|
|
// threshold == ecs_->root.top().index
|
|
// after this loop, the SCC whose index is threshold might have
|
|
// been merged with a lower SCC.
|
|
|
|
// Accumulate all acceptance conditions into the merged SCC.
|
|
ecs_->root.top().condition |= acc;
|
|
ecs_->root.rem().splice(ecs_->root.rem().end(), rem);
|
|
|
|
if (ecs_->root.top().condition
|
|
== ecs_->aut->all_acceptance_conditions())
|
|
{
|
|
// We have found an accepting SCC.
|
|
// Release all iterators in TODO.
|
|
while (!todo.empty())
|
|
{
|
|
delete todo.top().second;
|
|
todo.pop();
|
|
dec_depth();
|
|
}
|
|
// Use this state to start the computation of an accepting
|
|
// cycle.
|
|
ecs_->cycle_seed = spi.first;
|
|
set_states(ecs_->states());
|
|
return new couvreur99_check_result(ecs_, options());
|
|
}
|
|
}
|
|
// This automaton recognizes no word.
|
|
set_states(ecs_->states());
|
|
return 0;
|
|
}
|
|
|
|
const couvreur99_check_status*
|
|
couvreur99_check::result() const
|
|
{
|
|
return ecs_;
|
|
}
|
|
|
|
std::ostream&
|
|
couvreur99_check::print_stats(std::ostream& os) const
|
|
{
|
|
ecs_->print_stats(os);
|
|
os << transitions() << " transitions explored" << std::endl;
|
|
os << max_depth() << " items max in DFS search stack" << std::endl;
|
|
return os;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
couvreur99_check_shy::todo_item::todo_item(const state* s, int n,
|
|
couvreur99_check_shy* shy)
|
|
: s(s), n(n)
|
|
{
|
|
tgba_succ_iterator* iter = shy->ecs_->aut->succ_iter(s);
|
|
for (iter->first(); !iter->done(); iter->next(), shy->inc_transitions())
|
|
{
|
|
q.push_back(successor(iter->current_acceptance_conditions(),
|
|
iter->current_state()));
|
|
shy->inc_depth();
|
|
}
|
|
delete iter;
|
|
}
|
|
|
|
couvreur99_check_shy::couvreur99_check_shy(const tgba* a,
|
|
option_map o,
|
|
const numbered_state_heap_factory*
|
|
nshf)
|
|
: couvreur99_check(a, o, nshf), num(1)
|
|
{
|
|
group_ = o.get("group", 1);
|
|
group2_ = o.get("group2", 0);
|
|
group_ |= group2_;
|
|
onepass_ = o.get("onepass", 0);
|
|
|
|
// Setup depth-first search from the initial state.
|
|
const state* i = ecs_->aut->get_init_state();
|
|
ecs_->h->insert(i, ++num);
|
|
ecs_->root.push(num);
|
|
todo.push_back(todo_item(i, num, this));
|
|
inc_depth(1);
|
|
}
|
|
|
|
couvreur99_check_shy::~couvreur99_check_shy()
|
|
{
|
|
}
|
|
|
|
void
|
|
couvreur99_check_shy::clear_todo()
|
|
{
|
|
// We must delete all states appearing in TODO
|
|
// unless they are used as keys in H.
|
|
while (!todo.empty())
|
|
{
|
|
succ_queue& queue = todo.back().q;
|
|
for (succ_queue::iterator q = queue.begin();
|
|
q != queue.end(); ++q)
|
|
{
|
|
// Delete the state if it is a clone of a
|
|
// state in the heap...
|
|
numbered_state_heap::state_index_p spi = ecs_->h->index(q->s);
|
|
// ... or if it is an unknown state.
|
|
if (spi.first == 0)
|
|
delete q->s;
|
|
}
|
|
dec_depth(todo.back().q.size() + 1);
|
|
todo.pop_back();
|
|
}
|
|
dec_depth(ecs_->root.clear_rem());
|
|
assert(depth() == 0);
|
|
}
|
|
|
|
emptiness_check_result*
|
|
couvreur99_check_shy::check()
|
|
{
|
|
// Position in the loop seeking known successors.
|
|
pos = todo.back().q.begin();
|
|
|
|
for (;;)
|
|
{
|
|
assert(ecs_->root.size() == 1 + arc.size());
|
|
|
|
// Get the successors of the current state.
|
|
succ_queue& queue = todo.back().q;
|
|
|
|
// If there is no more successor, backtrack.
|
|
if (queue.empty())
|
|
{
|
|
|
|
// We have explored all successors of state CURR.
|
|
const state* curr = todo.back().s;
|
|
int index = todo.back().n;
|
|
|
|
// Backtrack TODO.
|
|
todo.pop_back();
|
|
dec_depth();
|
|
|
|
if (todo.empty())
|
|
{
|
|
// This automaton recognizes no word.
|
|
set_states(ecs_->states());
|
|
assert(poprem_ || depth() == 0);
|
|
return 0;
|
|
}
|
|
|
|
pos = todo.back().q.begin();
|
|
|
|
// If poprem is used, fill rem with any component removed,
|
|
// so that remove_component() does not have to traverse
|
|
// the SCC again.
|
|
if (poprem_)
|
|
{
|
|
numbered_state_heap::state_index_p spi = ecs_->h->index(curr);
|
|
assert(spi.first);
|
|
ecs_->root.rem().push_front(spi.first);
|
|
inc_depth();
|
|
}
|
|
|
|
// When backtracking the root of an SCC, we must also
|
|
// remove that SCC from the ARC/ROOT stacks. We must
|
|
// discard from H all reachable states from this SCC.
|
|
assert(!ecs_->root.empty());
|
|
if (ecs_->root.top().index == index)
|
|
{
|
|
assert(!arc.empty());
|
|
arc.pop();
|
|
remove_component(curr);
|
|
ecs_->root.pop();
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// We always make a first pass over the successors of a state
|
|
// to check whether it contains some state we have already seen.
|
|
// This way we hope to merge the most SCCs before stacking new
|
|
// states.
|
|
//
|
|
// So are we checking for known states ? If yes, POS tells us
|
|
// which state we are considering. Otherwise just pick the
|
|
// first one.
|
|
succ_queue::iterator old;
|
|
if (onepass_)
|
|
pos = queue.end();
|
|
if (pos == queue.end())
|
|
old = queue.begin();
|
|
else
|
|
old = pos;
|
|
successor succ = *old;
|
|
// Beware: the implementation of find_state in ifage/gspn/ssp.cc
|
|
// uses POS and modify QUEUE.
|
|
numbered_state_heap::state_index_p sip = find_state(succ.s);
|
|
if (pos != queue.end())
|
|
++pos;
|
|
int* i = sip.second;
|
|
|
|
if (!i)
|
|
{
|
|
// It's a new state.
|
|
// If we are seeking known states, just skip it.
|
|
if (pos != queue.end())
|
|
continue;
|
|
// Otherwise, number it and stack it so we recurse.
|
|
queue.erase(old);
|
|
dec_depth();
|
|
ecs_->h->insert(succ.s, ++num);
|
|
ecs_->root.push(num);
|
|
arc.push(succ.acc);
|
|
todo.push_back(todo_item(succ.s, num, this));
|
|
pos = todo.back().q.begin();
|
|
inc_depth();
|
|
continue;
|
|
}
|
|
|
|
queue.erase(old);
|
|
dec_depth();
|
|
|
|
// Skip dead states.
|
|
if (*i == -1)
|
|
continue;
|
|
|
|
// Now this is the most interesting case. We have
|
|
// reached a state S1 which is already part of a
|
|
// non-dead SCC. Any such non-dead SCC has
|
|
// necessarily been crossed by our path to this
|
|
// state: there is a state S2 in our path which
|
|
// belongs to this SCC too. We are going to merge
|
|
// all states between this S1 and S2 into this
|
|
// SCC.
|
|
//
|
|
// This merge is easy to do because the order of
|
|
// the SCC in ROOT is ascending: we just have to
|
|
// merge all SCCs from the top of ROOT that have
|
|
// an index greater to the one of the SCC of S2
|
|
// (called the "threshold").
|
|
int threshold = *i;
|
|
std::list<const state*> rem;
|
|
bdd acc = succ.acc;
|
|
while (threshold < ecs_->root.top().index)
|
|
{
|
|
assert(!ecs_->root.empty());
|
|
assert(!arc.empty());
|
|
acc |= ecs_->root.top().condition;
|
|
acc |= arc.top();
|
|
rem.splice(rem.end(), ecs_->root.rem());
|
|
ecs_->root.pop();
|
|
arc.pop();
|
|
}
|
|
// Note that we do not always have
|
|
// threshold == ecs_->root.top().index
|
|
// after this loop, the SCC whose index is threshold
|
|
// might have been merged with a lower SCC.
|
|
|
|
// Accumulate all acceptance conditions into the
|
|
// merged SCC.
|
|
ecs_->root.top().condition |= acc;
|
|
ecs_->root.rem().splice(ecs_->root.rem().end(), rem);
|
|
|
|
// Have we found all acceptance conditions?
|
|
if (ecs_->root.top().condition
|
|
== ecs_->aut->all_acceptance_conditions())
|
|
{
|
|
// Use this state to start the computation of an accepting
|
|
// cycle.
|
|
ecs_->cycle_seed = sip.first;
|
|
|
|
// We have found an accepting SCC. Clean up TODO.
|
|
clear_todo();
|
|
set_states(ecs_->states());
|
|
return new couvreur99_check_result(ecs_, options());
|
|
}
|
|
// Group the pending successors of formed SCC if requested.
|
|
if (group_)
|
|
{
|
|
assert(todo.back().s);
|
|
while (ecs_->root.top().index < todo.back().n)
|
|
{
|
|
todo_list::reverse_iterator prev = todo.rbegin();
|
|
todo_list::reverse_iterator last = prev++;
|
|
// If group2 is used we insert the last->q in front
|
|
// of prev->q so that the states in prev->q are checked
|
|
// for existence again after we have done with the states
|
|
// of last->q. Otherwise we just append to the end.
|
|
prev->q.splice(group2_ ? prev->q.begin() : prev->q.end(),
|
|
last->q);
|
|
|
|
if (poprem_)
|
|
{
|
|
numbered_state_heap::state_index_p spi =
|
|
ecs_->h->index(todo.back().s);
|
|
assert(spi.first);
|
|
ecs_->root.rem().push_front(spi.first);
|
|
// Don't change the stack depth, since
|
|
// we are just moving the state from TODO to REM.
|
|
}
|
|
else
|
|
{
|
|
dec_depth();
|
|
}
|
|
todo.pop_back();
|
|
}
|
|
pos = todo.back().q.begin();
|
|
}
|
|
}
|
|
}
|
|
|
|
numbered_state_heap::state_index_p
|
|
couvreur99_check_shy::find_state(const state* s)
|
|
{
|
|
return ecs_->h->find(s);
|
|
}
|
|
|
|
emptiness_check*
|
|
couvreur99(const tgba* a,
|
|
option_map o,
|
|
const numbered_state_heap_factory* nshf)
|
|
{
|
|
if (o.get("shy"))
|
|
return new couvreur99_check_shy(a, o, nshf);
|
|
return new couvreur99_check(a, o, nshf);
|
|
}
|
|
|
|
}
|