* NEWS: Mention the change. * src/: Rename as ... * spot/: ... this, adjust all headers to include <spot/...> instead of "...", and adjust all Makefile.am to search headers from the top-level directory. * HACKING: Add conventions about #include. * spot/sanity/style.test: Add a few more grep to catch cases that do not follow these conventions. * .gitignore, Makefile.am, README, bench/stutter/Makefile.am, bench/stutter/stutter_invariance_formulas.cc, bench/stutter/stutter_invariance_randomgraph.cc, configure.ac, debian/rules, doc/Doxyfile.in, doc/Makefile.am, doc/org/.dir-locals.el.in, doc/org/g++wrap.in, doc/org/init.el.in, doc/org/tut01.org, doc/org/tut02.org, doc/org/tut03.org, doc/org/tut10.org, doc/org/tut20.org, doc/org/tut21.org, doc/org/tut22.org, doc/org/tut30.org, iface/ltsmin/Makefile.am, iface/ltsmin/kripke.test, iface/ltsmin/ltsmin.cc, iface/ltsmin/ltsmin.hh, iface/ltsmin/modelcheck.cc, wrap/python/Makefile.am, wrap/python/ajax/spotcgi.in, wrap/python/spot_impl.i, wrap/python/tests/ltl2tgba.py, wrap/python/tests/randgen.py, wrap/python/tests/run.in: Adjust.
483 lines
12 KiB
C++
483 lines
12 KiB
C++
// -*- coding: utf-8 -*-
|
||
// Copyright (C) 2012, 2013, 2014, 2015 Laboratoire de Recherche et
|
||
// Développement de l'Epita (LRDE).
|
||
//
|
||
// This file is part of Spot, a model checking library.
|
||
//
|
||
// Spot is free software; you can redistribute it and/or modify it
|
||
// under the terms of the GNU General Public License as published by
|
||
// the Free Software Foundation; either version 3 of the License, or
|
||
// (at your option) any later version.
|
||
//
|
||
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
// License for more details.
|
||
//
|
||
// You should have received a copy of the GNU General Public License
|
||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
||
#include <spot/tl/relabel.hh>
|
||
#include <sstream>
|
||
#include <spot/misc/hash.hh>
|
||
#include <map>
|
||
#include <set>
|
||
#include <stack>
|
||
#include <iostream>
|
||
|
||
namespace spot
|
||
{
|
||
//////////////////////////////////////////////////////////////////////
|
||
// Basic relabeler
|
||
//////////////////////////////////////////////////////////////////////
|
||
|
||
namespace
|
||
{
|
||
struct ap_generator
|
||
{
|
||
virtual formula next() = 0;
|
||
virtual ~ap_generator() {}
|
||
};
|
||
|
||
struct pnn_generator final: ap_generator
|
||
{
|
||
unsigned nn;
|
||
pnn_generator()
|
||
: nn(0)
|
||
{
|
||
}
|
||
|
||
formula next()
|
||
{
|
||
std::ostringstream s;
|
||
s << 'p' << nn++;
|
||
return formula::ap(s.str());
|
||
}
|
||
};
|
||
|
||
struct abc_generator final: ap_generator
|
||
{
|
||
public:
|
||
abc_generator()
|
||
: nn(0)
|
||
{
|
||
}
|
||
|
||
unsigned nn;
|
||
|
||
formula next()
|
||
{
|
||
std::string s;
|
||
unsigned n = nn++;
|
||
do
|
||
{
|
||
s.push_back('a' + (n % 26));
|
||
n /= 26;
|
||
}
|
||
while (n);
|
||
return formula::ap(s);
|
||
}
|
||
};
|
||
|
||
|
||
class relabeler
|
||
{
|
||
public:
|
||
typedef std::unordered_map<formula, formula> map;
|
||
map newname;
|
||
ap_generator* gen;
|
||
relabeling_map* oldnames;
|
||
|
||
relabeler(ap_generator* gen, relabeling_map* m)
|
||
: gen(gen), oldnames(m)
|
||
{
|
||
}
|
||
|
||
~relabeler()
|
||
{
|
||
delete gen;
|
||
}
|
||
|
||
formula rename(formula old)
|
||
{
|
||
auto r = newname.emplace(old, nullptr);
|
||
if (!r.second)
|
||
{
|
||
return r.first->second;
|
||
}
|
||
else
|
||
{
|
||
formula res = gen->next();
|
||
r.first->second = res;
|
||
if (oldnames)
|
||
(*oldnames)[res] = old;
|
||
return res;
|
||
}
|
||
}
|
||
|
||
formula
|
||
visit(formula f)
|
||
{
|
||
if (f.is(op::ap))
|
||
return rename(f);
|
||
else
|
||
return f.map([this](formula f)
|
||
{
|
||
return this->visit(f);
|
||
});
|
||
}
|
||
|
||
};
|
||
|
||
}
|
||
|
||
|
||
formula
|
||
relabel(formula f, relabeling_style style, relabeling_map* m)
|
||
{
|
||
ap_generator* gen = nullptr;
|
||
switch (style)
|
||
{
|
||
case Pnn:
|
||
gen = new pnn_generator;
|
||
break;
|
||
case Abc:
|
||
gen = new abc_generator;
|
||
break;
|
||
}
|
||
|
||
relabeler r(gen, m);
|
||
return r.visit(f);
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////////////////
|
||
// Boolean-subexpression relabeler
|
||
//////////////////////////////////////////////////////////////////////
|
||
|
||
// Here we want to rewrite a formula such as
|
||
// "a & b & X(c & d) & GF(c & d)" into "p0 & Xp1 & GFp1"
|
||
// where Boolean subexpressions are replaced by fresh propositions.
|
||
//
|
||
// Detecting Boolean subexpressions is not a problem.
|
||
// Furthermore, because we are already representing LTL formulas
|
||
// with sharing of identical sub-expressions we can easily rename
|
||
// a subexpression (such as c&d above) only once. However this
|
||
// scheme has two problems:
|
||
//
|
||
// 1. It will not detect inter-dependent Boolean subexpressions.
|
||
// For instance it will mistakenly relabel "(a & b) U (a & !b)"
|
||
// as "p0 U p1", hiding the dependency between a&b and a&!b.
|
||
//
|
||
// 2. Because of our n-ary operators, it will fail to
|
||
// notice that (a & b) is a sub-expression of (a & b & c).
|
||
//
|
||
// The code below only addresses point 1 so that interdependent
|
||
// subexpressions are not relabeled. Point 2 could be improved in
|
||
// a future version of somebody feels inclined to do so.
|
||
//
|
||
// The way we compute the subexpressions that can be relabeled is
|
||
// by transforming the formula syntax tree into an undirected
|
||
// graph, and computing the cut points of this graph. The cut
|
||
// points (or articulation points) are the nodes whose removal
|
||
// would split the graph in two components. To ensure that a
|
||
// Boolean operator is only considered as a cut point if it would
|
||
// separate all of its children from the rest of the graph, we
|
||
// connect all the children of Boolean operators.
|
||
//
|
||
// For instance (a & b) U (c & d) has two (Boolean) cut points
|
||
// corresponding to the two AND operators:
|
||
//
|
||
// (a&b)U(c&d)
|
||
// ╱ ╲
|
||
// a&b c&d
|
||
// ╱ ╲ ╱ ╲
|
||
// a─────b c─────d
|
||
//
|
||
// (The root node is also a cut-point, but we only consider Boolean
|
||
// cut-points for relabeling.)
|
||
//
|
||
// On the other hand, (a & b) U (b & !c) has only one Boolean
|
||
// cut-point which corresponds to the NOT operator:
|
||
//
|
||
// (a&b)U(b&!c)
|
||
// ╱ ╲
|
||
// a&b b&c
|
||
// ╱ ╲ ╱ ╲
|
||
// a─────b────!c
|
||
// │
|
||
// c
|
||
//
|
||
// Note that if the children of a&b and b&c were not connected,
|
||
// a&b and b&c would be considered as cut points because they
|
||
// separate "a" or "!c" from the rest of the graph.
|
||
//
|
||
// The relabeling of a formula is therefore done in 3 passes:
|
||
// 1. convert the formula's syntax tree into an undirected graph,
|
||
// adding links between children of Boolean operators
|
||
// 2. compute the (Boolean) cut points of that graph, using the
|
||
// Hopcroft-Tarjan algorithm (see below for a reference)
|
||
// 3. recursively scan the formula's tree until we reach
|
||
// either a (Boolean) cut point or an atomic proposition, and
|
||
// replace that node by a fresh atomic proposition.
|
||
//
|
||
// In the example above (a&b)U(b&!c), the last recursion
|
||
// stop a, b, and !c, producing (p0&p1)U(p1&p2).
|
||
namespace
|
||
{
|
||
typedef std::vector<formula> succ_vec;
|
||
typedef std::map<formula, succ_vec> fgraph;
|
||
|
||
// Convert the formula's syntax tree into an undirected graph
|
||
// labeled by subformulas.
|
||
class formula_to_fgraph final
|
||
{
|
||
public:
|
||
fgraph& g;
|
||
std::stack<formula> s;
|
||
|
||
formula_to_fgraph(fgraph& g):
|
||
g(g)
|
||
{
|
||
}
|
||
|
||
~formula_to_fgraph()
|
||
{
|
||
}
|
||
|
||
void
|
||
visit(formula f)
|
||
{
|
||
{
|
||
// Connect to parent
|
||
auto in = g.emplace(f, succ_vec());
|
||
if (!s.empty())
|
||
{
|
||
formula top = s.top();
|
||
in.first->second.push_back(top);
|
||
g[top].push_back(f);
|
||
if (!in.second)
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
assert(in.second);
|
||
}
|
||
}
|
||
s.push(f);
|
||
|
||
unsigned sz = f.size();
|
||
unsigned i = 0;
|
||
if (sz > 2 && !f.is_boolean())
|
||
{
|
||
/// If we have a formula like (a & b & Xc), consider
|
||
/// it as ((a & b) & Xc) in the graph to isolate the
|
||
/// Boolean operands as a single node.
|
||
formula b = f.boolean_operands(&i);
|
||
if (b)
|
||
visit(b);
|
||
}
|
||
for (; i < sz; ++i)
|
||
visit(f[i]);
|
||
if (sz > 1 && f.is_boolean())
|
||
{
|
||
// For Boolean nodes, connect all children in a
|
||
// loop. This way the node can only be a cut-point
|
||
// if it separates all children from the reset of
|
||
// the graph (not only one).
|
||
formula pred = f[0];
|
||
for (i = 1; i < sz; ++i)
|
||
{
|
||
formula next = f[i];
|
||
// Note that we only add an edge in one
|
||
// direction, because we are building a cycle
|
||
// between all children anyway.
|
||
g[pred].push_back(next);
|
||
pred = next;
|
||
}
|
||
g[pred].push_back(f[0]);
|
||
}
|
||
s.pop();
|
||
}
|
||
};
|
||
|
||
|
||
typedef std::set<formula> fset;
|
||
struct data_entry // for each node of the graph
|
||
{
|
||
unsigned num; // serial number, in pre-order
|
||
unsigned low; // lowest number accessible via unstacked descendants
|
||
data_entry(unsigned num = 0, unsigned low = 0)
|
||
: num(num), low(low)
|
||
{
|
||
}
|
||
};
|
||
typedef std::unordered_map<formula, data_entry> fmap_t;
|
||
struct stack_entry
|
||
{
|
||
formula grand_parent;
|
||
formula parent; // current node
|
||
succ_vec::const_iterator current_child;
|
||
succ_vec::const_iterator last_child;
|
||
};
|
||
typedef std::stack<stack_entry> stack_t;
|
||
|
||
// Fill c with the Boolean cutpoints of g, starting from start.
|
||
//
|
||
// This is based no "Efficient Algorithms for Graph
|
||
// Manipulation", J. Hopcroft & R. Tarjan, in Communications of
|
||
// the ACM, 16 (6), June 1973.
|
||
//
|
||
// It differs from the original algorithm by returning only the
|
||
// Boolean cutpoints, and not dealing with the initial state
|
||
// properly (our initial state will always be considered as a
|
||
// cut-point, but since we only return Boolean cut-points it's
|
||
// OK: if the top-most formula is Boolean we want to replace it
|
||
// as a whole).
|
||
void cut_points(const fgraph& g, fset& c, formula start)
|
||
{
|
||
stack_t s;
|
||
|
||
unsigned num = 0;
|
||
fmap_t data;
|
||
data_entry d = { num, num };
|
||
data[start] = d;
|
||
++num;
|
||
const succ_vec& children = g.find(start)->second;
|
||
stack_entry e = { start, start, children.begin(), children.end() };
|
||
s.push(e);
|
||
|
||
while (!s.empty())
|
||
{
|
||
stack_entry& e = s.top();
|
||
if (e.current_child != e.last_child)
|
||
{
|
||
// Skip the edge if it is just the reverse of the one
|
||
// we took.
|
||
formula child = *e.current_child;
|
||
if (child == e.grand_parent)
|
||
{
|
||
++e.current_child;
|
||
continue;
|
||
}
|
||
auto i = data.emplace(std::piecewise_construct,
|
||
std::forward_as_tuple(child),
|
||
std::forward_as_tuple(num, num));
|
||
if (i.second) // New destination.
|
||
{
|
||
++num;
|
||
const succ_vec& children = g.find(child)->second;
|
||
stack_entry newe = { e.parent, child,
|
||
children.begin(), children.end() };
|
||
s.push(newe);
|
||
}
|
||
else // Destination exists.
|
||
{
|
||
data_entry& dparent = data[e.parent];
|
||
data_entry& dchild = i.first->second;
|
||
// If this is a back-edge, update
|
||
// the low field of the parent.
|
||
if (dchild.num <= dparent.num)
|
||
if (dparent.low > dchild.num)
|
||
dparent.low = dchild.num;
|
||
}
|
||
++e.current_child;
|
||
}
|
||
else
|
||
{
|
||
formula grand_parent = e.grand_parent;
|
||
formula parent = e.parent;
|
||
s.pop();
|
||
if (!s.empty())
|
||
{
|
||
data_entry& dparent = data[parent];
|
||
data_entry& dgrand_parent = data[grand_parent];
|
||
if (dparent.low >= dgrand_parent.num // cut-point
|
||
&& grand_parent.is_boolean())
|
||
c.insert(grand_parent);
|
||
if (dparent.low < dgrand_parent.low)
|
||
dgrand_parent.low = dparent.low;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
class bse_relabeler final: public relabeler
|
||
{
|
||
public:
|
||
fset& c;
|
||
bse_relabeler(ap_generator* gen, fset& c,
|
||
relabeling_map* m)
|
||
: relabeler(gen, m), c(c)
|
||
{
|
||
}
|
||
|
||
using relabeler::visit;
|
||
|
||
formula
|
||
visit(formula f)
|
||
{
|
||
if (f.is(op::ap) || (c.find(f) != c.end()))
|
||
return rename(f);
|
||
|
||
unsigned sz = f.size();
|
||
if (sz <= 2)
|
||
return f.map([this](formula f)
|
||
{
|
||
return visit(f);
|
||
});
|
||
|
||
unsigned i = 0;
|
||
std::vector<formula> res;
|
||
/// If we have a formula like (a & b & Xc), consider
|
||
/// it as ((a & b) & Xc) in the graph to isolate the
|
||
/// Boolean operands as a single node.
|
||
formula b = f.boolean_operands(&i);
|
||
if (b)
|
||
{
|
||
res.reserve(sz - i + 1);
|
||
res.push_back(visit(b));
|
||
}
|
||
else
|
||
{
|
||
res.reserve(sz);
|
||
}
|
||
for (; i < sz; ++i)
|
||
res.push_back(visit(f[i]));
|
||
return formula::multop(f.kind(), res);
|
||
}
|
||
};
|
||
}
|
||
|
||
|
||
formula
|
||
relabel_bse(formula f, relabeling_style style, relabeling_map* m)
|
||
{
|
||
fgraph g;
|
||
|
||
// Build the graph g from the formula f.
|
||
{
|
||
formula_to_fgraph conv(g);
|
||
conv.visit(f);
|
||
}
|
||
|
||
// Compute its cut-points
|
||
fset c;
|
||
cut_points(g, c, f);
|
||
|
||
// Relabel the formula recursively, stopping
|
||
// at cut-points or atomic propositions.
|
||
ap_generator* gen = nullptr;
|
||
switch (style)
|
||
{
|
||
case Pnn:
|
||
gen = new pnn_generator;
|
||
break;
|
||
case Abc:
|
||
gen = new abc_generator;
|
||
break;
|
||
}
|
||
bse_relabeler rel(gen, c, m);
|
||
return rel.visit(f);
|
||
}
|
||
}
|