Removal suggestions from clang-include-cleaner-17 applied manually. * spot/gen/automata.cc, spot/ltsmin/ltsmin.cc, spot/misc/bitvect.cc, spot/misc/intvcomp.cc, spot/misc/satsolver.cc, spot/misc/tmpfile.cc, spot/priv/trim.cc, spot/priv/weight.cc, spot/ta/taexplicit.cc, spot/ta/tgtaexplicit.cc, spot/ta/tgtaproduct.cc, spot/taalgos/emptinessta.cc, spot/taalgos/minimize.cc, spot/taalgos/reachiter.cc, spot/taalgos/statessetbuilder.cc, spot/taalgos/tgba2ta.cc, spot/tl/apcollect.cc, spot/tl/contain.cc, spot/tl/exclusive.cc, spot/tl/formula.cc, spot/tl/mark.cc, spot/tl/randomltl.cc, spot/tl/relabel.cc, spot/tl/remove_x.cc, spot/twa/acc.cc, spot/twa/bdddict.cc, spot/twa/taatgba.cc, spot/twa/twagraph.cc, spot/twaalgos/aiger.cc, spot/twaalgos/alternation.cc, spot/twaalgos/canonicalize.cc, spot/twaalgos/cobuchi.cc, spot/twaalgos/complement.cc, spot/twaalgos/compsusp.cc, spot/twaalgos/dbranch.cc, spot/twaalgos/degen.cc, spot/twaalgos/determinize.cc, spot/twaalgos/dot.cc, spot/twaalgos/dtbasat.cc, spot/twaalgos/dtwasat.cc, spot/twaalgos/emptiness.cc, spot/twaalgos/forq_contains.cc, spot/twaalgos/game.cc, spot/twaalgos/genem.cc, spot/twaalgos/gv04.cc, spot/twaalgos/hoa.cc, spot/twaalgos/isunamb.cc, spot/twaalgos/isweakscc.cc, spot/twaalgos/lbtt.cc, spot/twaalgos/ltl2tgba_fm.cc, spot/twaalgos/magic.cc, spot/twaalgos/mealy_machine.cc, spot/twaalgos/minimize.cc, spot/twaalgos/neverclaim.cc, spot/twaalgos/parity.cc, spot/twaalgos/powerset.cc, spot/twaalgos/product.cc, spot/twaalgos/randomgraph.cc, spot/twaalgos/randomize.cc, spot/twaalgos/relabel.cc, spot/twaalgos/remfin.cc, spot/twaalgos/remprop.cc, spot/twaalgos/sccinfo.cc, spot/twaalgos/se05.cc, spot/twaalgos/sepsets.cc, spot/twaalgos/simulation.cc, spot/twaalgos/split.cc, spot/twaalgos/strength.cc, spot/twaalgos/stutter.cc, spot/twaalgos/synthesis.cc, spot/twaalgos/tau03.cc, spot/twaalgos/tau03opt.cc, spot/twaalgos/translate.cc, spot/twacube/cube.cc: Remove useless includes.
677 lines
21 KiB
C++
677 lines
21 KiB
C++
// -*- coding: utf-8 -*-
|
||
// Copyright (C) by the Spot authors, see the AUTHORS file for details.
|
||
//
|
||
// This file is part of Spot, a model checking library.
|
||
//
|
||
// Spot is free software; you can redistribute it and/or modify it
|
||
// under the terms of the GNU General Public License as published by
|
||
// the Free Software Foundation; either version 3 of the License, or
|
||
// (at your option) any later version.
|
||
//
|
||
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
// License for more details.
|
||
//
|
||
// You should have received a copy of the GNU General Public License
|
||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
||
#include "config.h"
|
||
#include <spot/tl/relabel.hh>
|
||
#include <spot/tl/simplify.hh>
|
||
#include <sstream>
|
||
#include <map>
|
||
#include <set>
|
||
#include <stack>
|
||
#include <iostream>
|
||
|
||
namespace spot
|
||
{
|
||
//////////////////////////////////////////////////////////////////////
|
||
// Basic relabeler
|
||
//////////////////////////////////////////////////////////////////////
|
||
|
||
namespace
|
||
{
|
||
struct ap_generator
|
||
{
|
||
virtual formula next() = 0;
|
||
virtual ~ap_generator() {}
|
||
};
|
||
|
||
struct pnn_generator final: ap_generator
|
||
{
|
||
unsigned nn;
|
||
pnn_generator()
|
||
: nn(0)
|
||
{
|
||
}
|
||
|
||
virtual formula next() override
|
||
{
|
||
std::ostringstream s;
|
||
s << 'p' << nn++;
|
||
return formula::ap(s.str());
|
||
}
|
||
};
|
||
|
||
struct abc_generator final: ap_generator
|
||
{
|
||
public:
|
||
abc_generator()
|
||
: nn(0)
|
||
{
|
||
}
|
||
|
||
unsigned nn;
|
||
|
||
virtual formula next() override
|
||
{
|
||
std::string s;
|
||
unsigned n = nn++;
|
||
do
|
||
{
|
||
s.push_back('a' + (n % 26));
|
||
n /= 26;
|
||
}
|
||
while (n);
|
||
return formula::ap(s);
|
||
}
|
||
};
|
||
|
||
// if subexp == false, matches APs
|
||
// if subexp == true, matches boolean subexps
|
||
template <bool subexp, bool use_bdd = false>
|
||
class relabeler
|
||
{
|
||
public:
|
||
typedef std::unordered_map<formula, formula> map;
|
||
map newname;
|
||
ap_generator* gen;
|
||
relabeling_map* oldnames;
|
||
tl_simplifier tl;
|
||
|
||
relabeler(ap_generator* gen, relabeling_map* m)
|
||
: gen(gen), oldnames(m)
|
||
{
|
||
}
|
||
|
||
~relabeler()
|
||
{
|
||
delete gen;
|
||
}
|
||
|
||
formula rename(formula old)
|
||
{
|
||
if constexpr (subexp)
|
||
{
|
||
// have we given a name to the negation of this formula?
|
||
auto neg = newname.find(formula::Not(old));
|
||
if (neg != newname.end())
|
||
return formula::Not(neg->second);
|
||
}
|
||
|
||
auto r = newname.emplace(old, nullptr);
|
||
if (!r.second)
|
||
return r.first->second;
|
||
|
||
if constexpr (use_bdd)
|
||
if (!old.is(op::ap))
|
||
{
|
||
bdd b = tl.as_bdd(old);
|
||
if (b == bddtrue)
|
||
return r.first->second = formula::tt();
|
||
if (b == bddfalse)
|
||
return r.first->second = formula::ff();
|
||
}
|
||
|
||
formula res = gen->next();
|
||
r.first->second = res;
|
||
if (oldnames)
|
||
(*oldnames)[res] = old;
|
||
return res;
|
||
}
|
||
|
||
formula
|
||
visit(formula f)
|
||
{
|
||
if ((!subexp && f.is(op::ap))
|
||
|| (subexp && f.is_boolean()))
|
||
{
|
||
return rename(f);
|
||
}
|
||
if (subexp && f.is(op::Or, op::And) && f[0].is_boolean())
|
||
{
|
||
// Boolean terms are always beginning of And and Or, so
|
||
// the above test capture Or/And that some Boolean arguments
|
||
// and some non-Boolean arguments.
|
||
unsigned i = 0;
|
||
formula b = f.boolean_operands(&i);
|
||
unsigned sz = f.size();
|
||
std::vector<formula> res;
|
||
res.reserve(sz - i + 1);
|
||
res.emplace_back(visit(b));
|
||
for (; i < sz; ++i)
|
||
res.emplace_back(visit(f[i]));
|
||
return formula::multop(f.kind(), res);
|
||
}
|
||
else
|
||
{
|
||
return f.map([this](formula f)
|
||
{
|
||
return this->visit(f);
|
||
});
|
||
}
|
||
}
|
||
|
||
};
|
||
|
||
template<bool subexp>
|
||
formula
|
||
relabel_do(formula f, relabeling_style style, relabeling_map* m)
|
||
{
|
||
ap_generator* gen = nullptr;
|
||
switch (style)
|
||
{
|
||
case Pnn:
|
||
gen = new pnn_generator;
|
||
break;
|
||
case Abc:
|
||
gen = new abc_generator;
|
||
break;
|
||
}
|
||
|
||
relabeler<subexp> r(gen, m);
|
||
return r.visit(f);
|
||
}
|
||
}
|
||
|
||
formula
|
||
relabel(formula f, relabeling_style style, relabeling_map* m)
|
||
{
|
||
return relabel_do<false>(f, style, m);
|
||
}
|
||
|
||
formula
|
||
relabel_overlapping_bse(formula f, relabeling_style style, relabeling_map* m)
|
||
{
|
||
return relabel_do<true>(f, style, m);
|
||
}
|
||
|
||
namespace
|
||
{
|
||
typedef std::map<formula, int> sub_formula_count_t;
|
||
|
||
static void
|
||
sub_formula_collect(formula f, sub_formula_count_t* s)
|
||
{
|
||
assert(s);
|
||
f.traverse([&](const formula& f)
|
||
{
|
||
auto p = s->emplace(f, 1);
|
||
if (p.second)
|
||
return false;
|
||
p.first->second += 1;
|
||
return true;
|
||
});
|
||
}
|
||
|
||
static std::pair<formula, formula>
|
||
split_used_once(formula f, const sub_formula_count_t& subcount)
|
||
{
|
||
assert(f.is_boolean());
|
||
unsigned sz = f.size();
|
||
if (sz <= 2)
|
||
return {f, nullptr};
|
||
// If we have a Boolean formula with more than two
|
||
// children, like (a & b & c & d) where some children
|
||
// (assume {a,b}) are used only once, but some other
|
||
// (assume {c,d}) are used multiple time in the formula,
|
||
// then split that into ((a & b) & (c & d)) to give
|
||
// (a & b) a chance to be relabeled as a whole.
|
||
bool has_once = false;
|
||
bool has_mult = false;
|
||
for (unsigned j = 0; j < sz; ++j)
|
||
{
|
||
auto p = subcount.find(f[j]);
|
||
assert(p != subcount.end());
|
||
unsigned sc = p->second;
|
||
assert(sc > 0);
|
||
if (sc == 1)
|
||
has_once = true;
|
||
else
|
||
has_mult = true;
|
||
if (has_once && has_mult)
|
||
{
|
||
std::vector<formula> once;
|
||
std::vector<formula> mult;
|
||
for (unsigned i = 0; i < j; ++i)
|
||
mult.push_back(f[i]);
|
||
once.push_back(f[j]);
|
||
if (sc > 1)
|
||
std::swap(once, mult);
|
||
for (++j; j < sz; ++j)
|
||
{
|
||
auto p = subcount.find(f[j]);
|
||
assert(p != subcount.end());
|
||
unsigned sc = p->second;
|
||
((sc == 1) ? once : mult).push_back(f[j]);
|
||
}
|
||
formula f1 = formula::multop(f.kind(), std::move(once));
|
||
formula f2 = formula::multop(f.kind(), std::move(mult));
|
||
return { f1, f2 };
|
||
}
|
||
}
|
||
return {f, nullptr};
|
||
}
|
||
}
|
||
|
||
|
||
//////////////////////////////////////////////////////////////////////
|
||
// Boolean-subexpression relabeler
|
||
//////////////////////////////////////////////////////////////////////
|
||
|
||
// Here we want to rewrite a formula such as
|
||
// "a & b & X(c & d) & GF(c & d)" into "p0 & Xp1 & GFp1"
|
||
// where Boolean subexpressions are replaced by fresh propositions.
|
||
//
|
||
// Detecting Boolean subexpressions is not a problem.
|
||
// Furthermore, because we are already representing LTL formulas
|
||
// with sharing of identical sub-expressions we can easily rename
|
||
// a subexpression (such as c&d above) only once. However this
|
||
// scheme (done by relabel_overlapping_bse()) has two problems:
|
||
//
|
||
// A. It will not detect inter-dependent Boolean subexpressions.
|
||
// For instance it will mistakenly relabel "(a & b) U (a & !b)"
|
||
// as "p0 U p1", hiding the dependency between a&b and a&!b.
|
||
//
|
||
// B. Because of our n-ary operators, it will fail to
|
||
// notice that (a & b) is a sub-expression of (a & b & c).
|
||
//
|
||
// The way we compute the subexpressions that can be relabeled is by
|
||
// transforming the formula syntax tree into an undirected graph,
|
||
// and computing the cut-points of this graph. The cut-points (or
|
||
// articulation points) are the nodes whose removal would split the
|
||
// graph in two components; in our case, we extend this definition to
|
||
// also consider the leaves as cut-points.
|
||
//
|
||
// For instance ((a|b)&c&d)U(!d&e&f) is represented by
|
||
// the following graph, were cut-points are marked with *.
|
||
//
|
||
// ((a|b)&c&d)U(!d&e&f)
|
||
// ╱ ╲
|
||
// ((a|b)&c&d)* (!d&e&f)*
|
||
// ╱ │ ╲ ╱ │ ╲
|
||
// a|b* │ ╲ ! │ ╲
|
||
// ╱ ╲ │ ╲ ╱ │ ╲
|
||
// a* b* c* d e* f*
|
||
//
|
||
// The relabeling of a formula is done in 3 passes:
|
||
// 1. Convert the formula's syntax tree into an undirected graph.
|
||
// 2. Compute the (Boolean) cut points of that graph, using the
|
||
// Hopcroft-Tarjan algorithm (see below for a reference).
|
||
// 3. Recursively scan the formula's tree until we reach
|
||
// a (Boolean) cut-point. If all the children of this node
|
||
// are cut-points, rename the node with a fresh label.
|
||
// If it's a n-ary operator, group all children that are
|
||
// and cut-points relabel them as a whole.
|
||
//
|
||
// On the above example, when processing the cut-point
|
||
// ((a|b)&c&d) we group its children that are cut-points
|
||
// (a|b)&c and rename this group as p0. Then d gets
|
||
// his own name p1, and when processing (!d&e&f) we group
|
||
// e&f because they are both cut-points, are rename them p1.
|
||
// The result is (p0 & p1) U (!p1 & p2).
|
||
//
|
||
// Problem #B above (handling of n-ary expression) need some
|
||
// additional tricks. Consider (a&b&c&d) U X(c&d), and assume
|
||
// {a,b,c,d} are Boolean subformulas. The construction, as we have
|
||
// presented it, would interconnect all of {a,b,c,d}, preventing c&d
|
||
// from being relabeled together. To help with that, we count the
|
||
// number of time of each subformula is used (or how many parents
|
||
// its has in the syntax DAG), and use that to split (a&b&c&d) into
|
||
// (a&b)&(c&d), separating subformulas that are used only once. The
|
||
// counting is done by sub_formula_collect(), and the split by
|
||
// split_used_once().
|
||
namespace
|
||
{
|
||
typedef std::vector<formula> succ_vec;
|
||
typedef std::map<formula, succ_vec> fgraph;
|
||
|
||
// Convert the formula's syntax tree into an undirected graph
|
||
// labeled by subformulas.
|
||
class formula_to_fgraph final
|
||
{
|
||
public:
|
||
fgraph& g;
|
||
std::stack<formula> s;
|
||
sub_formula_count_t& subcount;
|
||
|
||
formula_to_fgraph(fgraph& g, sub_formula_count_t& subcount)
|
||
: g(g), subcount(subcount)
|
||
{
|
||
}
|
||
|
||
void visit(formula f)
|
||
{
|
||
{
|
||
// Connect to parent
|
||
auto in = g.emplace(f, succ_vec());
|
||
if (!s.empty())
|
||
{
|
||
formula top = s.top();
|
||
in.first->second.emplace_back(top);
|
||
g[top].emplace_back(f);
|
||
if (!in.second)
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
assert(in.second);
|
||
}
|
||
}
|
||
s.push(f);
|
||
|
||
unsigned sz = f.size();
|
||
unsigned i = 0;
|
||
if (sz > 2 && f.is_boolean())
|
||
{
|
||
// If we have a Boolean formula with more than two
|
||
// children, like (a & b & c & d) where some children
|
||
// (assume {a,b}) are used only once, but some other
|
||
// (assume {c,d}) are used multiple time in the formula,
|
||
// then split that into ((a & b) & (c & d)) to give
|
||
// (a & b) a chance to be relabeled as a whole.
|
||
auto pair = split_used_once(f, subcount);
|
||
if (pair.second)
|
||
{
|
||
visit(pair.first);
|
||
visit(pair.second);
|
||
g[pair.first].emplace_back(pair.second);
|
||
g[pair.second].emplace_back(pair.first);
|
||
goto done;
|
||
}
|
||
}
|
||
if (sz > 2 && !f.is_boolean() && f.is(op::And, op::Or))
|
||
{
|
||
/// If we have a formula like (a & b & Xc), consider
|
||
/// it as ((a & b) & Xc) in the graph to isolate the
|
||
/// Boolean operands as a single node.
|
||
formula b = f.boolean_operands(&i);
|
||
if (b)
|
||
visit(b);
|
||
}
|
||
for (; i < sz; ++i)
|
||
visit(f[i]);
|
||
done:
|
||
s.pop();
|
||
}
|
||
};
|
||
|
||
|
||
typedef std::set<formula> fset;
|
||
struct data_entry // for each node of the graph
|
||
{
|
||
unsigned num; // serial number, in pre-order
|
||
unsigned low; // lowest number accessible via unstacked descendants
|
||
data_entry(unsigned num = 0, unsigned low = 0)
|
||
: num(num), low(low)
|
||
{
|
||
}
|
||
};
|
||
typedef std::unordered_map<formula, data_entry> fmap_t;
|
||
struct stack_entry
|
||
{
|
||
formula grand_parent;
|
||
formula parent; // current node
|
||
succ_vec::const_iterator current_child;
|
||
succ_vec::const_iterator last_child;
|
||
};
|
||
typedef std::stack<stack_entry> stack_t;
|
||
|
||
// Fill c with the Boolean cutpoints of g, starting from start.
|
||
//
|
||
// This is based no "Efficient Algorithms for Graph
|
||
// Manipulation", J. Hopcroft & R. Tarjan, in Communications of
|
||
// the ACM, 16 (6), June 1973.
|
||
//
|
||
// It differs from the original algorithm by returning only the
|
||
// Boolean cut-points, not dealing with the initial state
|
||
// properly (our initial state will always be considered as a
|
||
// cut-point, but since we only return Boolean cut-points it's
|
||
// OK: if the top-most formula is Boolean we want to replace it
|
||
// as a whole), and considering the atomic propositions that
|
||
// are leaves as cutpoints too.
|
||
void cut_points(const fgraph& g, fset& c, formula start)
|
||
{
|
||
stack_t s;
|
||
|
||
unsigned num = 0;
|
||
fmap_t data;
|
||
data_entry d = { num, num };
|
||
data[start] = d;
|
||
++num;
|
||
const succ_vec& children = g.find(start)->second;
|
||
stack_entry e = { start, start, children.begin(), children.end() };
|
||
s.push(e);
|
||
|
||
while (!s.empty())
|
||
{
|
||
stack_entry& e = s.top();
|
||
if (e.current_child != e.last_child)
|
||
{
|
||
// Skip the edge if it is just the reverse of the one
|
||
// we took.
|
||
formula child = *e.current_child;
|
||
if (child == e.grand_parent)
|
||
{
|
||
++e.current_child;
|
||
continue;
|
||
}
|
||
auto i = data.emplace(std::piecewise_construct,
|
||
std::forward_as_tuple(child),
|
||
std::forward_as_tuple(num, num));
|
||
if (i.second) // New destination.
|
||
{
|
||
++num;
|
||
const succ_vec& children = g.find(child)->second;
|
||
stack_entry newe = { e.parent, child,
|
||
children.begin(), children.end() };
|
||
s.push(newe);
|
||
}
|
||
else // Destination exists.
|
||
{
|
||
data_entry& dparent = data[e.parent];
|
||
data_entry& dchild = i.first->second;
|
||
// If this is a back-edge, update
|
||
// the low field of the parent.
|
||
if (dchild.num <= dparent.num)
|
||
if (dparent.low > dchild.num)
|
||
dparent.low = dchild.num;
|
||
}
|
||
++e.current_child;
|
||
}
|
||
else
|
||
{
|
||
formula grand_parent = e.grand_parent;
|
||
formula parent = e.parent;
|
||
s.pop();
|
||
if (!s.empty())
|
||
{
|
||
data_entry& dparent = data[parent];
|
||
data_entry& dgrand_parent = data[grand_parent];
|
||
if (dparent.low >= dgrand_parent.num // cut-point
|
||
&& grand_parent.is_boolean())
|
||
{
|
||
c.insert(grand_parent);
|
||
// Also consider atomic propositions as
|
||
// cut-points if they are leaves.
|
||
if (parent.is(op::ap)
|
||
&& g.find(parent)->second.size() == 1)
|
||
c.insert(parent);
|
||
}
|
||
if (dparent.low < dgrand_parent.low)
|
||
dgrand_parent.low = dparent.low;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
class bse_relabeler final: public relabeler<false, true>
|
||
{
|
||
public:
|
||
const fset& c;
|
||
const sub_formula_count_t& subcount;
|
||
|
||
bse_relabeler(ap_generator* gen, const fset& c,
|
||
relabeling_map* m, const sub_formula_count_t& subcount)
|
||
: relabeler(gen, m), c(c), subcount(subcount)
|
||
{
|
||
}
|
||
|
||
using relabeler::visit;
|
||
|
||
formula visit(formula f)
|
||
{
|
||
if (f.is(op::ap))
|
||
return rename(f);
|
||
|
||
// This is Boolean cut-point?
|
||
// We can only relabel it if all its children are cut-points.
|
||
if (c.find(f) != c.end())
|
||
{
|
||
unsigned fsz = f.size();
|
||
assert(fsz > 0); // A cut point has children
|
||
if (fsz == 1
|
||
|| (fsz == 2
|
||
&& ((c.find(f[0]) != c.end())
|
||
== (c.find(f[1]) != c.end()))))
|
||
return rename(f);
|
||
if (fsz > 2)
|
||
{
|
||
// cp[0] will contains non cut-points
|
||
// cp[1] will contain cut-points or atomic propositions
|
||
std::vector<formula> cp[2];
|
||
cp[0].reserve(fsz);
|
||
cp[1].reserve(fsz);
|
||
for (unsigned i = 0; i < fsz; ++i)
|
||
{
|
||
formula cf = f[i];
|
||
cp[c.find(cf) != c.end()].push_back(cf);
|
||
}
|
||
if (cp[0].empty()
|
||
|| cp[1].empty())
|
||
// all children are cut-points or non-cut-points
|
||
return rename(f);
|
||
formula cp1group = rename(formula::multop(f.kind(), cp[1]));
|
||
formula cp0group = visit(formula::multop(f.kind(), cp[0]));
|
||
return formula::multop(f.kind(), {cp1group, cp0group});
|
||
}
|
||
}
|
||
|
||
// Not a cut-point, recurse
|
||
unsigned sz = f.size();
|
||
if (sz <= 2)
|
||
return f.map([this](formula f)
|
||
{
|
||
return visit(f);
|
||
});
|
||
|
||
if (f.is_boolean() && sz > 2)
|
||
// If we have a Boolean formula with more than two
|
||
// children, like (a & b & c & d) where some children
|
||
// (assume {a,b}) are used only once, but some other
|
||
// (assume {c,d}) are used multiple time in the formula,
|
||
// then split that into ((a & b) & (c & d)) to give
|
||
// (a & b) a chance to be relabeled as a whole.
|
||
if (auto pair = split_used_once(f, subcount); pair.second)
|
||
{
|
||
formula left = visit(pair.first);
|
||
formula right = visit(pair.second);
|
||
return formula::multop(f.kind(), { left, right });
|
||
}
|
||
/// If we have a formula like (a & b & Xc), consider
|
||
/// it as ((a & b) & Xc) in the graph to isolate the
|
||
/// Boolean operands as a single node.
|
||
unsigned i = 0;
|
||
std::vector<formula> res;
|
||
formula b = f.boolean_operands(&i);
|
||
if (b && b != f)
|
||
{
|
||
res.reserve(sz - i + 1);
|
||
res.emplace_back(visit(b));
|
||
}
|
||
else
|
||
{
|
||
i = 0;
|
||
res.reserve(sz);
|
||
}
|
||
for (; i < sz; ++i)
|
||
res.emplace_back(visit(f[i]));
|
||
return formula::multop(f.kind(), res);
|
||
}
|
||
};
|
||
}
|
||
|
||
|
||
formula
|
||
relabel_bse(formula f, relabeling_style style, relabeling_map* m)
|
||
{
|
||
fgraph g;
|
||
sub_formula_count_t subcount;
|
||
|
||
// Scan f for sub-formulas used once.
|
||
sub_formula_collect(f, &subcount);
|
||
|
||
// Build the graph g from the formula f.
|
||
{
|
||
formula_to_fgraph conv(g, subcount);
|
||
conv.visit(f);
|
||
}
|
||
|
||
//// Uncomment to print the graph.
|
||
// for (auto& [f, sv]: g)
|
||
// {
|
||
// std::cerr << f << ":\n";
|
||
// for (auto& s: sv)
|
||
// std::cerr << " " << s << '\n';
|
||
// }
|
||
|
||
// Compute its cut-points
|
||
fset c;
|
||
cut_points(g, c, f);
|
||
|
||
// std::cerr << "cut-points\n";
|
||
// for (formula cp: c)
|
||
// std::cerr << " - " << cp << '\n';
|
||
|
||
// Relabel the formula recursively, stopping
|
||
// at cut-points or atomic propositions.
|
||
ap_generator* gen = nullptr;
|
||
switch (style)
|
||
{
|
||
case Pnn:
|
||
gen = new pnn_generator;
|
||
break;
|
||
case Abc:
|
||
gen = new abc_generator;
|
||
break;
|
||
}
|
||
bse_relabeler rel(gen, c, m, subcount);
|
||
return rel.visit(f);
|
||
}
|
||
|
||
formula
|
||
relabel_apply(formula f, relabeling_map* m)
|
||
{
|
||
if (f.is(op::ap))
|
||
{
|
||
auto i = m->find(f);
|
||
if (i != m->end())
|
||
return i->second;
|
||
}
|
||
return f.map(relabel_apply, m);
|
||
}
|
||
|
||
}
|