* NEWS: Mention the implementation * python/spot/impl.i: Add dualize() to python interface. * spot/twaalgos/Makefile.am: Add dualize.cc,hh to the build * spot/twaalgos/dualize.cc: Implement dualize() that takes an automaton and returns its dual * spot/twaalgos/dualize.hh: Implement dualize() * tests/Makefile.am: Add dualize tests to the test suite * tests/python/dualize.py: Test cases for dualize
383 lines
13 KiB
C++
383 lines
13 KiB
C++
// -*- coding: utf-8 -*-
|
|
// Copyright (C) 2017 Laboratoire de Recherche et Développement
|
|
// de l'Epita (LRDE).
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include <spot/misc/minato.hh>
|
|
#include <spot/twa/twagraph.hh>
|
|
#include <spot/twaalgos/alternation.hh>
|
|
#include <spot/twaalgos/cleanacc.hh>
|
|
#include <spot/twaalgos/complete.hh>
|
|
#include <spot/twaalgos/dualize.hh>
|
|
#include <spot/twaalgos/isdet.hh>
|
|
|
|
namespace spot
|
|
{
|
|
namespace
|
|
{
|
|
class dualizer final
|
|
{
|
|
private:
|
|
// Input automaton
|
|
const const_twa_graph_ptr aut_;
|
|
// State id to bdd variable association
|
|
// [id] == bddtrue means the state will be accepting everything
|
|
// (true state) in the dual automaton.
|
|
// [id] == bddfalse means the state will be rejecting everything
|
|
// (sink) in the dual automaton, which can lead to the removal of
|
|
// the transitions going into that state and therefore to the removal
|
|
// of the state when applying purge_unreachable_states().
|
|
// When [id] != bddtrue/bddfalse, the value correspond to the state
|
|
// bdd variable.
|
|
std::vector<bdd> state_to_var_;
|
|
// bdd variable to state id association
|
|
std::map<int, unsigned> var_to_state_;
|
|
// Acceptance mark to bdd variable association
|
|
std::vector<int> mark_to_var_;
|
|
// bdd variable to acceptance mark association
|
|
std::map<int, unsigned> var_to_mark_;
|
|
// bdd representing all the state variables
|
|
bdd all_states_;
|
|
// bdd representing all the marks variables
|
|
bdd all_marks_;
|
|
// bdd representing states & marks variables
|
|
bdd all_vars_;
|
|
// Id of the true state sink. -1U if none.
|
|
unsigned true_state_;
|
|
// In case the acceptance condition is never unsatisfied, but the
|
|
// automaton is not complete, we do transform the acceptance condition
|
|
// to Büchi, and need to mark all the existing transitions with the
|
|
// proper mark, that will be stored in acc_. 0U if not used.
|
|
acc_cond::mark_t acc_;
|
|
// Whether aut_ has a state accepting all.
|
|
bool has_sink;
|
|
|
|
// Any sink state in the input automaton will become a true state in the
|
|
// output. Knowing those allows us to simplify some universal transitions.
|
|
// There could be more than one sink state in the input automaton, and in
|
|
// this case they will be squashed into a single true state in the output
|
|
// automaton.
|
|
void find_sink_states(acc_cond::mark_t& second)
|
|
{
|
|
// Loop over the states and search a state that has no outgoing
|
|
// transitions, or only self-loops labeled by the same non-accepting
|
|
// mark. A similar test is done in complete_here().
|
|
unsigned n = aut_->num_states();
|
|
for (unsigned i = 0; i < n; ++i)
|
|
{
|
|
bool sinkable = true;
|
|
bool first = true;
|
|
acc_cond::mark_t commonacc = second;
|
|
for (auto& t: aut_->out(i))
|
|
{
|
|
if (t.dst != i)
|
|
{
|
|
sinkable = false;
|
|
break;
|
|
}
|
|
if (first)
|
|
{
|
|
commonacc = t.acc;
|
|
first = false;
|
|
}
|
|
else if (t.acc != commonacc)
|
|
{
|
|
sinkable = false;
|
|
break;
|
|
}
|
|
}
|
|
if (sinkable && !aut_->acc().accepting(commonacc))
|
|
{
|
|
second = commonacc;
|
|
state_to_var_[i] = bddtrue;
|
|
true_state_ = i;
|
|
has_sink = true;
|
|
}
|
|
}
|
|
}
|
|
// Any true state in the input automaton will become a sink state in the
|
|
// output. Knowing those allow us to simplify some universal transitions.
|
|
// There could be more than one true state in the input automaton. All
|
|
// true states from the input automaton will be removed in the output
|
|
// and the transitions leading to those states will be removed as well.
|
|
void find_true_states()
|
|
{
|
|
// Loop over the states and search a state that has a self-loop on
|
|
// any letter (bddtrue), with an accepting mark.
|
|
unsigned n = aut_->num_states();
|
|
for (unsigned i = 0; i < n; ++i)
|
|
{
|
|
bool acc_all = false;
|
|
for (auto& t: aut_->out(i))
|
|
{
|
|
if (t.dst == i && t.cond == bddtrue
|
|
&& aut_->acc().accepting(t.acc))
|
|
{
|
|
acc_all = true;
|
|
break;
|
|
}
|
|
}
|
|
if (acc_all)
|
|
{
|
|
state_to_var_[i] = bddfalse;
|
|
has_sink = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
void copy_edges(const twa_graph_ptr &res)
|
|
{
|
|
std::vector<unsigned> st;
|
|
unsigned n = aut_->num_states();
|
|
for (unsigned i = 0; i < n; ++i)
|
|
{
|
|
bdd delta = dualized_transition_function(i);
|
|
bdd ap = bdd_exist(bdd_support(delta), all_vars_);
|
|
bdd letters = bdd_exist(delta, all_vars_);
|
|
|
|
while (letters != bddfalse)
|
|
{
|
|
bdd oneletter = bdd_satoneset(letters, ap, bddtrue);
|
|
letters -= oneletter;
|
|
|
|
minato_isop isop(delta & oneletter);
|
|
bdd cube;
|
|
|
|
while ((cube = isop.next()) != bddfalse)
|
|
{
|
|
bdd cond = bdd_exist(cube, all_vars_);
|
|
bdd dest = bdd_existcomp(cube, all_vars_);
|
|
|
|
st.clear();
|
|
acc_cond::mark_t m = bdd_to_state(dest, st);
|
|
if (st.empty())
|
|
{
|
|
st.push_back(true_state_);
|
|
if (aut_->prop_state_acc())
|
|
m = aut_->state_acc_sets(i);
|
|
}
|
|
res->new_univ_edge(i, st.begin(), st.end(), cond, m);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Handles the dualization of a universal initial transition.
|
|
// In theory the transition would be split into several existential
|
|
// initial transitions, but since spot does not allow multiple initial
|
|
// states, we rather use a trick: We add a new initial state, and then
|
|
// copy all exiting transitions from each of the state of the universal
|
|
// initial transition.
|
|
void univ_init(const twa_graph_ptr& res)
|
|
{
|
|
bdd comb = bddfalse;
|
|
outedge_combiner oe(res);
|
|
for (unsigned c : aut_->univ_dests(aut_->get_init_state_number()))
|
|
comb |= oe(c);
|
|
|
|
auto s = res->new_state();
|
|
res->set_init_state(s);
|
|
oe.new_dests(s, comb);
|
|
}
|
|
|
|
// Allocates the states and marks as variables into the bdd dictionary.
|
|
// Also adds the corresponding mapping, and sets all_states_, all_marks_,
|
|
// and all_vars_ to hold those variables as bdds.
|
|
void allocate_dict_vars(const twa_graph_ptr& res)
|
|
{
|
|
auto dict = aut_->get_dict();
|
|
|
|
unsigned numstates = aut_->num_states();
|
|
all_states_ = bddtrue;
|
|
for (unsigned i = 0; i < numstates; ++i)
|
|
{
|
|
int v = dict->register_anonymous_variables(1, this);
|
|
if (state_to_var_[i] != bddtrue)
|
|
state_to_var_[i] = bdd_ithvar(v);
|
|
var_to_state_[v] = i;
|
|
all_states_ &= bdd_ithvar(v);
|
|
}
|
|
|
|
unsigned numsets = res->num_sets();
|
|
all_marks_ = bddtrue;
|
|
for (unsigned i = 0; i < numsets; ++i)
|
|
{
|
|
int v = dict->register_anonymous_variables(1, this);
|
|
mark_to_var_.push_back(v);
|
|
var_to_mark_.emplace(v, i);
|
|
all_marks_ &= bdd_ithvar(v);
|
|
}
|
|
all_vars_ = all_states_ & all_marks_;
|
|
}
|
|
|
|
// Returns the dualized transition function of any input state as a bdd.
|
|
bdd dualized_transition_function(unsigned state_id)
|
|
{
|
|
if (state_to_var_[state_id] == bddtrue)
|
|
return bddfalse;
|
|
|
|
bdd res = bddtrue;
|
|
for (auto& e : aut_->out(state_id))
|
|
{
|
|
bdd dest = bddfalse;
|
|
for (unsigned d : aut_->univ_dests(e))
|
|
dest |= state_to_var_[d];
|
|
|
|
bdd mark_bdd = bddtrue;
|
|
acc_cond::mark_t m = acc_ ? acc_ : e.acc;
|
|
for (unsigned s: m.sets())
|
|
mark_bdd &= bdd_ithvar(mark_to_var_[s]);
|
|
|
|
res &= bdd_imp(e.cond, mark_bdd & dest);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// Given the bdd representation b of a transition, adds destination states
|
|
// to s, and returns the marks on the transition. s being empty means the
|
|
// transition goes toward a "forever true" state. s with size one
|
|
// represents an existential transition, while size over one represents
|
|
// a universal transition.
|
|
acc_cond::mark_t bdd_to_state(bdd b, std::vector<unsigned>& s)
|
|
{
|
|
acc_cond::mark_t m = 0U;
|
|
while (b != bddtrue)
|
|
{
|
|
assert(bdd_low(b) == bddfalse);
|
|
int v = bdd_var(b);
|
|
auto it = var_to_state_.find(v);
|
|
if (it != var_to_state_.end())
|
|
s.push_back(it->second);
|
|
else
|
|
m.set(var_to_mark_[v]);
|
|
|
|
b = bdd_high(b);
|
|
}
|
|
return m;
|
|
}
|
|
|
|
public:
|
|
dualizer(const const_twa_graph_ptr& aut)
|
|
: aut_(aut),
|
|
state_to_var_(aut_->num_states(), bddfalse),
|
|
true_state_(-1U),
|
|
acc_(0U),
|
|
has_sink(false)
|
|
{
|
|
}
|
|
|
|
~dualizer()
|
|
{
|
|
aut_->get_dict()->unregister_all_my_variables(this);
|
|
}
|
|
|
|
twa_graph_ptr run()
|
|
{
|
|
bool cmpl = is_complete(aut_);
|
|
auto um = aut_->acc().unsat_mark();
|
|
|
|
auto res = make_twa_graph(aut_->get_dict());
|
|
res->copy_ap_of(aut_);
|
|
|
|
if (!um.first && cmpl)
|
|
{
|
|
//Shortcut if dual is false
|
|
res->new_states(1);
|
|
res->new_edge(0, 0, bddtrue, 0U);
|
|
res->set_init_state(0);
|
|
res->set_acceptance(0, acc_cond::acc_code::f());
|
|
|
|
res->prop_terminal(true);
|
|
res->prop_complete(true);
|
|
res->prop_universal(true);
|
|
return res;
|
|
}
|
|
if (is_deterministic(aut_))
|
|
{
|
|
res = cleanup_acceptance_here(spot::complete(aut_));
|
|
res->set_acceptance(res->num_sets(),
|
|
res->get_acceptance().complement());
|
|
// Complementing the acceptance is likely to break the terminal
|
|
// property, but not weakness. We make a useless call to
|
|
// prop_keep() just so we remember to update it in the future if a
|
|
// new argument is added.
|
|
res->prop_keep({true, true, true, true, true, true});
|
|
res->prop_terminal(trival::maybe());
|
|
return res;
|
|
}
|
|
|
|
const_twa_graph_ptr autptr;
|
|
res->new_states(aut_->num_states());
|
|
if (!cmpl)
|
|
{
|
|
if (!um.first)
|
|
{
|
|
acc_ = res->set_buchi();
|
|
autptr = res;
|
|
}
|
|
else
|
|
{
|
|
find_sink_states(um.second);
|
|
autptr = aut_;
|
|
}
|
|
if (true_state_ == -1U)
|
|
true_state_ = res->new_state();
|
|
}
|
|
// This case does not cover cmpl && !um.first
|
|
// Due to previous test shortcutting automatons that accept all words.
|
|
else
|
|
{
|
|
assert(um.first);
|
|
find_sink_states(um.second);
|
|
autptr = aut_;
|
|
}
|
|
if (true_state_ != -1U)
|
|
res->new_edge(true_state_, true_state_, bddtrue, um.second);
|
|
|
|
res->set_acceptance(autptr->num_sets(),
|
|
autptr->get_acceptance().complement());
|
|
allocate_dict_vars(res);
|
|
find_true_states();
|
|
|
|
copy_edges(res);
|
|
|
|
unsigned init_state = aut_->get_init_state_number();
|
|
if (aut_->is_univ_dest(init_state))
|
|
univ_init(res);
|
|
else
|
|
res->set_init_state(init_state);
|
|
|
|
res->merge_edges();
|
|
res->purge_unreachable_states();
|
|
|
|
res->prop_copy(aut_, {true, true, false, false, false, true});
|
|
res->prop_terminal(trival::maybe());
|
|
if (!has_sink)
|
|
res->prop_complete(true);
|
|
|
|
cleanup_acceptance_here(res);
|
|
return res;
|
|
}
|
|
};
|
|
}
|
|
|
|
twa_graph_ptr dualize(const const_twa_graph_ptr& aut)
|
|
{
|
|
dualizer du(aut);
|
|
return du.run();
|
|
}
|
|
}
|