spot/spot/twaalgos/emptiness.cc
Alexandre Duret-Lutz f2403c91dc run: fix reduce on automata with Fin
Reported by Florian Renkin.

* spot/twaalgos/emptiness.cc (reduce): If the automaton uses Fin
acceptance, check the reduced cycle and revert to the original cycle
if necessary.
* tests/python/intrun.py: New file.
* tests/Makefile.am: Add it.
* spot/twaalgos/emptiness.hh: Improve documentation.
2020-07-13 16:30:29 +02:00

892 lines
24 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2011-2019 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
// Copyright (C) 2004, 2005 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "config.h"
#include <sstream>
#include <memory>
#include <spot/twaalgos/emptiness.hh>
#include <spot/twaalgos/bfssteps.hh>
#include <spot/twaalgos/couvreurnew.hh>
#include <spot/twaalgos/gtec/gtec.hh>
#include <spot/twaalgos/gv04.hh>
#include <spot/twaalgos/magic.hh>
#include <spot/misc/hash.hh>
#include <spot/twaalgos/se05.hh>
#include <spot/twaalgos/tau03.hh>
#include <spot/twaalgos/tau03opt.hh>
#include <spot/twa/bddprint.hh>
#include <spot/twaalgos/product.hh>
namespace spot
{
// emptiness_check_result
//////////////////////////////////////////////////////////////////////
twa_run_ptr
emptiness_check_result::accepting_run()
{
return nullptr;
}
const unsigned_statistics*
emptiness_check_result::statistics() const
{
return dynamic_cast<const unsigned_statistics*>(this);
}
const char*
emptiness_check_result::parse_options(char* options)
{
option_map old(o_);
const char* s = o_.parse_options(options);
options_updated(old);
return s;
}
void
emptiness_check_result::options_updated(const option_map&)
{
}
// emptiness_check
//////////////////////////////////////////////////////////////////////
emptiness_check::~emptiness_check()
{
}
const unsigned_statistics*
emptiness_check::statistics() const
{
return dynamic_cast<const unsigned_statistics*>(this);
}
const ec_statistics*
emptiness_check::emptiness_check_statistics() const
{
return dynamic_cast<const ec_statistics*>(this);
}
const char*
emptiness_check::parse_options(char* options)
{
option_map old(o_);
const char* s = o_.parse_options(options);
options_updated(old);
return s;
}
void
emptiness_check::options_updated(const option_map&)
{
}
bool
emptiness_check::safe() const
{
return true;
}
std::ostream&
emptiness_check::print_stats(std::ostream& os) const
{
return os;
}
// emptiness_check_instantiator
//////////////////////////////////////////////////////////////////////
namespace
{
struct ec_algo
{
const char* name;
emptiness_check_ptr(*construct)(const const_twa_ptr&,
spot::option_map);
unsigned int min_acc;
unsigned int max_acc;
};
ec_algo ec_algos[] =
{
{ "Cou99", couvreur99, 0, -1U },
{ "Cou99new", get_couvreur99_new, 0, -1U },
{ "Cou99abs", get_couvreur99_new_abstract, 0, -1U },
{ "CVWY90", magic_search, 0, 1 },
{ "GV04", explicit_gv04_check, 0, 1 },
{ "SE05", se05, 0, 1 },
{ "Tau03", explicit_tau03_search, 1, -1U },
{ "Tau03_opt", explicit_tau03_opt_search, 0, -1U },
};
}
emptiness_check_instantiator::emptiness_check_instantiator(option_map o,
void* i)
: o_(o), info_(i)
{
}
unsigned int
emptiness_check_instantiator::min_sets() const
{
return static_cast<ec_algo*>(info_)->min_acc;
}
unsigned int
emptiness_check_instantiator::max_sets() const
{
return static_cast<ec_algo*>(info_)->max_acc;
}
emptiness_check_ptr
emptiness_check_instantiator::instantiate(const const_twa_ptr& a) const
{
return static_cast<ec_algo*>(info_)->construct(a, o_);
}
emptiness_check_instantiator_ptr
make_emptiness_check_instantiator(const char* name, const char** err)
{
// Skip spaces.
while (*name && strchr(" \t\n", *name))
++name;
const char* opt_str = strchr(name, '(');
option_map o;
if (opt_str)
{
const char* opt_start = opt_str + 1;
const char* opt_end = strchr(opt_start, ')');
if (!opt_end)
{
*err = opt_start;
return nullptr;
}
std::string opt(opt_start, opt_end);
const char* res = o.parse_options(opt.c_str());
if (res)
{
*err = opt.c_str() - res + opt_start;
return nullptr;
}
}
if (!opt_str)
opt_str = name + strlen(name);
// Ignore spaces before `(' (or trailing spaces).
while (opt_str > name && strchr(" \t\n", *--opt_str))
continue;
std::string n(name, opt_str + 1);
ec_algo* info = ec_algos;
for (unsigned i = 0; i < sizeof(ec_algos)/sizeof(*ec_algos); ++i, ++info)
if (n == info->name)
{
*err = nullptr;
struct emptiness_check_instantiator_aux:
public emptiness_check_instantiator
{
emptiness_check_instantiator_aux(option_map o, void* i):
emptiness_check_instantiator(o, i)
{
}
};
return std::make_shared<emptiness_check_instantiator_aux>(o, info);
}
*err = name;
return nullptr;
}
// twa_run
//////////////////////////////////////////////////////////////////////
twa_run::~twa_run()
{
for (auto i : prefix)
i.s->destroy();
for (auto i : cycle)
i.s->destroy();
}
twa_run::twa_run(const twa_run& run)
{
aut = run.aut;
for (step s : run.prefix)
{
s.s = s.s->clone();
prefix.emplace_back(s);
}
for (step s : run.cycle)
{
s.s = s.s->clone();
cycle.emplace_back(s);
}
}
twa_run&
twa_run::operator=(const twa_run& run)
{
if (&run != this)
{
this->~twa_run();
new(this) twa_run(run);
}
return *this;
}
std::ostream&
operator<<(std::ostream& os, const twa_run& run)
{
auto& a = run.aut;
bdd_dict_ptr d = a->get_dict();
auto pstep = [&](const twa_run::step& st)
{
os << " " << a->format_state(st.s) << "\n | ";
bdd_print_formula(os, d, st.label);
if (st.acc)
os << '\t' << st.acc;
os << '\n';
};
os << "Prefix:\n";
for (auto& s: run.prefix)
pstep(s);
os << "Cycle:\n";
for (auto& s: run.cycle)
pstep(s);
return os;
}
void twa_run::ensure_non_empty_cycle(const char* where) const
{
if (cycle.empty())
throw std::runtime_error(std::string(where)
+ " expects a non-empty cycle");
}
namespace
{
class shortest_path final: public bfs_steps
{
public:
shortest_path(const const_twa_ptr& a)
: bfs_steps(a), target(nullptr)
{
}
~shortest_path()
{
state_set::const_iterator i = seen.begin();
while (i != seen.end())
(*i++)->destroy();
}
void
set_target(const state_set* t)
{
target = t;
}
const state*
search(const state* start, twa_run::steps& l)
{
return this->bfs_steps::search(filter(start), l);
}
const state*
filter(const state* s) override
{
state_set::const_iterator i = seen.find(s);
if (i == seen.end())
seen.insert(s);
else
{
s->destroy();
s = *i;
}
return s;
}
bool
match(twa_run::step&, const state* dest) override
{
return target->find(dest) != target->end();
}
private:
state_set seen;
const state_set* target;
};
}
twa_run_ptr twa_run::reduce() const
{
ensure_non_empty_cycle("twa_run::reduce()");
auto& a = aut;
auto& acc = a->acc();
auto res = std::make_shared<twa_run>(a);
state_set ss;
shortest_path shpath(a);
shpath.set_target(&ss);
// We want to find a short segment of the original cycle that
// satisfies the acceptance condition.
const state* segment_start; // The initial state of the segment.
const state* segment_next; // The state immediately after the segment.
// Start from the end of the original cycle, and rewind until all
// acceptance sets have been seen.
acc_cond::mark_t seen_acc = {};
twa_run::steps::const_iterator seg = cycle.end();
do
{
assert(seg != cycle.begin());
--seg;
seen_acc |= seg->acc;
}
while (!acc.accepting(seen_acc));
segment_start = seg->s;
// Now go forward and ends the segment as soon as we have seen all
// acceptance sets, cloning it in our result along the way.
seen_acc = {};
do
{
assert(seg != cycle.end());
seen_acc |= seg->acc;
twa_run::step st = { seg->s->clone(), seg->label, seg->acc };
res->cycle.emplace_back(st);
++seg;
}
while (!acc.accepting(seen_acc));
segment_next = seg == cycle.end() ? cycle.front().s : seg->s;
// Close this cycle if needed, that is, compute a cycle going
// from the state following the segment to its starting state.
if (segment_start != segment_next)
{
ss.insert(segment_start);
const state* s = shpath.search(segment_next->clone(), res->cycle);
ss.clear();
assert(s->compare(segment_start) == 0);
(void)s;
// If the acceptance condition uses Fin, it's possible (and
// even quite likely) that the cycle we have constructed this
// way is now rejecting, because the closing steps might add
// unwanted colors. If that is the case, throw the reduced
// cycle away and simply preserve the original one verbatim.
if (acc.uses_fin_acceptance())
{
acc_cond::mark_t seen = {};
for (auto& st: res->cycle)
seen |= st.acc;
if (!acc.accepting(seen))
{
for (auto& st: res->cycle)
st.s->destroy();
res->cycle.clear();
for (auto& st: cycle)
{
twa_run::step st2 = { st.s->clone(), st.label, st.acc };
res->cycle.emplace_back(st2);
}
}
}
}
// Compute the prefix: it's the shortest path from the initial
// state of the automata to any state of the cycle.
// Register all states from the cycle as target of the BFS.
for (twa_run::steps::const_iterator i = res->cycle.begin();
i != res->cycle.end(); ++i)
ss.insert(i->s);
const state* prefix_start = a->get_init_state();
// There are two cases: either the initial state is already on
// the cycle, or it is not. If it is, we will have to rotate
// the cycle so it begins on this position. Otherwise we will shift
// the cycle so it begins on the state that follows the prefix.
// cycle_entry_point is that state.
const state* cycle_entry_point;
state_set::const_iterator ps = ss.find(prefix_start);
if (ps != ss.end())
{
// The initial state is on the cycle.
prefix_start->destroy();
cycle_entry_point = *ps;
}
else
{
// This initial state is outside the cycle. Compute the prefix.
cycle_entry_point = shpath.search(prefix_start, res->prefix);
}
// Locate cycle_entry_point on the cycle.
twa_run::steps::iterator cycle_ep_it;
for (cycle_ep_it = res->cycle.begin();
cycle_ep_it != res->cycle.end()
&& cycle_entry_point->compare(cycle_ep_it->s); ++cycle_ep_it)
continue;
assert(cycle_ep_it != res->cycle.end());
// Now shift the cycle so it starts on cycle_entry_point.
res->cycle.splice(res->cycle.end(), res->cycle,
res->cycle.begin(), cycle_ep_it);
return res;
}
twa_run_ptr twa_run::project(const const_twa_ptr& other, bool right)
{
unsigned shift = 0;
if (right)
shift = aut->num_sets() - other->num_sets();
auto res = std::make_shared<twa_run>(other);
if (auto ps = aut->get_named_prop<const product_states>("product-states"))
{
auto a = down_cast<const_twa_graph_ptr>(aut);
if (!a)
throw std::runtime_error("twa_run::project() confused: "
"product-states found in a non-twa_graph");
auto oth = down_cast<const_twa_graph_ptr>(other);
if (!oth)
throw std::runtime_error("twa_run::project() confused: "
"other ought to be a twa_graph");
if (right)
{
for (auto& i: prefix)
{
unsigned s = (*ps)[a->state_number(i.s)].second;
res->prefix.emplace_back(oth->state_from_number(s),
i.label, i.acc >> shift);
}
for (auto& i: cycle)
{
unsigned s = (*ps)[a->state_number(i.s)].second;
res->cycle.emplace_back(oth->state_from_number(s),
i.label, i.acc >> shift);
}
}
else
{
auto all = oth->acc().all_sets();
for (auto& i: prefix)
{
unsigned s = (*ps)[a->state_number(i.s)].first;
res->prefix.emplace_back(oth->state_from_number(s),
i.label, i.acc & all);
}
for (auto& i: cycle)
{
unsigned s = (*ps)[a->state_number(i.s)].first;
res->cycle.emplace_back(oth->state_from_number(s),
i.label, i.acc & all);
}
}
}
else
{
auto all = other->acc().all_sets();
for (auto& i: prefix)
res->prefix.emplace_back(aut->project_state(i.s, other),
i.label, (i.acc >> shift) & all);
for (auto& i: cycle)
res->cycle.emplace_back(aut->project_state(i.s, other),
i.label, (i.acc >> shift) & all);
}
return res;
}
bool twa_run::replay(std::ostream& os, bool debug) const
{
ensure_non_empty_cycle("twa_run::replay()");
const state* s = aut->get_init_state();
int serial = 1;
const twa_run::steps* l;
std::string in;
acc_cond::mark_t all_acc = {};
bool all_acc_seen = false;
state_map<std::set<int>> seen;
if (prefix.empty())
{
l = &cycle;
in = "cycle";
if (!debug)
os << "No prefix.\nCycle:\n";
}
else
{
l = &prefix;
in = "prefix";
if (!debug)
os << "Prefix:\n";
}
twa_run::steps::const_iterator i = l->begin();
if (s->compare(i->s))
{
if (debug)
os << "ERROR: First state of run (in " << in << "): "
<< aut->format_state(i->s)
<< "\ndoes not match initial state of automata: "
<< aut->format_state(s) << '\n';
s->destroy();
return false;
}
for (; i != l->end(); ++serial)
{
if (debug)
{
// Keep track of the serial associated to each state so we
// can note duplicate states and make the replay easier to read.
auto o = seen.find(s);
std::ostringstream msg;
if (o != seen.end())
{
for (auto d: o->second)
msg << " == " << d;
o->second.insert(serial);
s->destroy();
s = o->first;
}
else
{
seen[s].insert(serial);
}
os << "state " << serial << " in " << in << msg.str() << ": ";
}
else
{
os << " ";
}
os << aut->format_state(s) << '\n';
// expected outgoing transition
bdd label = i->label;
acc_cond::mark_t acc = i->acc;
// compute the next expected state
const state* next;
++i;
if (i != l->end())
{
next = i->s;
}
else
{
if (l == &prefix)
{
l = &cycle;
in = "cycle";
i = l->begin();
if (!debug)
os << "Cycle:\n";
}
next = l->begin()->s;
}
// browse the actual outgoing transitions
twa_succ_iterator* j = aut->succ_iter(s);
// When not debugging, S is not used as key in SEEN, so we can
// destroy it right now.
if (!debug)
s->destroy();
if (j->first())
do
{
if (j->cond() != label
|| j->acc() != acc)
continue;
const state* s2 = j->dst();
if (s2->compare(next))
{
s2->destroy();
continue;
}
else
{
s = s2;
break;
}
}
while (j->next());
if (j->done())
{
if (debug)
{
os << "ERROR: no transition with label="
<< bdd_format_formula(aut->get_dict(), label)
<< " and acc=" << acc
<< " leaving state " << serial
<< " for state " << aut->format_state(next) << '\n'
<< "The following transitions leave state " << serial
<< ":\n";
if (j->first())
do
{
const state* s2 = j->dst();
os << " * label="
<< bdd_format_formula(aut->get_dict(),
j->cond())
<< " and acc=" << j->acc()
<< " going to " << aut->format_state(s2) << '\n';
s2->destroy();
}
while (j->next());
}
aut->release_iter(j);
s->destroy();
return false;
}
if (debug)
{
os << "transition with label="
<< bdd_format_formula(aut->get_dict(), label)
<< " and acc=" << acc << std::endl;
}
else
{
os << " | ";
bdd_print_formula(os, aut->get_dict(), label);
if (acc)
os << '\t' << acc;
os << std::endl;
}
aut->release_iter(j);
// Sum acceptance marks.
//
// (Beware l and i designate the next step to consider.
// Therefore if i is at the beginning of the cycle, `acc'
// contains the acceptance conditions of the last transition
// in the prefix; we should not account it.)
if (l == &cycle && i != l->begin())
{
all_acc |= acc;
if (!all_acc_seen && aut->acc().accepting(all_acc))
{
all_acc_seen = true;
if (debug)
os << "all acceptance marks ("
<< all_acc
<< ") have been seen\n";
}
}
}
s->destroy();
if (!aut->acc().accepting(all_acc))
{
if (debug)
os << "ERROR: The cycle's acceptance marks ("
<< all_acc
<< ") do not satisfy the acceptance condition ("
<< aut->get_acceptance()
<< ")\n";
return false;
}
auto o = seen.begin();
while (o != seen.end())
{
// Advance the iterator before deleting the "key" pointer.
const state* ptr = o->first;
++o;
ptr->destroy();
}
return true;
}
/// Note that this works only if the automaton is a twa_graph_ptr.
void twa_run::highlight(unsigned color)
{
auto a = down_cast<twa_graph_ptr>(std::const_pointer_cast<twa>(aut));
if (!a)
throw std::runtime_error("highlight() only work for twa_graph");
auto h = a->get_or_set_named_prop<std::map<unsigned, unsigned>>
("highlight-edges");
unsigned src = a->get_init_state_number();
auto l = prefix.empty() ? &cycle : &prefix;
auto e = l->end();
for (auto i = l->begin(); i != e;)
{
bdd label = i->label;
acc_cond::mark_t acc = i->acc;
unsigned dst;
++i;
if (i != e)
{
dst = a->state_number(i->s);
}
else if (l == &prefix)
{
l = &cycle;
i = l->begin();
e = l->end();
dst = a->state_number(i->s);
}
else
{
dst = a->state_number(l->begin()->s);
}
for (auto& t: a->out(src))
if (t.dst == dst && bdd_implies(label, t.cond) && t.acc == acc)
{
(*h)[a->get_graph().index_of_edge(t)] = color;
break;
}
src = dst;
}
}
twa_graph_ptr
twa_run::as_twa(bool preserve_names) const
{
ensure_non_empty_cycle("twa_run::as_twa()");
auto d = aut->get_dict();
auto res = make_twa_graph(d);
res->copy_ap_of(aut);
res->copy_acceptance_of(aut);
std::vector<std::string>* names= nullptr;
if (preserve_names)
{
names = new std::vector<std::string>;
res->set_named_prop("state-names", names);
}
const state* s = aut->get_init_state();
unsigned src;
unsigned dst;
const twa_run::steps* l;
acc_cond::mark_t seen_acc = {};
state_map<unsigned> seen;
if (prefix.empty())
l = &cycle;
else
l = &prefix;
twa_run::steps::const_iterator i = l->begin();
assert(s->compare(i->s) == 0);
src = res->new_state();
seen.emplace(i->s, src);
if (names)
names->push_back(aut->format_state(s));
for (; i != l->end();)
{
// expected outgoing transition
bdd label = i->label;
acc_cond::mark_t acc = i->acc;
// compute the next expected state
const state* next;
++i;
if (i != l->end())
{
next = i->s;
}
else
{
if (l == &prefix)
{
l = &cycle;
i = l->begin();
}
next = l->begin()->s;
}
// browse the actual outgoing transitions and
// look for next;
const state* the_next = nullptr;
for (auto j: aut->succ(s))
{
if (j->cond() != label
|| j->acc() != acc)
continue;
const state* s2 = j->dst();
if (s2->compare(next) == 0)
{
the_next = s2;
break;
}
s2->destroy();
}
s->destroy();
if (!the_next)
throw std::runtime_error("twa_run::as_twa() unable to replay run");
s = the_next;
auto p = seen.emplace(next, 0);
if (p.second)
{
unsigned ns = res->new_state();
p.first->second = ns;
if (names)
{
assert(ns == names->size());
names->push_back(aut->format_state(next));
}
}
dst = p.first->second;
res->new_edge(src, dst, label, acc);
src = dst;
// Sum acceptance conditions.
if (l == &cycle && i != l->begin())
seen_acc |= acc;
}
s->destroy();
assert(aut->acc().accepting(seen_acc));
return res;
}
}