count() may be implemented using a loop, so using it touch check count() == 1 or count() > 1 is not advisable. * spot/twa/acc.hh (mark_t::is_singleton, mark_t::has_many): Introduce these two methods to replace count()==1 and count()>1 * spot/twa/acc.cc, spot/twaalgos/cleanacc.cc, spot/twaalgos/determinize.cc, spot/twaalgos/dtwasat.cc, spot/twaalgos/iscolored.cc, spot/twaalgos/remfin.cc, spot/twaalgos/toparity.cc: Adjust usage.
842 lines
28 KiB
C++
842 lines
28 KiB
C++
// -*- coding: utf-8 -*-
|
|
// Copyright (C) 2015-2020 Laboratoire de Recherche et Développement
|
|
// de l'Epita (LRDE).
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "config.h"
|
|
#include <spot/twaalgos/remfin.hh>
|
|
#include <spot/twaalgos/sccinfo.hh>
|
|
#include <iostream>
|
|
#include <spot/twaalgos/cleanacc.hh>
|
|
#include <spot/twaalgos/totgba.hh>
|
|
#include <spot/twaalgos/isdet.hh>
|
|
#include <spot/twaalgos/mask.hh>
|
|
#include <spot/twaalgos/alternation.hh>
|
|
|
|
// #define TRACE
|
|
#ifdef TRACE
|
|
#define trace std::cerr
|
|
#else
|
|
#define trace while (0) std::cerr
|
|
#endif
|
|
|
|
namespace spot
|
|
{
|
|
namespace
|
|
{
|
|
using EdgeMask = std::vector<bool>;
|
|
|
|
template< typename Edges, typename Apply >
|
|
void for_each_edge(const const_twa_graph_ptr& aut,
|
|
const Edges& edges,
|
|
const EdgeMask& mask,
|
|
Apply apply)
|
|
{
|
|
for (const auto& e: edges)
|
|
{
|
|
unsigned edge_id = aut->edge_number(e);
|
|
if (mask[edge_id])
|
|
apply(edge_id);
|
|
}
|
|
}
|
|
|
|
// Transforms automaton from transition based acceptance to state based
|
|
// acceptance.
|
|
void make_state_acc(twa_graph_ptr & aut)
|
|
{
|
|
unsigned nst = aut->num_states();
|
|
for (unsigned s = 0; s < nst; ++s)
|
|
{
|
|
acc_cond::mark_t acc = {};
|
|
for (auto& t: aut->out(s))
|
|
acc |= t.acc;
|
|
for (auto& t: aut->out(s))
|
|
t.acc = acc;
|
|
}
|
|
aut->prop_state_acc(true);
|
|
}
|
|
|
|
|
|
// Check whether the SCC contains non-accepting cycles.
|
|
//
|
|
// A cycle is accepting (in a Rabin automaton) if there exists an
|
|
// acceptance pair (Fᵢ, Iᵢ) such that some states from Iᵢ are
|
|
// visited while no states from Fᵢ are visited.
|
|
//
|
|
// Consequently, a cycle is non-accepting if for all acceptance
|
|
// pairs (Fᵢ, Iᵢ), either no states from Iᵢ are visited or some
|
|
// states from Fᵢ are visited. (This corresponds to an accepting
|
|
// cycle with Streett acceptance.)
|
|
//
|
|
// final are those edges which are used in the resulting tba
|
|
// acceptance condition.
|
|
bool is_scc_tba_type(const_twa_graph_ptr aut,
|
|
const scc_info& si,
|
|
const unsigned scc,
|
|
const std::vector<bool>& keep,
|
|
const rs_pairs_view& aut_pairs,
|
|
std::vector<bool>& final)
|
|
{
|
|
if (si.is_rejecting_scc(scc))
|
|
return true;
|
|
|
|
auto scc_acc = si.acc_sets_of(scc);
|
|
auto scc_pairs = rs_pairs_view(aut_pairs.pairs(), scc_acc);
|
|
// If there is one aut_fin_alone that is not in the SCC,
|
|
// any cycle in the SCC is accepting.
|
|
auto aut_fin_alone = aut_pairs.fins_alone();
|
|
if ((scc_acc & aut_fin_alone) != aut_fin_alone)
|
|
{
|
|
for_each_edge(aut, si.edges_of(scc), keep, [&](unsigned e)
|
|
{
|
|
final[e] = true;
|
|
});
|
|
return true;
|
|
}
|
|
|
|
auto scc_infs_alone = scc_pairs.infs_alone();
|
|
// Firstly consider whole SCC as one large cycle. If there is
|
|
// no inf without matching fin then the cycle formed by the
|
|
// entire SCC is not accepting. However that does not
|
|
// necessarily imply that all cycles in the SCC are also
|
|
// non-accepting. We may have a smaller cycle that is
|
|
// accepting, but which becomes non-accepting when extended with
|
|
// more edges. In that case (which we can detect by checking
|
|
// whether the SCC has a non-empty language), the SCC is the
|
|
// not TBA-realizable.
|
|
if (!scc_infs_alone)
|
|
return si.check_scc_emptiness(scc);
|
|
|
|
// Remaining infs corresponds to Iᵢs that have been seen without seeing
|
|
// the matching Fᵢ. In this SCC any edge in these Iᵢ is therefore
|
|
// final. Otherwise we do not know: it is possible that there is
|
|
// a non-accepting cycle in the SCC that does not visit Fᵢ.
|
|
std::set<unsigned> unknown;
|
|
for_each_edge(aut, si.inner_edges_of(scc), keep, [&](unsigned e)
|
|
{
|
|
const auto& ed = aut->edge_data(e);
|
|
if (ed.acc & scc_infs_alone)
|
|
final[e] = true;
|
|
else
|
|
unknown.insert(e);
|
|
});
|
|
|
|
// Erase edges that cannot belong to a cycle, i.e., the edges
|
|
// whose 'dst' is not 'src' of any unknown edges.
|
|
std::vector<unsigned> remove;
|
|
do
|
|
{
|
|
remove.clear();
|
|
std::set<unsigned> srcs;
|
|
for (auto e: unknown)
|
|
srcs.insert(aut->edge_storage(e).src);
|
|
for (auto e: unknown)
|
|
if (srcs.find(aut->edge_storage(e).dst) == srcs.end())
|
|
remove.push_back(e);
|
|
for (auto r: remove)
|
|
unknown.erase(r);
|
|
}
|
|
while (!remove.empty());
|
|
|
|
// Check whether it is possible to build non-accepting cycles
|
|
// using only the "unknown" edges.
|
|
using filter_data_t = std::pair<const_twa_graph_ptr, std::vector<bool>&>;
|
|
|
|
scc_info::edge_filter filter =
|
|
[](const twa_graph::edge_storage_t& t, unsigned, void* data)
|
|
-> scc_info::edge_filter_choice
|
|
{
|
|
auto& d = *static_cast<filter_data_t*>(data);
|
|
if (d.second[d.first->edge_number(t)])
|
|
return scc_info::edge_filter_choice::keep;
|
|
else
|
|
return scc_info::edge_filter_choice::ignore;
|
|
};
|
|
|
|
{
|
|
std::vector<bool> keep;
|
|
while (!unknown.empty())
|
|
{
|
|
keep.assign(aut->edge_vector().size(), false);
|
|
for (auto e: unknown)
|
|
keep[e] = true;
|
|
|
|
auto filter_data = filter_data_t{aut, keep};
|
|
auto init = aut->edge_storage(*unknown.begin()).src;
|
|
scc_info si(aut, init, filter, &filter_data,
|
|
scc_info_options::TRACK_STATES);
|
|
|
|
for (unsigned uscc = 0; uscc < si.scc_count(); ++uscc)
|
|
{
|
|
for_each_edge(aut, si.edges_of(uscc), keep, [&](unsigned e)
|
|
{
|
|
unknown.erase(e);
|
|
});
|
|
if (si.is_rejecting_scc(uscc))
|
|
continue;
|
|
if (!is_scc_tba_type(aut, si, uscc, keep, aut_pairs, final))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Specialized conversion from transition based Rabin acceptance to
|
|
// transition based Büchi acceptance.
|
|
// Is able to detect SCCs that are TBA-type (i.e., they can be
|
|
// converted to Büchi acceptance without chaning their structure).
|
|
//
|
|
// See "Deterministic ω-automata vis-a-vis Deterministic Büchi
|
|
// Automata", S. Krishnan, A. Puri, and R. Brayton (ISAAC'94) for
|
|
// some details about detecting Büchi-typeness.
|
|
//
|
|
// We essentially apply this method SCC-wise. The paper is
|
|
// concerned about *deterministic* automata, but we apply the
|
|
// algorithm on non-deterministic automata as well: in the worst
|
|
// case it is possible that a TBA-type SCC with some
|
|
// non-deterministic has one accepting and one rejecting run for
|
|
// the same word. In this case we may fail to detect the
|
|
// TBA-typeness of the SCC, but the resulting automaton should
|
|
// be correct nonetheless.
|
|
twa_graph_ptr
|
|
tra_to_tba(const const_twa_graph_ptr& aut)
|
|
{
|
|
std::vector<acc_cond::rs_pair> pairs;
|
|
if (!aut->acc().is_rabin_like(pairs))
|
|
return nullptr;
|
|
|
|
auto aut_pairs = rs_pairs_view(pairs);
|
|
auto code = aut->get_acceptance();
|
|
if (code.is_t())
|
|
return nullptr;
|
|
|
|
// if is TBA type
|
|
scc_info si(aut, scc_info_options::TRACK_STATES);
|
|
std::vector<bool> scc_is_tba_type(si.scc_count(), false);
|
|
std::vector<bool> final(aut->edge_vector().size(), false);
|
|
std::vector<bool> keep(aut->edge_vector().size(), true);
|
|
|
|
for (unsigned scc = 0; scc < si.scc_count(); ++scc)
|
|
scc_is_tba_type[scc] = is_scc_tba_type(aut, si, scc, keep,
|
|
aut_pairs, final);
|
|
|
|
auto res = make_twa_graph(aut->get_dict());
|
|
res->copy_ap_of(aut);
|
|
res->prop_copy(aut, { false, false, false, false, false, true });
|
|
res->new_states(aut->num_states());
|
|
res->set_buchi();
|
|
res->set_init_state(aut->get_init_state_number());
|
|
trival deterministic = aut->prop_universal();
|
|
trival complete = aut->prop_complete();
|
|
|
|
std::vector<unsigned> state_map(aut->num_states());
|
|
for (unsigned scc = 0; scc < si.scc_count(); ++scc)
|
|
{
|
|
auto states = si.states_of(scc);
|
|
|
|
if (scc_is_tba_type[scc])
|
|
{
|
|
for (const auto& e: si.edges_of(scc))
|
|
{
|
|
bool acc = final[aut->edge_number(e)];
|
|
res->new_acc_edge(e.src, e.dst, e.cond, acc);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
complete = trival::maybe();
|
|
|
|
// The main copy is only accepting for inf_alone
|
|
// and for all Inf sets that have no matching Fin
|
|
// sets in this SCC.
|
|
auto scc_pairs = rs_pairs_view(pairs, si.acc_sets_of(scc));
|
|
auto scc_infs_alone = scc_pairs.infs_alone();
|
|
|
|
for (const auto& e: si.edges_of(scc))
|
|
{
|
|
bool acc = !!(e.acc & scc_infs_alone);
|
|
res->new_acc_edge(e.src, e.dst, e.cond, acc);
|
|
}
|
|
|
|
auto fins_alone = aut_pairs.fins_alone();
|
|
|
|
for (auto r: scc_pairs.fins().sets())
|
|
{
|
|
acc_cond::mark_t pairinf = scc_pairs.paired_with_fin(r);
|
|
unsigned base = res->new_states(states.size());
|
|
for (auto s: states)
|
|
state_map[s] = base++;
|
|
for (const auto& e: si.inner_edges_of(scc))
|
|
{
|
|
if (e.acc.has(r))
|
|
continue;
|
|
auto src = state_map[e.src];
|
|
auto dst = state_map[e.dst];
|
|
bool cacc = fins_alone.has(r) || (pairinf & e.acc);
|
|
res->new_acc_edge(src, dst, e.cond, cacc);
|
|
// We need only one non-deterministic jump per
|
|
// cycle. As an approximation, we only do
|
|
// them on back-links.
|
|
if (e.dst <= e.src)
|
|
{
|
|
deterministic = false;
|
|
bool jacc = !!(e.acc & scc_infs_alone);
|
|
res->new_acc_edge(e.src, dst, e.cond, jacc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
res->prop_complete(complete);
|
|
res->prop_universal(deterministic);
|
|
res->purge_dead_states();
|
|
res->merge_edges();
|
|
if (!aut_pairs.infs())
|
|
make_state_acc(res);
|
|
return res;
|
|
}
|
|
|
|
// If the DNF is
|
|
// Fin(1)&Inf(2)&Inf(4) | Fin(2)&Fin(3)&Inf(1) |
|
|
// Inf(1)&Inf(3) | Inf(1)&Inf(2) | Fin(4)
|
|
// this returns the following map:
|
|
// {1} => Inf(2)&Inf(4)
|
|
// {2,3} => Inf(1)
|
|
// {} => Inf(1)&Inf(3) | Inf(1)&Inf(2)
|
|
// {4} => t
|
|
static std::map<acc_cond::mark_t, acc_cond::acc_code>
|
|
split_dnf_acc_by_fin(const acc_cond::acc_code& acc)
|
|
{
|
|
std::map<acc_cond::mark_t, acc_cond::acc_code> res;
|
|
auto pos = &acc.back();
|
|
if (pos->sub.op == acc_cond::acc_op::Or)
|
|
--pos;
|
|
auto start = &acc.front();
|
|
while (pos > start)
|
|
{
|
|
if (pos->sub.op == acc_cond::acc_op::Fin)
|
|
{
|
|
// We have only a Fin term, without Inf. In this case
|
|
// only, the Fin() may encode a disjunction of sets.
|
|
for (auto s: pos[-1].mark.sets())
|
|
{
|
|
acc_cond::mark_t fin = {};
|
|
fin.set(s);
|
|
res[fin] = acc_cond::acc_code{};
|
|
}
|
|
pos -= pos->sub.size + 1;
|
|
}
|
|
else
|
|
{
|
|
// We have a conjunction of Fin and Inf sets.
|
|
auto end = pos - pos->sub.size - 1;
|
|
acc_cond::mark_t fin = {};
|
|
acc_cond::mark_t inf = {};
|
|
while (pos > end)
|
|
{
|
|
switch (pos->sub.op)
|
|
{
|
|
case acc_cond::acc_op::And:
|
|
--pos;
|
|
break;
|
|
case acc_cond::acc_op::Fin:
|
|
fin |= pos[-1].mark;
|
|
assert(pos[-1].mark.is_singleton());
|
|
pos -= 2;
|
|
break;
|
|
case acc_cond::acc_op::Inf:
|
|
inf |= pos[-1].mark;
|
|
pos -= 2;
|
|
break;
|
|
case acc_cond::acc_op::FinNeg:
|
|
case acc_cond::acc_op::InfNeg:
|
|
case acc_cond::acc_op::Or:
|
|
SPOT_UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
assert(pos == end);
|
|
acc_cond::acc_word w[2];
|
|
w[0].mark = inf;
|
|
w[1].sub.op = acc_cond::acc_op::Inf;
|
|
w[1].sub.size = 1;
|
|
acc_cond::acc_code c;
|
|
c.insert(c.end(), w, w + 2);
|
|
auto p = res.emplace(fin, c);
|
|
if (!p.second)
|
|
p.first->second |= std::move(c);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static twa_graph_ptr
|
|
remove_fin_weak(const const_twa_graph_ptr& aut)
|
|
{
|
|
// Clone the original automaton.
|
|
auto res = make_twa_graph(aut,
|
|
{
|
|
true, // state based
|
|
true, // inherently weak
|
|
true, true, // determinisitic
|
|
true, // complete
|
|
true, // stutter inv.
|
|
});
|
|
scc_info si(res, scc_info_options::NONE);
|
|
|
|
// We will modify res in place, and the resulting
|
|
// automaton will only have one acceptance set.
|
|
acc_cond::mark_t all_acc = res->set_buchi();
|
|
res->prop_state_acc(true);
|
|
unsigned n = res->num_states();
|
|
|
|
for (unsigned src = 0; src < n; ++src)
|
|
{
|
|
if (!si.reachable_state(src))
|
|
continue;
|
|
acc_cond::mark_t acc = {};
|
|
unsigned scc = si.scc_of(src);
|
|
if (si.is_accepting_scc(scc) && !si.is_trivial(scc))
|
|
acc = all_acc;
|
|
for (auto& t: res->out(src))
|
|
t.acc = acc;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
twa_graph_ptr trivial_strategy(const const_twa_graph_ptr& aut)
|
|
{
|
|
if (aut->acc().is_f())
|
|
{
|
|
// The original acceptance was equivalent to
|
|
// "f". Simply return an empty automaton with "t"
|
|
// acceptance.
|
|
auto res = make_twa_graph(aut->get_dict());
|
|
res->set_generalized_buchi(0);
|
|
res->set_init_state(res->new_state());
|
|
res->prop_stutter_invariant(true);
|
|
res->prop_weak(true);
|
|
res->prop_complete(false);
|
|
return res;
|
|
}
|
|
|
|
return (!aut->acc().uses_fin_acceptance())
|
|
? std::const_pointer_cast<twa_graph>(aut)
|
|
: nullptr;
|
|
}
|
|
|
|
twa_graph_ptr weak_strategy(const const_twa_graph_ptr& aut)
|
|
{
|
|
// FIXME: we should check whether the automaton is inherently weak.
|
|
return (aut->prop_weak().is_true())
|
|
? remove_fin_weak(aut)
|
|
: nullptr;
|
|
}
|
|
|
|
twa_graph_ptr alternation_strategy(const const_twa_graph_ptr& aut)
|
|
{
|
|
return (!aut->is_existential())
|
|
? remove_fin(remove_alternation(aut))
|
|
: nullptr;
|
|
}
|
|
|
|
twa_graph_ptr streett_strategy(const const_twa_graph_ptr& aut)
|
|
{
|
|
return (aut->get_acceptance().used_inf_fin_sets().first)
|
|
? streett_to_generalized_buchi_maybe(aut)
|
|
: nullptr;
|
|
}
|
|
|
|
twa_graph_ptr rabin_strategy(const const_twa_graph_ptr& aut)
|
|
{
|
|
return rabin_to_buchi_maybe(aut);
|
|
}
|
|
|
|
twa_graph_ptr default_strategy(const const_twa_graph_ptr& aut)
|
|
{
|
|
std::vector<acc_cond::acc_code> code;
|
|
std::vector<acc_cond::mark_t> rem;
|
|
std::vector<acc_cond::mark_t> keep;
|
|
std::vector<acc_cond::mark_t> add;
|
|
bool has_true_term = false;
|
|
acc_cond::mark_t allinf = {};
|
|
acc_cond::mark_t allfin = {};
|
|
{
|
|
auto acccode = aut->get_acceptance();
|
|
if (!acccode.is_dnf())
|
|
{
|
|
acccode = acccode.to_dnf();
|
|
|
|
if (acccode.is_f())
|
|
{
|
|
// The original acceptance was equivalent to
|
|
// "f". Simply return an empty automaton with "t"
|
|
// acceptance.
|
|
auto res = make_twa_graph(aut->get_dict());
|
|
res->set_generalized_buchi(0);
|
|
res->set_init_state(res->new_state());
|
|
res->prop_stutter_invariant(true);
|
|
res->prop_weak(true);
|
|
res->prop_complete(false);
|
|
return res;
|
|
}
|
|
}
|
|
|
|
auto split = split_dnf_acc_by_fin(acccode);
|
|
auto sz = split.size();
|
|
assert(sz > 0);
|
|
|
|
rem.reserve(sz);
|
|
code.reserve(sz);
|
|
keep.reserve(sz);
|
|
add.reserve(sz);
|
|
for (auto p: split)
|
|
{
|
|
// The empty Fin should always come first
|
|
assert(p.first || rem.empty());
|
|
rem.emplace_back(p.first);
|
|
allfin |= p.first;
|
|
acc_cond::mark_t inf = {};
|
|
if (!p.second.empty())
|
|
{
|
|
auto pos = &p.second.back();
|
|
auto end = &p.second.front();
|
|
while (pos > end)
|
|
{
|
|
switch (pos->sub.op)
|
|
{
|
|
case acc_cond::acc_op::And:
|
|
case acc_cond::acc_op::Or:
|
|
--pos;
|
|
break;
|
|
case acc_cond::acc_op::Inf:
|
|
inf |= pos[-1].mark;
|
|
pos -= 2;
|
|
break;
|
|
case acc_cond::acc_op::Fin:
|
|
case acc_cond::acc_op::FinNeg:
|
|
case acc_cond::acc_op::InfNeg:
|
|
SPOT_UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!inf)
|
|
{
|
|
has_true_term = true;
|
|
}
|
|
code.emplace_back(std::move(p.second));
|
|
keep.emplace_back(inf);
|
|
allinf |= inf;
|
|
add.emplace_back(acc_cond::mark_t({}));
|
|
}
|
|
}
|
|
assert(add.size() > 0);
|
|
|
|
acc_cond acc = aut->acc();
|
|
unsigned extra_sets = 0;
|
|
|
|
// Do we have common sets between the acceptance terms?
|
|
// If so, we need extra sets to distinguish the terms.
|
|
bool interference = false;
|
|
{
|
|
auto sz = keep.size();
|
|
acc_cond::mark_t sofar = {};
|
|
for (unsigned i = 0; i < sz; ++i)
|
|
{
|
|
auto k = keep[i];
|
|
if (k & sofar)
|
|
{
|
|
interference = true;
|
|
break;
|
|
}
|
|
sofar |= k;
|
|
}
|
|
if (interference)
|
|
{
|
|
trace << "We have interferences\n";
|
|
// We need extra set, but we will try
|
|
// to reuse the Fin number if they are
|
|
// not used as Inf as well.
|
|
std::vector<int> exs(acc.num_sets());
|
|
for (auto f: allfin.sets())
|
|
{
|
|
if (allinf.has(f)) // Already used as Inf
|
|
{
|
|
exs[f] = acc.add_set();
|
|
++extra_sets;
|
|
}
|
|
else
|
|
{
|
|
exs[f] = f;
|
|
}
|
|
}
|
|
for (unsigned i = 0; i < sz; ++i)
|
|
{
|
|
acc_cond::mark_t m = {};
|
|
for (auto f: rem[i].sets())
|
|
m.set(exs[f]);
|
|
trace << "rem[" << i << "] = " << rem[i]
|
|
<< " m = " << m << '\n';
|
|
add[i] = m;
|
|
code[i] &= acc.inf(m);
|
|
trace << "code[" << i << "] = " << code[i] << '\n';
|
|
}
|
|
}
|
|
else if (has_true_term)
|
|
{
|
|
trace << "We have a true term\n";
|
|
unsigned one = acc.add_sets(1);
|
|
extra_sets += 1;
|
|
acc_cond::mark_t m({one});
|
|
auto c = acc.inf(m);
|
|
for (unsigned i = 0; i < sz; ++i)
|
|
{
|
|
if (!code[i].is_t())
|
|
continue;
|
|
add[i] = m;
|
|
code[i] &= std::move(c);
|
|
// Use false for the other terms.
|
|
c = acc.fin({});
|
|
trace << "code[" << i << "] = " << code[i] << '\n';
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
acc_cond::acc_code new_code = aut->acc().fin({});
|
|
for (auto c: code)
|
|
new_code |= std::move(c);
|
|
|
|
unsigned cs = code.size();
|
|
for (unsigned i = 0; i < cs; ++i)
|
|
trace << i << " Rem " << rem[i] << " Code " << code[i]
|
|
<< " Keep " << keep[i] << '\n';
|
|
|
|
unsigned nst = aut->num_states();
|
|
auto res = make_twa_graph(aut->get_dict());
|
|
res->copy_ap_of(aut);
|
|
res->prop_copy(aut, { true, false, false, false, false, true });
|
|
res->new_states(nst);
|
|
res->set_acceptance(aut->num_sets() + extra_sets, new_code);
|
|
res->set_init_state(aut->get_init_state_number());
|
|
|
|
// If the input had no Inf, the output is a state-based automaton.
|
|
if (!allinf)
|
|
res->prop_state_acc(true);
|
|
|
|
bool sbacc = res->prop_state_acc().is_true();
|
|
scc_info si(aut, scc_info_options::TRACK_STATES);
|
|
unsigned nscc = si.scc_count();
|
|
std::vector<unsigned> state_map(nst);
|
|
for (unsigned n = 0; n < nscc; ++n)
|
|
{
|
|
auto m = si.acc_sets_of(n);
|
|
auto states = si.states_of(n);
|
|
trace << "SCC #" << n << " uses " << m << '\n';
|
|
|
|
// What to keep and add into the main copy
|
|
acc_cond::mark_t main_sets = {};
|
|
acc_cond::mark_t main_add = {};
|
|
bool intersects_fin = false;
|
|
for (unsigned i = 0; i < cs; ++i)
|
|
if (!(m & rem[i]))
|
|
{
|
|
main_sets |= keep[i];
|
|
main_add |= add[i];
|
|
}
|
|
else
|
|
{
|
|
intersects_fin = true;
|
|
}
|
|
trace << "main_sets " << main_sets << "\nmain_add "
|
|
<< main_add << '\n';
|
|
|
|
// Create the main copy
|
|
for (auto s: states)
|
|
for (auto& t: aut->out(s))
|
|
{
|
|
acc_cond::mark_t a = {};
|
|
if (sbacc || SPOT_LIKELY(si.scc_of(t.dst) == n))
|
|
a = (t.acc & main_sets) | main_add;
|
|
res->new_edge(s, t.dst, t.cond, a);
|
|
}
|
|
|
|
// We do not need any other copy if the SCC is non-accepting,
|
|
// of if it does not intersect any Fin.
|
|
if (!intersects_fin || si.is_rejecting_scc(n))
|
|
continue;
|
|
|
|
// Create clones
|
|
for (unsigned i = 0; i < cs; ++i)
|
|
if (m & rem[i])
|
|
{
|
|
auto r = rem[i];
|
|
trace << "rem[" << i << "] = " << r << " requires a copy\n";
|
|
unsigned base = res->new_states(states.size());
|
|
for (auto s: states)
|
|
state_map[s] = base++;
|
|
auto k = keep[i];
|
|
auto a = add[i];
|
|
for (auto s: states)
|
|
{
|
|
auto ns = state_map[s];
|
|
for (auto& t: aut->out(s))
|
|
{
|
|
if ((t.acc & r) || si.scc_of(t.dst) != n)
|
|
continue;
|
|
auto nd = state_map[t.dst];
|
|
res->new_edge(ns, nd, t.cond, (t.acc & k) | a);
|
|
// We need only one non-deterministic jump per
|
|
// cycle. As an approximation, we only do
|
|
// them on back-links.
|
|
if (t.dst <= s)
|
|
{
|
|
acc_cond::mark_t a = {};
|
|
if (sbacc)
|
|
a = (t.acc & main_sets) | main_add;
|
|
res->new_edge(s, nd, t.cond, a);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
res->purge_dead_states();
|
|
trace << "before cleanup: " << res->get_acceptance() << '\n';
|
|
cleanup_acceptance_here(res);
|
|
trace << "after cleanup: " << res->get_acceptance() << '\n';
|
|
if (res->acc().is_f())
|
|
{
|
|
// "f" is not generalized-Büchi. Just return an
|
|
// empty automaton instead.
|
|
auto res2 = make_twa_graph(res->get_dict());
|
|
res2->set_generalized_buchi(0);
|
|
res2->set_init_state(res2->new_state());
|
|
res2->prop_stutter_invariant(true);
|
|
res2->prop_weak(true);
|
|
res2->prop_complete(false);
|
|
return res2;
|
|
}
|
|
res->merge_edges();
|
|
return res;
|
|
}
|
|
|
|
twa_graph_ptr remove_fin_impl(const_twa_graph_ptr aut)
|
|
{
|
|
auto simp = simplify_acceptance(aut);
|
|
if (auto maybe = trivial_strategy(simp))
|
|
return maybe;
|
|
if (auto maybe = weak_strategy(simp))
|
|
return maybe;
|
|
if (auto maybe = alternation_strategy(simp))
|
|
return maybe;
|
|
// The order between Rabin and Streett matters because for
|
|
// instance "Streett 1" (even generalized Streett 1) is
|
|
// Rabin-like, and dually "Rabin 1" is Streett-like.
|
|
//
|
|
// We therefore check Rabin before Streett, because the
|
|
// resulting automata are usually smaller, and it can preserve
|
|
// determinism.
|
|
//
|
|
// Note that SPOT_STREETT_CONV_MIN default to 3, which means
|
|
// that regardless of this order, Rabin 1 is not handled by
|
|
// streett_strategy unless SPOT_STREETT_CONV_MIN is changed.
|
|
if (auto maybe = rabin_strategy(simp))
|
|
return maybe;
|
|
if (auto maybe = streett_strategy(simp))
|
|
return maybe;
|
|
return default_strategy(simp);
|
|
}
|
|
}
|
|
|
|
bool
|
|
rabin_is_buchi_realizable(const const_twa_graph_ptr& inaut)
|
|
{
|
|
auto aut = cleanup_acceptance(inaut);
|
|
|
|
std::vector<acc_cond::rs_pair> pairs;
|
|
if (!aut->acc().is_rabin_like(pairs))
|
|
return false;
|
|
|
|
auto aut_pairs = rs_pairs_view(pairs);
|
|
if (aut->get_acceptance().is_t())
|
|
return false;
|
|
|
|
// if is TBA type
|
|
scc_info si(aut, scc_info_options::TRACK_STATES);
|
|
std::vector<bool> final(aut->edge_vector().size(), false);
|
|
std::vector<bool> keep(aut->edge_vector().size(), true);
|
|
|
|
for (unsigned scc = 0; scc < si.scc_count(); ++scc)
|
|
if (!is_scc_tba_type(aut, si, scc, keep, aut_pairs, final))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
twa_graph_ptr
|
|
rabin_to_buchi_if_realizable(const const_twa_graph_ptr& aut)
|
|
{
|
|
std::vector<acc_cond::rs_pair> pairs;
|
|
if (!aut->acc().is_rabin_like(pairs))
|
|
return nullptr;
|
|
|
|
auto aut_pairs = rs_pairs_view(pairs);
|
|
auto code = aut->get_acceptance();
|
|
if (code.is_t())
|
|
return nullptr;
|
|
|
|
scc_info si(aut, scc_info_options::TRACK_STATES);
|
|
std::vector<bool> final(aut->edge_vector().size(), false);
|
|
std::vector<bool> keep(aut->edge_vector().size(), true);
|
|
|
|
for (unsigned scc = 0; scc < si.scc_count(); ++scc)
|
|
if (!is_scc_tba_type(aut, si, scc, keep, aut_pairs, final))
|
|
return nullptr;
|
|
|
|
auto res = make_twa_graph(aut, twa::prop_set::all());
|
|
auto m = res->set_buchi();
|
|
|
|
auto& ev = res->edge_vector();
|
|
unsigned edgecount = ev.size();
|
|
for (unsigned eidx = 1; eidx < edgecount; ++eidx)
|
|
ev[eidx].acc = final[eidx] ? m : acc_cond::mark_t{};
|
|
|
|
return res;
|
|
}
|
|
|
|
twa_graph_ptr
|
|
rabin_to_buchi_maybe(const const_twa_graph_ptr& aut)
|
|
{
|
|
bool is_state_acc = aut->prop_state_acc().is_true();
|
|
auto res = tra_to_tba(aut);
|
|
if (res && is_state_acc)
|
|
make_state_acc(res);
|
|
return res;
|
|
}
|
|
|
|
twa_graph_ptr remove_fin(const const_twa_graph_ptr& aut)
|
|
{
|
|
twa_graph_ptr res = remove_fin_impl(aut);
|
|
assert(!res->acc().uses_fin_acceptance());
|
|
assert(!res->acc().is_f());
|
|
return res;
|
|
}
|
|
}
|