spot/src/tgbaalgos/gtec/gtec.cc
Alexandre Duret-Lutz c2bc76816b * src/misc/memusage.cc, src/misc/memusage.hh: New files.
* src/misc/Makefile.am: Add them.
* src/tgbaalgos/gtec/gtec.cc,
src/tgbaalgos/gtec/gtec.hh: Add a "vmsize" statistic.
2008-02-25 14:36:58 +01:00

586 lines
16 KiB
C++

// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire d'Informatique de
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#include "gtec.hh"
#include "ce.hh"
#include "misc/memusage.hh"
namespace spot
{
namespace
{
typedef std::pair<const spot::state*, tgba_succ_iterator*> pair_state_iter;
}
couvreur99_check::couvreur99_check(const tgba* a,
option_map o,
const numbered_state_heap_factory* nshf)
: emptiness_check(a, o),
removed_components(0)
{
poprem_ = o.get("poprem", 1);
ecs_ = new couvreur99_check_status(a, nshf);
stats["removed components"] =
static_cast<spot::unsigned_statistics::unsigned_fun>
(&couvreur99_check::get_removed_components);
stats["vmsize"] =
static_cast<spot::unsigned_statistics::unsigned_fun>
(&couvreur99_check::get_vmsize);
}
couvreur99_check::~couvreur99_check()
{
delete ecs_;
}
unsigned
couvreur99_check::get_removed_components() const
{
return removed_components;
}
unsigned
couvreur99_check::get_vmsize() const
{
int size = memusage();
if (size > 0)
return size;
return 0;
}
void
couvreur99_check::remove_component(const state* from)
{
++removed_components;
// If rem has been updated, removing states is very easy.
if (poprem_)
{
assert(!ecs_->root.rem().empty());
dec_depth(ecs_->root.rem().size());
std::list<const state*>::iterator i;
for (i = ecs_->root.rem().begin(); i != ecs_->root.rem().end(); ++i)
{
numbered_state_heap::state_index_p spi = ecs_->h->index(*i);
assert(spi.first == *i);
assert(*spi.second != -1);
*spi.second = -1;
}
// ecs_->root.rem().clear();
return;
}
// Remove from H all states which are reachable from state FROM.
// Stack of iterators towards states to remove.
std::stack<tgba_succ_iterator*> to_remove;
// Remove FROM itself, and prepare to remove its successors.
// (FROM should be in H, otherwise it means all reachable
// states from FROM have already been removed and there is no
// point in calling remove_component.)
numbered_state_heap::state_index_p spi = ecs_->h->index(from);
assert(spi.first == from);
assert(*spi.second != -1);
*spi.second = -1;
tgba_succ_iterator* i = ecs_->aut->succ_iter(from);
for (;;)
{
// Remove each destination of this iterator.
for (i->first(); !i->done(); i->next())
{
inc_transitions();
state* s = i->current_state();
numbered_state_heap::state_index_p spi = ecs_->h->index(s);
// This state is not necessary in H, because if we were
// doing inclusion checking during the emptiness-check
// (redefining find()), the index `s' can be included in a
// larger state and will not be found by index(). We can
// safely ignore such states.
if (!spi.first)
continue;
if (*spi.second != -1)
{
*spi.second = -1;
to_remove.push(ecs_->aut->succ_iter(spi.first));
}
}
delete i;
if (to_remove.empty())
break;
i = to_remove.top();
to_remove.pop();
}
}
emptiness_check_result*
couvreur99_check::check()
{
// We use five main data in this algorithm:
// * couvreur99_check::root, a stack of strongly connected components (SCC),
// * couvreur99_check::h, a hash of all visited nodes, with their order,
// (it is called "Hash" in Couvreur's paper)
// * arc, a stack of acceptance conditions between each of these SCC,
std::stack<bdd> arc;
// * num, the number of visited nodes. Used to set the order of each
// visited node,
int num = 1;
// * todo, the depth-first search stack. This holds pairs of the
// form (STATE, ITERATOR) where ITERATOR is a tgba_succ_iterator
// over the successors of STATE. In our use, ITERATOR should
// always be freed when TODO is popped, but STATE should not because
// it is also used as a key in H.
std::stack<pair_state_iter> todo;
// Setup depth-first search from the initial state.
{
state* init = ecs_->aut->get_init_state();
ecs_->h->insert(init, 1);
ecs_->root.push(1);
arc.push(bddfalse);
tgba_succ_iterator* iter = ecs_->aut->succ_iter(init);
iter->first();
todo.push(pair_state_iter(init, iter));
inc_depth();
}
while (!todo.empty())
{
assert(ecs_->root.size() == arc.size());
// We are looking at the next successor in SUCC.
tgba_succ_iterator* succ = todo.top().second;
// If there is no more successor, backtrack.
if (succ->done())
{
// We have explored all successors of state CURR.
const state* curr = todo.top().first;
// Backtrack TODO.
todo.pop();
dec_depth();
// If poprem is used, fill rem with any component removed,
// so that remove_component() does not have to traverse
// the SCC again.
numbered_state_heap::state_index_p spi = ecs_->h->index(curr);
assert(spi.first);
if (poprem_)
{
ecs_->root.rem().push_front(spi.first);
inc_depth();
}
// When backtracking the root of an SCC, we must also
// remove that SCC from the ARC/ROOT stacks. We must
// discard from H all reachable states from this SCC.
assert(!ecs_->root.empty());
if (ecs_->root.top().index == *spi.second)
{
assert(!arc.empty());
arc.pop();
remove_component(curr);
ecs_->root.pop();
}
delete succ;
// Do not delete CURR: it is a key in H.
continue;
}
// We have a successor to look at.
inc_transitions();
// Fetch the values (destination state, acceptance conditions
// of the arc) we are interested in...
const state* dest = succ->current_state();
bdd acc = succ->current_acceptance_conditions();
// ... and point the iterator to the next successor, for
// the next iteration.
succ->next();
// We do not need SUCC from now on.
// Are we going to a new state?
numbered_state_heap::state_index_p spi = ecs_->h->find(dest);
if (!spi.first)
{
// Yes. Number it, stack it, and register its successors
// for later processing.
ecs_->h->insert(dest, ++num);
ecs_->root.push(num);
arc.push(acc);
tgba_succ_iterator* iter = ecs_->aut->succ_iter(dest);
iter->first();
todo.push(pair_state_iter(dest, iter));
inc_depth();
continue;
}
// If we have reached a dead component, ignore it.
if (*spi.second == -1)
continue;
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SCC. Any such
// non-dead SCC has necessarily been crossed by our path to
// this state: there is a state S2 in our path which belongs
// to this SCC too. We are going to merge all states between
// this S1 and S2 into this SCC.
//
// This merge is easy to do because the order of the SCC in
// ROOT is ascending: we just have to merge all SCCs from the
// top of ROOT that have an index greater to the one of
// the SCC of S2 (called the "threshold").
int threshold = *spi.second;
std::list<const state*> rem;
while (threshold < ecs_->root.top().index)
{
assert(!ecs_->root.empty());
assert(!arc.empty());
acc |= ecs_->root.top().condition;
acc |= arc.top();
rem.splice(rem.end(), ecs_->root.rem());
ecs_->root.pop();
arc.pop();
}
// Note that we do not always have
// threshold == ecs_->root.top().index
// after this loop, the SCC whose index is threshold might have
// been merged with a lower SCC.
// Accumulate all acceptance conditions into the merged SCC.
ecs_->root.top().condition |= acc;
ecs_->root.rem().splice(ecs_->root.rem().end(), rem);
if (ecs_->root.top().condition
== ecs_->aut->all_acceptance_conditions())
{
// We have found an accepting SCC.
// Release all iterators in TODO.
while (!todo.empty())
{
delete todo.top().second;
todo.pop();
dec_depth();
}
// Use this state to start the computation of an accepting
// cycle.
ecs_->cycle_seed = spi.first;
set_states(ecs_->states());
return new couvreur99_check_result(ecs_, options());
}
}
// This automaton recognizes no word.
set_states(ecs_->states());
return 0;
}
const couvreur99_check_status*
couvreur99_check::result() const
{
return ecs_;
}
std::ostream&
couvreur99_check::print_stats(std::ostream& os) const
{
ecs_->print_stats(os);
os << transitions() << " transitions explored" << std::endl;
os << max_depth() << " items max in DFS search stack" << std::endl;
return os;
}
//////////////////////////////////////////////////////////////////////
couvreur99_check_shy::todo_item::todo_item(const state* s, int n,
couvreur99_check_shy* shy)
: s(s), n(n)
{
tgba_succ_iterator* iter = shy->ecs_->aut->succ_iter(s);
for (iter->first(); !iter->done(); iter->next(), shy->inc_transitions())
{
q.push_back(successor(iter->current_acceptance_conditions(),
iter->current_state()));
shy->inc_depth();
}
delete iter;
}
couvreur99_check_shy::couvreur99_check_shy(const tgba* a,
option_map o,
const numbered_state_heap_factory*
nshf)
: couvreur99_check(a, o, nshf), num(1)
{
group_ = o.get("group", 1);
group2_ = o.get("group2", 0);
group_ |= group2_;
onepass_ = o.get("onepass", 0);
// Setup depth-first search from the initial state.
const state* i = ecs_->aut->get_init_state();
ecs_->h->insert(i, ++num);
ecs_->root.push(num);
todo.push_back(todo_item(i, num, this));
inc_depth(1);
}
couvreur99_check_shy::~couvreur99_check_shy()
{
}
void
couvreur99_check_shy::clear_todo()
{
// We must delete all states appearing in TODO
// unless they are used as keys in H.
while (!todo.empty())
{
succ_queue& queue = todo.back().q;
for (succ_queue::iterator q = queue.begin();
q != queue.end(); ++q)
{
// Delete the state if it is a clone of a
// state in the heap...
numbered_state_heap::state_index_p spi = ecs_->h->index(q->s);
// ... or if it is an unknown state.
if (spi.first == 0)
delete q->s;
}
dec_depth(todo.back().q.size() + 1);
todo.pop_back();
}
dec_depth(ecs_->root.clear_rem());
assert(depth() == 0);
}
emptiness_check_result*
couvreur99_check_shy::check()
{
// Position in the loop seeking known successors.
pos = todo.back().q.begin();
for (;;)
{
assert(ecs_->root.size() == 1 + arc.size());
// Get the successors of the current state.
succ_queue& queue = todo.back().q;
// If there is no more successor, backtrack.
if (queue.empty())
{
// We have explored all successors of state CURR.
const state* curr = todo.back().s;
int index = todo.back().n;
// Backtrack TODO.
todo.pop_back();
dec_depth();
if (todo.empty())
{
// This automaton recognizes no word.
set_states(ecs_->states());
assert(poprem_ || depth() == 0);
return 0;
}
pos = todo.back().q.begin();
// If poprem is used, fill rem with any component removed,
// so that remove_component() does not have to traverse
// the SCC again.
if (poprem_)
{
numbered_state_heap::state_index_p spi = ecs_->h->index(curr);
assert(spi.first);
ecs_->root.rem().push_front(spi.first);
inc_depth();
}
// When backtracking the root of an SCC, we must also
// remove that SCC from the ARC/ROOT stacks. We must
// discard from H all reachable states from this SCC.
assert(!ecs_->root.empty());
if (ecs_->root.top().index == index)
{
assert(!arc.empty());
arc.pop();
remove_component(curr);
ecs_->root.pop();
}
continue;
}
// We always make a first pass over the successors of a state
// to check whether it contains some state we have already seen.
// This way we hope to merge the most SCCs before stacking new
// states.
//
// So are we checking for known states ? If yes, POS tells us
// which state we are considering. Otherwise just pick the
// first one.
succ_queue::iterator old;
if (onepass_)
pos = queue.end();
if (pos == queue.end())
old = queue.begin();
else
old = pos;
successor succ = *old;
// Beware: the implementation of find_state in ifage/gspn/ssp.cc
// uses POS and modify QUEUE.
numbered_state_heap::state_index_p sip = find_state(succ.s);
if (pos != queue.end())
++pos;
int* i = sip.second;
if (!i)
{
// It's a new state.
// If we are seeking known states, just skip it.
if (pos != queue.end())
continue;
// Otherwise, number it and stack it so we recurse.
queue.erase(old);
dec_depth();
ecs_->h->insert(succ.s, ++num);
ecs_->root.push(num);
arc.push(succ.acc);
todo.push_back(todo_item(succ.s, num, this));
pos = todo.back().q.begin();
inc_depth();
continue;
}
queue.erase(old);
dec_depth();
// Skip dead states.
if (*i == -1)
continue;
// Now this is the most interesting case. We have
// reached a state S1 which is already part of a
// non-dead SCC. Any such non-dead SCC has
// necessarily been crossed by our path to this
// state: there is a state S2 in our path which
// belongs to this SCC too. We are going to merge
// all states between this S1 and S2 into this
// SCC.
//
// This merge is easy to do because the order of
// the SCC in ROOT is ascending: we just have to
// merge all SCCs from the top of ROOT that have
// an index greater to the one of the SCC of S2
// (called the "threshold").
int threshold = *i;
std::list<const state*> rem;
bdd acc = succ.acc;
while (threshold < ecs_->root.top().index)
{
assert(!ecs_->root.empty());
assert(!arc.empty());
acc |= ecs_->root.top().condition;
acc |= arc.top();
rem.splice(rem.end(), ecs_->root.rem());
ecs_->root.pop();
arc.pop();
}
// Note that we do not always have
// threshold == ecs_->root.top().index
// after this loop, the SCC whose index is threshold
// might have been merged with a lower SCC.
// Accumulate all acceptance conditions into the
// merged SCC.
ecs_->root.top().condition |= acc;
ecs_->root.rem().splice(ecs_->root.rem().end(), rem);
// Have we found all acceptance conditions?
if (ecs_->root.top().condition
== ecs_->aut->all_acceptance_conditions())
{
// Use this state to start the computation of an accepting
// cycle.
ecs_->cycle_seed = sip.first;
// We have found an accepting SCC. Clean up TODO.
clear_todo();
set_states(ecs_->states());
return new couvreur99_check_result(ecs_, options());
}
// Group the pending successors of formed SCC if requested.
if (group_)
{
assert(todo.back().s);
while (ecs_->root.top().index < todo.back().n)
{
todo_list::reverse_iterator prev = todo.rbegin();
todo_list::reverse_iterator last = prev++;
// If group2 is used we insert the last->q in front
// of prev->q so that the states in prev->q are checked
// for existence again after we have done with the states
// of last->q. Otherwise we just append to the end.
prev->q.splice(group2_ ? prev->q.begin() : prev->q.end(),
last->q);
if (poprem_)
{
numbered_state_heap::state_index_p spi =
ecs_->h->index(todo.back().s);
assert(spi.first);
ecs_->root.rem().push_front(spi.first);
// Don't change the stack depth, since
// we are just moving the state from TODO to REM.
}
else
{
dec_depth();
}
todo.pop_back();
}
pos = todo.back().q.begin();
}
}
}
numbered_state_heap::state_index_p
couvreur99_check_shy::find_state(const state* s)
{
return ecs_->h->find(s);
}
emptiness_check*
couvreur99(const tgba* a,
option_map o,
const numbered_state_heap_factory* nshf)
{
if (o.get("shy"))
return new couvreur99_check_shy(a, o, nshf);
return new couvreur99_check(a, o, nshf);
}
}