* bin/ltlsynt.cc: Here. * doc/org/ltlsynt.org: Document it. * tests/core/ltlsynt.test: Test it.
711 lines
21 KiB
C++
711 lines
21 KiB
C++
// -*- coding: utf-8 -*-
|
|
// Copyright (C) 2017 Laboratoire de Recherche et Développement
|
|
// de l'Epita (LRDE).
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include <config.h>
|
|
|
|
#include <cmath>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <sstream>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
#include "common_aoutput.hh"
|
|
#include "common_finput.hh"
|
|
#include "common_setup.hh"
|
|
#include "common_sys.hh"
|
|
|
|
#include <spot/misc/bddlt.hh>
|
|
#include <spot/misc/game.hh>
|
|
#include <spot/misc/minato.hh>
|
|
#include <spot/tl/formula.hh>
|
|
#include <spot/twa/twagraph.hh>
|
|
#include <spot/twaalgos/complete.hh>
|
|
#include <spot/twaalgos/determinize.hh>
|
|
#include <spot/twaalgos/parity.hh>
|
|
#include <spot/twaalgos/sbacc.hh>
|
|
#include <spot/twaalgos/totgba.hh>
|
|
#include <spot/twaalgos/translate.hh>
|
|
#include <spot/twa/twagraph.hh>
|
|
|
|
enum
|
|
{
|
|
OPT_ALGO = 256,
|
|
OPT_INPUT,
|
|
OPT_OUTPUT,
|
|
OPT_PRINT,
|
|
OPT_REAL
|
|
};
|
|
|
|
enum solver
|
|
{
|
|
QP,
|
|
REC
|
|
};
|
|
|
|
static const argp_option options[] =
|
|
{
|
|
{ "algo", OPT_ALGO, "ALGO", 0,
|
|
"choose the parity game algorithm, valid ones are rec (Zielonka's"
|
|
" recursive algorithm, default) and qp (Calude et al.'s quasi-polynomial"
|
|
" time algorithm)", 0 },
|
|
{ "input", OPT_INPUT, "PROPS", 0,
|
|
"comma-separated list of uncontrollable (a.k.a. input) atomic"
|
|
" propositions", 0},
|
|
{ "output", OPT_OUTPUT, "PROPS", 0,
|
|
"comma-separated list of controllable (a.k.a. output) atomic"
|
|
" propositions", 0},
|
|
{ "print-pg", OPT_PRINT, nullptr, 0,
|
|
"print the parity game in the pgsolver format, do not solve it", 0},
|
|
{ "realizability", OPT_REAL, nullptr, 0,
|
|
"realizability only, do not synthesize the circuit", 0},
|
|
{ nullptr, 0, nullptr, 0, nullptr, 0 },
|
|
};
|
|
|
|
const struct argp_child children[] =
|
|
{
|
|
{ &finput_argp, 0, nullptr, 1 },
|
|
{ &misc_argp, 0, nullptr, -1 },
|
|
{ nullptr, 0, nullptr, 0 }
|
|
};
|
|
|
|
const char argp_program_doc[] =
|
|
"Synthesize an AIGER circuit from its LTL specifications.";
|
|
|
|
std::vector<std::string> input_aps;
|
|
std::vector<std::string> output_aps;
|
|
std::unordered_map<unsigned, unsigned> bddvar_to_inputnum;
|
|
std::unordered_map<unsigned, unsigned> bddvar_to_outputnum;
|
|
|
|
bool opt_print_pg(false);
|
|
bool opt_real(false);
|
|
solver opt_solver(REC);
|
|
|
|
namespace
|
|
{
|
|
// Take an automaton and a set of atomic propositions I, and split each
|
|
// transition
|
|
//
|
|
// p -- cond --> q cond in 2^2^AP
|
|
//
|
|
// into a set of transitions of the form
|
|
//
|
|
// p -- i1 --> r1 -- o1 --> q i1 in 2^I
|
|
// o1 in 2^O
|
|
//
|
|
// p -- i2 --> r2 -- o2 --> q i2 in 2^I
|
|
// o2 in 2^O
|
|
// ...
|
|
//
|
|
// where O = AP\I, and such that cond = (i1 & o1) | (i2 & o2) | ...
|
|
//
|
|
// When determinized, this encodes a game automaton that has a winning
|
|
// strategy iff aut has an accepting run for any valuation of atomic
|
|
// propositions in I.
|
|
|
|
spot::twa_graph_ptr
|
|
split_automaton(const spot::twa_graph_ptr& aut,
|
|
bdd input_bdd)
|
|
{
|
|
auto tgba = spot::to_generalized_buchi(aut);
|
|
auto split = spot::make_twa_graph(tgba->get_dict());
|
|
split->copy_ap_of(tgba);
|
|
split->copy_acceptance_of(tgba);
|
|
split->new_states(tgba->num_states());
|
|
split->set_init_state(tgba->get_init_state_number());
|
|
|
|
for (unsigned src = 0; src < tgba->num_states(); ++src)
|
|
for (const auto& e: tgba->out(src))
|
|
{
|
|
spot::minato_isop isop(e.cond);
|
|
bdd cube;
|
|
while ((cube = isop.next()) != bddfalse)
|
|
{
|
|
unsigned q = split->new_state();
|
|
bdd in = bdd_existcomp(cube, input_bdd);
|
|
bdd out = bdd_exist(cube, input_bdd);
|
|
split->new_edge(src, q, in, 0);
|
|
split->new_edge(q, e.dst, out, e.acc);
|
|
}
|
|
}
|
|
split->prop_universal(spot::trival::maybe());
|
|
return split;
|
|
}
|
|
|
|
// Generates a vector indicating the owner of each state, with the
|
|
// convention that false is player 0 (the environment) and true is player 1
|
|
// (the controller). Starting with player 0 on the initial state, the owner
|
|
// is switched after each transition.
|
|
std::vector<bool> make_alternating_owner(const spot::twa_graph_ptr& dpa,
|
|
bool init_owner = false)
|
|
{
|
|
std::vector<bool> seen(dpa->num_states(), false);
|
|
std::vector<unsigned> todo({dpa->get_init_state_number()});
|
|
std::vector<bool> owner(dpa->num_states());
|
|
owner[dpa->get_init_state_number()] = init_owner;
|
|
while (!todo.empty())
|
|
{
|
|
unsigned src = todo.back();
|
|
todo.pop_back();
|
|
seen[src] = true;
|
|
for (auto& e: dpa->out(src))
|
|
{
|
|
if (!seen[e.dst])
|
|
{
|
|
owner[e.dst] = !owner[src];
|
|
todo.push_back(e.dst);
|
|
}
|
|
}
|
|
}
|
|
return owner;
|
|
}
|
|
|
|
spot::twa_graph_ptr to_dpa(const spot::twa_graph_ptr& split)
|
|
{
|
|
auto dpa = spot::tgba_determinize(split);
|
|
dpa->merge_edges();
|
|
spot::complete_here(dpa);
|
|
spot::colorize_parity_here(dpa, true);
|
|
spot::change_parity_here(dpa, spot::parity_kind_max,
|
|
spot::parity_style_odd);
|
|
if (opt_print_pg)
|
|
dpa = spot::sbacc(dpa);
|
|
bool max, odd;
|
|
dpa->acc().is_parity(max, odd);
|
|
assert(max && odd);
|
|
assert(spot::is_deterministic(dpa));
|
|
return dpa;
|
|
}
|
|
|
|
// Parity game strategy to AIGER
|
|
|
|
class aig
|
|
{
|
|
private:
|
|
unsigned num_inputs_;
|
|
unsigned max_var_;
|
|
std::map<unsigned, std::pair<unsigned, unsigned>> and_gates_;
|
|
std::vector<unsigned> latches_;
|
|
std::vector<unsigned> outputs_;
|
|
// Cache the function computed by each variable as a bdd.
|
|
std::unordered_map<unsigned, bdd> var2bdd_;
|
|
std::unordered_map<bdd, unsigned, spot::bdd_hash> bdd2var_;
|
|
|
|
public:
|
|
aig(unsigned num_inputs, unsigned num_latches, unsigned num_outputs)
|
|
: num_inputs_(num_inputs),
|
|
max_var_((num_inputs + num_latches) * 2),
|
|
latches_(std::vector<unsigned>(num_latches)),
|
|
outputs_(std::vector<unsigned>(num_outputs))
|
|
{
|
|
bdd2var_[bddtrue] = 1;
|
|
var2bdd_[1] = bddtrue;
|
|
bdd2var_[bddfalse] = 0;
|
|
var2bdd_[0] = bddfalse;
|
|
}
|
|
|
|
unsigned input_var(unsigned i, bdd b)
|
|
{
|
|
assert(i < num_inputs_);
|
|
unsigned v = (1 + i) * 2;
|
|
bdd2var_[b] = v;
|
|
var2bdd_[v] = b;
|
|
return v;
|
|
}
|
|
|
|
unsigned latch_var(unsigned i, bdd b)
|
|
{
|
|
assert(i < latches_.size());
|
|
unsigned v = (1 + num_inputs_ + i) * 2;
|
|
bdd2var_[b] = v;
|
|
var2bdd_[v] = b;
|
|
return v;
|
|
}
|
|
|
|
void set_output(unsigned i, unsigned v)
|
|
{
|
|
outputs_[i] = v;
|
|
}
|
|
|
|
void set_latch(unsigned i, unsigned v)
|
|
{
|
|
latches_[i] = v;
|
|
}
|
|
|
|
unsigned aig_true() const
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
unsigned aig_false() const
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
unsigned aig_not(unsigned v)
|
|
{
|
|
unsigned not_v = v + 1 - 2 * (v % 2);
|
|
assert(var2bdd_.count(v));
|
|
var2bdd_[not_v] = !(var2bdd_[v]);
|
|
bdd2var_[var2bdd_[not_v]] = not_v;
|
|
return not_v;
|
|
}
|
|
|
|
unsigned aig_and(unsigned v1, unsigned v2)
|
|
{
|
|
assert(var2bdd_.count(v1));
|
|
assert(var2bdd_.count(v2));
|
|
bdd b = var2bdd_[v1] & var2bdd_[v2];
|
|
auto it = bdd2var_.find(b);
|
|
if (it != bdd2var_.end())
|
|
return it->second;
|
|
max_var_ += 2;
|
|
and_gates_[max_var_] = {v1, v2};
|
|
bdd v1v2 = var2bdd_[v1] & var2bdd_[v2];
|
|
bdd2var_[v1v2] = max_var_;
|
|
var2bdd_[max_var_] = v1v2;
|
|
return max_var_;
|
|
}
|
|
|
|
unsigned aig_and(std::vector<unsigned> vs)
|
|
{
|
|
if (vs.empty())
|
|
return aig_true();
|
|
if (vs.size() == 1)
|
|
return vs[0];
|
|
if (vs.size() == 2)
|
|
return aig_and(vs[0], vs[1]);
|
|
unsigned m = vs.size() / 2;
|
|
std::vector<unsigned> left(vs.begin(), vs.begin() + m);
|
|
std::vector<unsigned> right(vs.begin() + m, vs.end());
|
|
return aig_and(aig_and(left), aig_and(right));
|
|
}
|
|
|
|
unsigned aig_or(unsigned v1, unsigned v2)
|
|
{
|
|
return aig_not(aig_and(aig_not(v1), aig_not(v2)));
|
|
}
|
|
|
|
unsigned aig_or(std::vector<unsigned> vs)
|
|
{
|
|
for (unsigned i = 0; i < vs.size(); ++i)
|
|
vs[i] = aig_not(vs[i]);
|
|
return aig_not(aig_and(vs));
|
|
}
|
|
|
|
unsigned aig_pos(unsigned v)
|
|
{
|
|
return v - v % 2;
|
|
}
|
|
|
|
void remove_unused()
|
|
{
|
|
std::unordered_set<unsigned> todo;
|
|
for (unsigned v : outputs_)
|
|
todo.insert(aig_pos(v));
|
|
std::unordered_set<unsigned> used;
|
|
while (!todo.empty())
|
|
{
|
|
used.insert(todo.begin(), todo.end());
|
|
std::unordered_set<unsigned> todo_next;
|
|
for (unsigned v : todo)
|
|
{
|
|
auto it_and = and_gates_.find(v);
|
|
if (it_and != and_gates_.end())
|
|
{
|
|
if (!used.count(aig_pos(it_and->second.first)))
|
|
todo_next.insert(aig_pos(it_and->second.first));
|
|
if (!used.count(aig_pos(it_and->second.second)))
|
|
todo_next.insert(aig_pos(it_and->second.second));
|
|
}
|
|
else if (v <= (num_inputs_ + latches_.size()) * 2
|
|
&& v > num_inputs_ * 2)
|
|
{
|
|
unsigned l = v / 2 - num_inputs_ - 1;
|
|
if (!used.count(aig_pos(latches_[l])))
|
|
todo_next.insert(aig_pos(latches_[l]));
|
|
}
|
|
}
|
|
todo = todo_next;
|
|
}
|
|
std::unordered_set<unsigned> unused;
|
|
for (auto& p : and_gates_)
|
|
if (!used.count(p.first))
|
|
unused.insert(p.first);
|
|
for (unsigned v : unused)
|
|
and_gates_.erase(v);
|
|
}
|
|
|
|
void print()
|
|
{
|
|
std::cout << "aag " << max_var_ / 2
|
|
<< ' ' << num_inputs_
|
|
<< ' ' << latches_.size()
|
|
<< ' ' << outputs_.size()
|
|
<< ' ' << and_gates_.size() << '\n';
|
|
for (unsigned i = 0; i < num_inputs_; ++i)
|
|
std::cout << (1 + i) * 2 << '\n';
|
|
for (unsigned i = 0; i < latches_.size(); ++i)
|
|
std::cout << (1 + num_inputs_ + i) * 2
|
|
<< ' ' << latches_[i] << '\n';
|
|
for (unsigned i = 0; i < outputs_.size(); ++i)
|
|
std::cout << outputs_[i] << '\n';
|
|
for (auto& p : and_gates_)
|
|
std::cout << p.first
|
|
<< ' ' << p.second.first
|
|
<< ' ' << p.second.second << '\n';
|
|
for (unsigned i = 0; i < num_inputs_; ++i)
|
|
std::cout << 'i' << i << ' ' << input_aps[i] << '\n';
|
|
for (unsigned i = 0; i < outputs_.size(); ++i)
|
|
std::cout << 'o' << i << ' ' << output_aps[i] << '\n';
|
|
}
|
|
};
|
|
|
|
std::vector<bool> output_to_vec(bdd b)
|
|
{
|
|
std::vector<bool> v(bddvar_to_outputnum.size());
|
|
while (b != bddtrue && b != bddfalse)
|
|
{
|
|
unsigned i = bddvar_to_outputnum[bdd_var(b)];
|
|
v[i] = (bdd_low(b) == bddfalse);
|
|
if (v[i])
|
|
b = bdd_high(b);
|
|
else
|
|
b = bdd_low(b);
|
|
}
|
|
return v;
|
|
}
|
|
|
|
bdd state_to_bdd(unsigned s, bdd all)
|
|
{
|
|
bdd b = bddtrue;
|
|
unsigned size = bdd_nodecount(all);
|
|
if (size)
|
|
{
|
|
unsigned st0 = bdd_var(all);
|
|
for (unsigned i = 0; i < size; ++i)
|
|
{
|
|
b &= s % 2 ? bdd_ithvar(st0 + i) : bdd_nithvar(st0 + i);
|
|
s >>= 1;
|
|
}
|
|
}
|
|
return b;
|
|
}
|
|
|
|
// Construct a smaller automaton, filtering out states that are not
|
|
// accessible. Also merge back pairs of p --(i)--> q --(o)--> r
|
|
// transitions to p --(i&o)--> r.
|
|
spot::twa_graph_ptr
|
|
strat_to_aut(const spot::parity_game& pg,
|
|
const spot::parity_game::strategy_t& strat,
|
|
const spot::twa_graph_ptr& dpa,
|
|
bdd all_outputs)
|
|
{
|
|
auto aut = spot::make_twa_graph(dpa->get_dict());
|
|
aut->copy_ap_of(dpa);
|
|
std::vector<unsigned> todo{pg.get_init_state_number()};
|
|
std::vector<int> pg2aut(pg.num_states(), -1);
|
|
aut->set_init_state(aut->new_state());
|
|
pg2aut[pg.get_init_state_number()] = aut->get_init_state_number();
|
|
while (!todo.empty())
|
|
{
|
|
unsigned s = todo.back();
|
|
todo.pop_back();
|
|
for (auto& e1: dpa->out(s))
|
|
{
|
|
unsigned i = 0;
|
|
for (auto& e2: dpa->out(e1.dst))
|
|
{
|
|
bool self_loop = false;
|
|
if (e1.dst == s || e2.dst == e1.dst)
|
|
self_loop = true;
|
|
if (self_loop || strat.at(e1.dst) == i)
|
|
{
|
|
bdd out = bdd_satoneset(e2.cond, all_outputs, bddfalse);
|
|
if (pg2aut[e2.dst] == -1)
|
|
{
|
|
pg2aut[e2.dst] = aut->new_state();
|
|
todo.push_back(e2.dst);
|
|
}
|
|
aut->new_edge(pg2aut[s], pg2aut[e2.dst],
|
|
(e1.cond & out), 0);
|
|
break;
|
|
}
|
|
++i;
|
|
}
|
|
}
|
|
}
|
|
aut->purge_dead_states();
|
|
return aut;
|
|
}
|
|
|
|
std::vector<bool> state_to_vec(unsigned s, unsigned size)
|
|
{
|
|
std::vector<bool> v(size);
|
|
for (unsigned i = 0; i < size; ++i)
|
|
{
|
|
v[i] = s % 2;
|
|
s >>= 1;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
// Switch initial state and 0 in the AIGER encoding, so that the
|
|
// 0-initialized latches correspond to the initial state.
|
|
unsigned encode_init_0(unsigned src, unsigned init)
|
|
{
|
|
return src == init ? 0 : src == 0 ? init : src;
|
|
}
|
|
|
|
aig aut_to_aiger(const spot::twa_graph_ptr& aut,
|
|
bdd all_inputs, bdd all_outputs)
|
|
{
|
|
// Encode state in log2(num_states) latches.
|
|
unsigned log2n = std::ceil(std::log2(aut->num_states()));
|
|
unsigned st0 = aut->get_dict()->register_anonymous_variables(log2n, aut);
|
|
bdd all_states = bddtrue;
|
|
for (unsigned i = 0; i < log2n; ++i)
|
|
all_states &= bdd_ithvar(st0 + i);
|
|
|
|
unsigned num_inputs = bdd_nodecount(all_inputs);
|
|
unsigned num_outputs = bdd_nodecount(all_outputs);
|
|
unsigned num_latches = bdd_nodecount(all_states);
|
|
unsigned init = aut->get_init_state_number();
|
|
|
|
aig circuit(num_inputs, num_latches, num_outputs);
|
|
bdd b;
|
|
|
|
// Latches and outputs are expressed as a DNF in which each term represents
|
|
// a transition.
|
|
// latch[i] (resp. out[i]) represents the i-th latch's (resp. output's)
|
|
// DNF.
|
|
std::vector<std::vector<unsigned>> latch(num_latches);
|
|
std::vector<std::vector<unsigned>> out(num_outputs);
|
|
for (unsigned s = 0; s < aut->num_states(); ++s)
|
|
for (auto& e: aut->out(s))
|
|
{
|
|
spot::minato_isop cond(e.cond);
|
|
while ((b = cond.next()) != bddfalse)
|
|
{
|
|
bdd input = bdd_existcomp(b, all_inputs);
|
|
bdd letter_out = bdd_existcomp(b, all_outputs);
|
|
auto out_vec = output_to_vec(letter_out);
|
|
unsigned dst = encode_init_0(e.dst, init);
|
|
auto next_state_vec = state_to_vec(dst, log2n);
|
|
unsigned src = encode_init_0(s, init);
|
|
bdd state_bdd = state_to_bdd(src, all_states);
|
|
std::vector<unsigned> prod;
|
|
while (input != bddfalse && input != bddtrue)
|
|
{
|
|
unsigned v =
|
|
circuit.input_var(bddvar_to_inputnum[bdd_var(input)],
|
|
bdd_ithvar(bdd_var(input)));
|
|
if (bdd_high(input) == bddfalse)
|
|
{
|
|
v = circuit.aig_not(v);
|
|
input = bdd_low(input);
|
|
}
|
|
else
|
|
input = bdd_high(input);
|
|
prod.push_back(v);
|
|
}
|
|
|
|
while (state_bdd != bddfalse && state_bdd != bddtrue)
|
|
{
|
|
unsigned v =
|
|
circuit.latch_var(bdd_var(state_bdd) - st0,
|
|
bdd_ithvar(bdd_var(state_bdd)));
|
|
if (bdd_high(state_bdd) == bddfalse)
|
|
{
|
|
v = circuit.aig_not(v);
|
|
state_bdd = bdd_low(state_bdd);
|
|
}
|
|
else
|
|
state_bdd = bdd_high(state_bdd);
|
|
prod.push_back(v);
|
|
}
|
|
unsigned t = circuit.aig_and(prod);
|
|
for (unsigned i = 0; i < next_state_vec.size(); ++i)
|
|
if (next_state_vec[i])
|
|
latch[i].push_back(t);
|
|
for (unsigned i = 0; i < num_outputs; ++i)
|
|
if (out_vec[i])
|
|
out[i].push_back(t);
|
|
}
|
|
}
|
|
for (unsigned i = 0; i < num_latches; ++i)
|
|
circuit.set_latch(i, circuit.aig_or(latch[i]));
|
|
for (unsigned i = 0; i < num_outputs; ++i)
|
|
circuit.set_output(i, circuit.aig_or(out[i]));
|
|
circuit.remove_unused();
|
|
return circuit;
|
|
}
|
|
|
|
class ltl_processor final : public job_processor
|
|
{
|
|
private:
|
|
spot::translator& trans_;
|
|
std::vector<std::string> input_aps_;
|
|
std::vector<std::string> output_aps_;
|
|
|
|
public:
|
|
|
|
ltl_processor(spot::translator& trans,
|
|
std::vector<std::string> input_aps_,
|
|
std::vector<std::string> output_aps_)
|
|
: trans_(trans), input_aps_(input_aps_), output_aps_(output_aps_)
|
|
{
|
|
}
|
|
|
|
int process_formula(spot::formula f,
|
|
const char*, int) override
|
|
{
|
|
auto aut = trans_.run(&f);
|
|
bdd all_inputs = bddtrue;
|
|
bdd all_outputs = bddtrue;
|
|
for (unsigned i = 0; i < input_aps_.size(); ++i)
|
|
{
|
|
std::ostringstream lowercase;
|
|
for (char c: input_aps_[i])
|
|
lowercase << (char)std::tolower(c);
|
|
unsigned v = aut->register_ap(spot::formula::ap(lowercase.str()));
|
|
all_inputs &= bdd_ithvar(v);
|
|
bddvar_to_inputnum[v] = i;
|
|
}
|
|
for (unsigned i = 0; i < output_aps_.size(); ++i)
|
|
{
|
|
std::ostringstream lowercase;
|
|
for (char c: output_aps_[i])
|
|
lowercase << (char)std::tolower(c);
|
|
unsigned v = aut->register_ap(spot::formula::ap(lowercase.str()));
|
|
all_outputs &= bdd_ithvar(v);
|
|
bddvar_to_outputnum[v] = i;
|
|
}
|
|
auto split = split_automaton(aut, all_inputs);
|
|
auto dpa = to_dpa(split);
|
|
auto owner = make_alternating_owner(dpa);
|
|
auto pg = spot::parity_game(dpa, owner);
|
|
if (opt_print_pg)
|
|
{
|
|
pg.print(std::cout);
|
|
return 0;
|
|
}
|
|
switch (opt_solver)
|
|
{
|
|
case REC:
|
|
{
|
|
spot::parity_game::strategy_t strategy;
|
|
spot::parity_game::region_t winning_region;
|
|
std::tie(winning_region, strategy) = pg.solve();
|
|
if (winning_region.count(pg.get_init_state_number()))
|
|
{
|
|
std::cout << "REALIZABLE\n";
|
|
if (!opt_real)
|
|
{
|
|
auto strat_aut = strat_to_aut(pg, strategy, dpa, all_outputs);
|
|
auto circuit = aut_to_aiger(strat_aut, all_inputs, all_outputs);
|
|
circuit.print();
|
|
}
|
|
}
|
|
else
|
|
std::cout << "UNREALIZABLE\n";
|
|
return 0;
|
|
}
|
|
case QP:
|
|
if (!opt_real)
|
|
{
|
|
std::cout << "The quasi-polynomial time algorithm does not"
|
|
" implement synthesis yet, use --realizability\n";
|
|
return 1;
|
|
}
|
|
else if (pg.solve_qp())
|
|
std::cout << "REALIZABLE\n";
|
|
else
|
|
std::cout << "UNREALIZABLE\n";
|
|
return 0;
|
|
default:
|
|
SPOT_UNREACHABLE();
|
|
return 0;
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
static int
|
|
parse_opt(int key, char* arg, struct argp_state*)
|
|
{
|
|
switch (key)
|
|
{
|
|
case OPT_INPUT:
|
|
{
|
|
std::istringstream aps(arg);
|
|
std::string ap;
|
|
while (std::getline(aps, ap, ','))
|
|
{
|
|
ap.erase(remove_if(ap.begin(), ap.end(), isspace), ap.end());
|
|
input_aps.push_back(ap);
|
|
}
|
|
break;
|
|
}
|
|
case OPT_OUTPUT:
|
|
{
|
|
std::istringstream aps(arg);
|
|
std::string ap;
|
|
while (std::getline(aps, ap, ','))
|
|
{
|
|
ap.erase(remove_if(ap.begin(), ap.end(), isspace), ap.end());
|
|
output_aps.push_back(ap);
|
|
}
|
|
break;
|
|
}
|
|
case OPT_PRINT:
|
|
opt_print_pg = true;
|
|
break;
|
|
case OPT_ALGO:
|
|
if (arg && strcmp(arg, "rec") == 0)
|
|
opt_solver = REC;
|
|
else if (arg && strcmp(arg, "qp") == 0)
|
|
opt_solver = QP;
|
|
else
|
|
{
|
|
std::cout << "Unknown solver: " << (arg ? arg : "") << '\n';
|
|
return 1;
|
|
}
|
|
break;
|
|
case OPT_REAL:
|
|
opt_real = true;
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
setup(argv);
|
|
const argp ap = { options, parse_opt, nullptr,
|
|
argp_program_doc, children, nullptr, nullptr };
|
|
if (int err = argp_parse(&ap, argc, argv, ARGP_NO_HELP, nullptr, nullptr))
|
|
exit(err);
|
|
check_no_formula();
|
|
|
|
spot::translator trans;
|
|
ltl_processor processor(trans, input_aps, output_aps);
|
|
processor.run();
|
|
}
|