spot/src/taalgos/minimize.cc
Alexandre Duret-Lutz f6af2a84cb twa_succ_iterator: rename accessors
* src/twa/twa.hh, src/ta/ta.hh (current_state,
current_acceptance_conditions, current_condition): Rename as...
(dst, acc, cond): ... these.
* iface/ltsmin/ltsmin.cc, src/kripke/fairkripke.cc,
src/kripke/fairkripke.hh, src/kripke/kripke.cc,
src/kripke/kripke.hh, src/kripke/kripkeexplicit.cc,
src/kripke/kripkeexplicit.hh, src/kripke/kripkeprint.cc,
src/ta/taexplicit.cc, src/ta/taexplicit.hh, src/ta/taproduct.cc,
src/ta/taproduct.hh, src/ta/tgtaproduct.cc, src/ta/tgtaproduct.hh,
src/taalgos/dot.cc, src/taalgos/emptinessta.cc,
src/taalgos/minimize.cc, src/taalgos/reachiter.cc,
src/taalgos/tgba2ta.cc, src/twa/taatgba.cc, src/twa/taatgba.hh,
src/twa/twagraph.hh, src/twa/twaproduct.cc,
src/twa/twasafracomplement.cc, src/twaalgos/bfssteps.cc,
src/twaalgos/bfssteps.hh, src/twaalgos/compsusp.cc,
src/twaalgos/copy.cc, src/twaalgos/emptiness.cc,
src/twaalgos/gtec/gtec.cc, src/twaalgos/gv04.cc,
src/twaalgos/lbtt.cc, src/twaalgos/ltl2tgba_fm.cc,
src/twaalgos/magic.cc, src/twaalgos/minimize.cc,
src/twaalgos/ndfs_result.hxx, src/twaalgos/reachiter.cc,
src/twaalgos/se05.cc, src/twaalgos/stats.cc,
src/twaalgos/stutter.cc, src/twaalgos/tau03.cc,
src/twaalgos/tau03opt.cc, wrap/python/tests/interdep.py: Adjust.
* NEWS: Mention the renamings.
2015-10-28 21:16:21 +01:00

548 lines
14 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) 2010, 2011, 2012, 2013, 2014, 2015 Laboratoire de
// Recherche et Développement de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//#define TRACE
#ifdef TRACE
# define trace std::cerr
#else
# define trace while (0) std::cerr
#endif
#include <set>
#include <list>
#include <sstream>
#include "minimize.hh"
#include "misc/hash.hh"
#include "misc/bddlt.hh"
#include "ta/tgtaexplicit.hh"
#include "taalgos/statessetbuilder.hh"
#include "twa/twagraph.hh"
#include "twa/bddprint.hh"
namespace spot
{
typedef std::unordered_set<const state*,
state_ptr_hash, state_ptr_equal> hash_set;
typedef std::unordered_map<const state*, unsigned,
state_ptr_hash, state_ptr_equal> hash_map;
typedef std::list<hash_set*> partition_t;
namespace
{
static std::ostream&
dump_hash_set(const hash_set* hs,
const const_ta_ptr& aut,
std::ostream& out)
{
out << '{';
const char* sep = "";
for (hash_set::const_iterator i = hs->begin(); i != hs->end(); ++i)
{
out << sep << aut->format_state(*i);
sep = ", ";
}
out << '}';
return out;
}
static std::string
format_hash_set(const hash_set* hs, const const_ta_ptr& aut)
{
std::ostringstream s;
dump_hash_set(hs, aut, s);
return s.str();
}
// From the base automaton and the list of sets, build the minimal
// automaton
static void
build_result(const const_ta_ptr& a, std::list<hash_set*>& sets,
twa_graph_ptr result_tgba, const ta_explicit_ptr& result)
{
// For each set, create a state in the tgbaulting automaton.
// For a state s, state_num[s] is the number of the state in the minimal
// automaton.
hash_map state_num;
std::list<hash_set*>::iterator sit;
unsigned num = 0;
for (sit = sets.begin(); sit != sets.end(); ++sit)
{
hash_set::iterator hit;
hash_set* h = *sit;
for (hit = h->begin(); hit != h->end(); ++hit)
state_num[*hit] = num;
result_tgba->new_state();
++num;
}
// For each transition in the initial automaton, add the corresponding
// transition in ta.
for (sit = sets.begin(); sit != sets.end(); ++sit)
{
hash_set::iterator hit;
hash_set* h = *sit;
hit = h->begin();
const state* src = *hit;
unsigned src_num = state_num[src];
bdd tgba_condition = bddtrue;
bool is_initial_state = a->is_initial_state(src);
if (!a->get_artificial_initial_state() && is_initial_state)
tgba_condition = a->get_state_condition(src);
bool is_accepting_state = a->is_accepting_state(src);
bool is_livelock_accepting_state =
a->is_livelock_accepting_state(src);
state_ta_explicit* new_src =
new state_ta_explicit(result_tgba->state_from_number(src_num),
tgba_condition, is_initial_state,
is_accepting_state,
is_livelock_accepting_state);
state_ta_explicit* ta_src = result->add_state(new_src);
if (ta_src != new_src)
{
delete new_src;
}
else if (a->get_artificial_initial_state())
{
if (a->get_artificial_initial_state() == src)
result->set_artificial_initial_state(new_src);
}
else if (is_initial_state)
{
result->add_to_initial_states_set(new_src);
}
ta_succ_iterator* succit = a->succ_iter(src);
for (succit->first(); !succit->done(); succit->next())
{
const state* dst = succit->dst();
hash_map::const_iterator i = state_num.find(dst);
if (i == state_num.end()) // Ignore useless destinations.
continue;
bdd tgba_condition = bddtrue;
is_initial_state = a->is_initial_state(dst);
if (!a->get_artificial_initial_state() && is_initial_state)
tgba_condition = a->get_state_condition(dst);
bool is_accepting_state = a->is_accepting_state(dst);
bool is_livelock_accepting_state =
a->is_livelock_accepting_state(dst);
state_ta_explicit* new_dst =
new state_ta_explicit
(result_tgba->state_from_number(i->second),
tgba_condition, is_initial_state,
is_accepting_state,
is_livelock_accepting_state);
state_ta_explicit* ta_dst = result->add_state(new_dst);
if (ta_dst != new_dst)
{
delete new_dst;
}
else if (a->get_artificial_initial_state())
{
if (a->get_artificial_initial_state() == dst)
result->set_artificial_initial_state(new_dst);
}
else if (is_initial_state)
result->add_to_initial_states_set(new_dst);
result->create_transition
(ta_src, succit->cond(),
succit->acc(),
ta_dst);
}
delete succit;
}
}
static partition_t
build_partition(const const_ta_ptr& ta_)
{
unsigned num_sets = ta_->acc().num_sets();
std::map<acc_cond::mark_t, bdd> m2b;
int acc_vars = ta_->get_dict()->register_anonymous_variables(num_sets,
&m2b);
auto mark_to_bdd = [&](acc_cond::mark_t m) -> bdd
{
auto i = m2b.find(m);
if (i != m2b.end())
return i->second;
bdd res = bddtrue;
for (unsigned n = 0; n < num_sets; ++n)
if (m.has(n))
res &= bdd_ithvar(acc_vars + n);
else
res &= bdd_nithvar(acc_vars + n);
m2b.emplace_hint(i, m, res);
return res;
};
partition_t cur_run;
partition_t next_run;
// The list of equivalent states.
partition_t done;
std::set<const state*> states_set = get_states_set(ta_);
hash_set* I = new hash_set;
// livelock acceptance states
hash_set* G = new hash_set;
// Buchi acceptance states
hash_set* F = new hash_set;
// Buchi and livelock acceptance states
hash_set* G_F = new hash_set;
// the other states (non initial and not in G, F and G_F)
hash_set* S = new hash_set;
std::set<const state*>::iterator it;
spot::state* artificial_initial_state =
ta_->get_artificial_initial_state();
for (it = states_set.begin(); it != states_set.end(); ++it)
{
const state* s = *it;
if (s == artificial_initial_state)
I->insert(s);
else if (!artificial_initial_state && ta_->is_initial_state(s))
I->insert(s);
else if (ta_->is_livelock_accepting_state(s)
&& ta_->is_accepting_state(s))
G_F->insert(s);
else if (ta_->is_accepting_state(s))
F->insert(s);
else if (ta_->is_livelock_accepting_state(s))
G->insert(s);
else
S->insert(s);
}
hash_map state_set_map;
// Size of ta_
unsigned size = states_set.size() + 6;
// Use bdd variables to number sets. set_num is the first variable
// available.
unsigned set_num =
ta_->get_dict()->register_anonymous_variables(size, &m2b);
std::set<int> free_var;
for (unsigned i = set_num; i < set_num + size; ++i)
free_var.insert(i);
std::map<int, int> used_var;
for (hash_set::const_iterator i = I->begin(); i != I->end(); ++i)
{
hash_set* cI = new hash_set;
cI->insert(*i);
done.push_back(cI);
used_var[set_num] = 1;
free_var.erase(set_num);
state_set_map[*i] = set_num;
++set_num;
}
delete I;
if (!G->empty())
{
unsigned s = G->size();
unsigned num = set_num;
++set_num;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(G);
else
done.push_back(G);
for (hash_set::const_iterator i = G->begin(); i != G->end(); ++i)
state_set_map[*i] = num;
}
else
{
delete G;
}
if (!F->empty())
{
unsigned s = F->size();
unsigned num = set_num;
++set_num;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(F);
else
done.push_back(F);
for (hash_set::const_iterator i = F->begin(); i != F->end(); ++i)
state_set_map[*i] = num;
}
else
{
delete F;
}
if (!G_F->empty())
{
unsigned s = G_F->size();
unsigned num = set_num;
++set_num;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(G_F);
else
done.push_back(G_F);
for (hash_set::const_iterator i = G_F->begin(); i != G_F->end(); ++i)
state_set_map[*i] = num;
}
else
{
delete G_F;
}
if (!S->empty())
{
unsigned s = S->size();
unsigned num = set_num;
++set_num;
used_var[num] = s;
free_var.erase(num);
if (s > 1)
cur_run.push_back(S);
else
done.push_back(S);
for (hash_set::const_iterator i = S->begin(); i != S->end(); ++i)
state_set_map[*i] = num;
}
else
{
delete S;
}
// A bdd_states_map is a list of formulae (in a BDD form)
// associated with a destination set of states.
typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map;
bool did_split = true;
unsigned num = set_num;
++set_num;
used_var[num] = 1;
free_var.erase(num);
bdd bdd_false_acceptance_condition = bdd_ithvar(num);
while (did_split)
{
did_split = false;
while (!cur_run.empty())
{
// Get a set to process.
hash_set* cur = cur_run.front();
cur_run.pop_front();
trace
<< "processing " << format_hash_set(cur, ta_) << std::endl;
hash_set::iterator hi;
bdd_states_map bdd_map;
for (hi = cur->begin(); hi != cur->end(); ++hi)
{
const state* src = *hi;
bdd f = bddfalse;
ta_succ_iterator* si = ta_->succ_iter(src);
trace << "+src: " << src << std::endl;
for (si->first(); !si->done(); si->next())
{
const state* dst = si->dst();
hash_map::const_iterator i = state_set_map.find(dst);
assert(i != state_set_map.end());
auto curacc =
mark_to_bdd(si->acc());
f |= (bdd_ithvar(i->second)
& si->cond() & curacc);
trace
<< "+f: " << bdd_format_accset(ta_->get_dict(), f)
<< "\n -bdd_ithvar(i->second): "
<< bdd_format_accset(ta_->get_dict(),
bdd_ithvar(i->second))
<< "\n -si->cond(): "
<< bdd_format_accset(ta_->get_dict(),
si->cond())
<< "\n -current_acceptance_conditions: "
<< si->acc()
<< std::endl;
}
delete si;
// Have we already seen this formula ?
bdd_states_map::iterator bsi = bdd_map.find(f);
if (bsi == bdd_map.end())
{
// No, create a new set.
hash_set* new_set = new hash_set;
new_set->insert(src);
bdd_map[f] = new_set;
}
else
{
// Yes, add the current state to the set.
bsi->second->insert(src);
}
}
bdd_states_map::iterator bsi = bdd_map.begin();
if (bdd_map.size() == 1)
{
// The set was not split.
trace
<< "set " << format_hash_set(bsi->second, ta_)
<< " was not split" << std::endl;
next_run.push_back(bsi->second);
}
else
{
did_split = true;
for (; bsi != bdd_map.end(); ++bsi)
{
hash_set* set = bsi->second;
// Free the number associated to these states.
unsigned num = state_set_map[*set->begin()];
assert(used_var.find(num) != used_var.end());
unsigned left = (used_var[num] -= set->size());
// Make sure LEFT does not become negative
// (hence bigger than SIZE when read as unsigned)
assert(left < size);
if (left == 0)
{
used_var.erase(num);
free_var.insert(num);
}
// Pick a free number
assert(!free_var.empty());
num = *free_var.begin();
free_var.erase(free_var.begin());
used_var[num] = set->size();
for (hash_set::iterator hit = set->begin();
hit != set->end(); ++hit)
state_set_map[*hit] = num;
// Trivial sets can't be splitted any further.
if (set->size() == 1)
{
trace
<< "set " << format_hash_set(set, ta_)
<< " is minimal" << std::endl;
done.push_back(set);
}
else
{
trace
<< "set " << format_hash_set(set, ta_)
<< " should be processed further" << std::endl;
next_run.push_back(set);
}
}
}
delete cur;
}
if (did_split)
trace
<< "splitting did occur during this pass." << std::endl;
std::swap(cur_run, next_run);
}
done.splice(done.end(), cur_run);
#ifdef TRACE
trace << "Final partition: ";
for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i)
trace << format_hash_set(*i, ta_) << ' ';
trace << std::endl;
#endif
ta_->get_dict()->unregister_all_my_variables(&m2b);
return done;
}
}
ta_explicit_ptr
minimize_ta(const const_ta_ptr& ta_)
{
auto tgba = make_twa_graph(ta_->get_dict());
auto res = make_ta_explicit(tgba, ta_->acc().num_sets(), nullptr);
partition_t partition = build_partition(ta_);
// Build the ta automata result.
build_result(ta_, partition, tgba, res);
// Free all the allocated memory.
std::list<hash_set*>::iterator itdone;
for (itdone = partition.begin(); itdone != partition.end(); ++itdone)
delete *itdone;
return res;
}
tgta_explicit_ptr
minimize_tgta(const const_tgta_explicit_ptr& tgta_)
{
auto tgba = make_twa_graph(tgta_->get_dict());
auto res = make_tgta_explicit(tgba, tgta_->acc().num_sets(), nullptr);
auto ta = tgta_->get_ta();
partition_t partition = build_partition(ta);
// Build the minimal tgta automaton.
build_result(ta, partition, tgba, res->get_ta());
// Free all the allocated memory.
std::list<hash_set*>::iterator itdone;
for (itdone = partition.begin(); itdone != partition.end(); ++itdone)
delete *itdone;
return res;
}
}