* HACKING: Adjust requirements. g++4.8 is now OK for all our targets. * iface/dve2/dve2.cc, src/dstarparse/dstarparse.yy src/dstarparse/nsa2tgba.cc, src/graph/ngraph.hh, src/ltlast/atomic_prop.cc, src/ltlast/binop.cc, src/ltlast/bunop.cc, src/ltlast/multop.cc, src/ltlast/unop.cc, src/ltlvisit/mark.cc, src/ltlvisit/relabel.cc, src/taalgos/emptinessta.cc, src/taalgos/tgba2ta.cc, src/tgba/tgbaexplicit.hh, src/tgba/tgbagraph.hh, src/tgba/tgbasafracomplement.cc, src/tgba/tgbatba.cc, src/tgbaalgos/cycles.cc, src/tgbaalgos/degen.cc, src/tgbaalgos/dtbasat.cc, src/tgbaalgos/dtgbasat.cc, src/tgbaalgos/emptiness.cc, src/tgbaalgos/gtec/gtec.cc, src/tgbaalgos/ltl2tgba_fm.cc, src/tgbaalgos/magic.cc, src/tgbaalgos/ndfs_result.hxx, src/tgbaalgos/reachiter.cc, src/tgbaalgos/scc.cc, src/tgbaalgos/sccfilter.cc, src/tgbaalgos/se05.cc, src/tgbaalgos/simulation.cc, src/tgbaalgos/tau03.cc, src/tgbaalgos/tau03opt.cc, src/tgbaalgos/weight.cc: Use emplace() instead of insert(make_pair(...)) or insert(...::value_type(...)).
653 lines
20 KiB
C++
653 lines
20 KiB
C++
// -*- coding: utf-8 -*-
|
|
// Copyright (C) 2010, 2011, 2012, 2013, 2014 Laboratoire de Recherche
|
|
// et Développement de l'Epita (LRDE).
|
|
//
|
|
// This file is part of Spot, a model checking library.
|
|
//
|
|
// Spot is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Spot is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
// License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
//#define TRACE
|
|
|
|
#include <iostream>
|
|
#ifdef TRACE
|
|
#define trace std::clog
|
|
#else
|
|
#define trace while (0) std::clog
|
|
#endif
|
|
|
|
#include "emptinessta.hh"
|
|
#include "misc/memusage.hh"
|
|
#include <cstdlib>
|
|
#include "tgba/bddprint.hh"
|
|
|
|
namespace spot
|
|
{
|
|
|
|
ta_check::ta_check(const ta_product* a, option_map o) :
|
|
a_(a), o_(o)
|
|
{
|
|
is_full_2_pass_ = o.get("is_full_2_pass", 0);
|
|
}
|
|
|
|
ta_check::~ta_check()
|
|
{
|
|
}
|
|
|
|
bool
|
|
ta_check::check(bool disable_second_pass,
|
|
bool disable_heuristic_for_livelock_detection)
|
|
{
|
|
|
|
// We use five main data in this algorithm:
|
|
|
|
// * scc: (attribute) a stack of strongly connected components (SCC)
|
|
|
|
// * arc, a stack of acceptance conditions between each of these SCC,
|
|
std::stack<bdd> arc;
|
|
|
|
// * h: a hash of all visited nodes, with their order,
|
|
// (it is called "Hash" in Couvreur's paper)
|
|
hash_type h;
|
|
|
|
// * num: the number of visited nodes. Used to set the order of each
|
|
// visited node,
|
|
int num = 1;
|
|
|
|
// * todo: the depth-first search stack. This holds pairs of the
|
|
// form (STATE, ITERATOR) where ITERATOR is a ta_succ_iterator_product
|
|
// over the successors of STATE. In our use, ITERATOR should
|
|
// always be freed when TODO is popped, but STATE should not because
|
|
// it is also used as a key in H.
|
|
std::stack<pair_state_iter> todo;
|
|
|
|
std::unordered_map<const state*, std::string,
|
|
state_ptr_hash, state_ptr_equal> colour;
|
|
|
|
trace
|
|
<< "PASS 1" << std::endl;
|
|
|
|
std::unordered_map<const state*,
|
|
std::set<const state*, state_ptr_less_than>,
|
|
state_ptr_hash, state_ptr_equal> liveset;
|
|
|
|
std::stack<spot::state*> livelock_roots;
|
|
|
|
bool livelock_acceptance_states_not_found = true;
|
|
|
|
bool activate_heuristic = !disable_heuristic_for_livelock_detection
|
|
&& (is_full_2_pass_ == disable_second_pass);
|
|
|
|
// Setup depth-first search from initial states.
|
|
const ta* ta_ = a_->get_ta();
|
|
const kripke* kripke_ = a_->get_kripke();
|
|
state* kripke_init_state = kripke_->get_init_state();
|
|
bdd kripke_init_state_condition = kripke_->state_condition(
|
|
kripke_init_state);
|
|
|
|
spot::state* artificial_initial_state = ta_->get_artificial_initial_state();
|
|
|
|
ta_succ_iterator* ta_init_it_ = ta_->succ_iter(artificial_initial_state,
|
|
kripke_init_state_condition);
|
|
kripke_init_state->destroy();
|
|
for (ta_init_it_->first(); !ta_init_it_->done(); ta_init_it_->next())
|
|
{
|
|
|
|
state_ta_product* init = new state_ta_product(
|
|
(ta_init_it_->current_state()), kripke_init_state->clone());
|
|
|
|
if (!h.emplace(init, num + 1).second)
|
|
{
|
|
init->destroy();
|
|
continue;
|
|
}
|
|
|
|
scc.push(++num);
|
|
arc.push(bddfalse);
|
|
|
|
ta_succ_iterator_product* iter = a_->succ_iter(init);
|
|
iter->first();
|
|
todo.emplace(init, iter);
|
|
|
|
inc_depth();
|
|
|
|
//push potential root of live-lock accepting cycle
|
|
if (activate_heuristic && a_->is_livelock_accepting_state(init))
|
|
livelock_roots.push(init);
|
|
|
|
while (!todo.empty())
|
|
{
|
|
|
|
state* curr = todo.top().first;
|
|
|
|
// We are looking at the next successor in SUCC.
|
|
ta_succ_iterator_product* succ = todo.top().second;
|
|
|
|
// If there is no more successor, backtrack.
|
|
if (succ->done())
|
|
{
|
|
// We have explored all successors of state CURR.
|
|
|
|
|
|
// Backtrack TODO.
|
|
todo.pop();
|
|
dec_depth();
|
|
trace << "PASS 1 : backtrack\n";
|
|
|
|
if (a_->is_livelock_accepting_state(curr)
|
|
&& !a_->is_accepting_state(curr))
|
|
{
|
|
livelock_acceptance_states_not_found = false;
|
|
trace << "PASS 1 : livelock accepting state found\n";
|
|
}
|
|
|
|
// fill rem with any component removed,
|
|
auto i = h.find(curr);
|
|
assert(i != h.end());
|
|
|
|
scc.rem().push_front(curr);
|
|
inc_depth();
|
|
|
|
// set the h value of the Backtracked state to negative value.
|
|
// colour[curr] = BLUE;
|
|
i->second = -std::abs(i->second);
|
|
|
|
// Backtrack livelock_roots.
|
|
if (activate_heuristic && !livelock_roots.empty()
|
|
&& !livelock_roots.top()->compare(curr))
|
|
livelock_roots.pop();
|
|
|
|
// When backtracking the root of an SSCC, we must also
|
|
// remove that SSCC from the ROOT stacks. We must
|
|
// discard from H all reachable states from this SSCC.
|
|
assert(!scc.empty());
|
|
if (scc.top().index == std::abs(i->second))
|
|
{
|
|
// removing states
|
|
for (auto j: scc.rem())
|
|
h[j] = -1; //colour[*i] = BLACK;
|
|
dec_depth(scc.rem().size());
|
|
scc.pop();
|
|
assert(!arc.empty());
|
|
arc.pop();
|
|
|
|
}
|
|
|
|
delete succ;
|
|
// Do not delete CURR: it is a key in H.
|
|
continue;
|
|
}
|
|
|
|
// We have a successor to look at.
|
|
inc_transitions();
|
|
trace << "PASS 1: transition\n";
|
|
// Fetch the values destination state we are interested in...
|
|
state* dest = succ->current_state();
|
|
|
|
bdd acc_cond = succ->current_acceptance_conditions();
|
|
|
|
bool curr_is_livelock_hole_state_in_ta_component =
|
|
(a_->is_hole_state_in_ta_component(curr))
|
|
&& a_->is_livelock_accepting_state(curr);
|
|
|
|
// May be Buchi accepting scc or livelock accepting scc
|
|
// (contains a livelock accepting state that have no
|
|
// successors in TA).
|
|
scc.top().is_accepting = (a_->is_accepting_state(curr)
|
|
&& (!succ->is_stuttering_transition()
|
|
|| a_->is_livelock_accepting_state(curr)))
|
|
|| curr_is_livelock_hole_state_in_ta_component;
|
|
|
|
bool is_stuttering_transition = succ->is_stuttering_transition();
|
|
|
|
// ... and point the iterator to the next successor, for
|
|
// the next iteration.
|
|
succ->next();
|
|
// We do not need SUCC from now on.
|
|
|
|
// Are we going to a new state?
|
|
auto p = h.emplace(dest, num + 1);
|
|
if (p.second)
|
|
{
|
|
// Number it, stack it, and register its successors
|
|
// for later processing.
|
|
scc.push(++num);
|
|
arc.push(acc_cond);
|
|
|
|
ta_succ_iterator_product* iter = a_->succ_iter(dest);
|
|
iter->first();
|
|
todo.emplace(dest, iter);
|
|
//colour[dest] = GREY;
|
|
inc_depth();
|
|
|
|
//push potential root of live-lock accepting cycle
|
|
if (activate_heuristic && a_->is_livelock_accepting_state(dest)
|
|
&& !is_stuttering_transition)
|
|
livelock_roots.push(dest);
|
|
|
|
continue;
|
|
}
|
|
|
|
// If we have reached a dead component, ignore it.
|
|
if (p.first->second == -1)
|
|
continue;
|
|
|
|
// Now this is the most interesting case. We have reached a
|
|
// state S1 which is already part of a non-dead SSCC. Any such
|
|
// non-dead SSCC has necessarily been crossed by our path to
|
|
// this state: there is a state S2 in our path which belongs
|
|
// to this SSCC too. We are going to merge all states between
|
|
// this S1 and S2 into this SSCC.
|
|
//
|
|
// This merge is easy to do because the order of the SSCC in
|
|
// ROOT is ascending: we just have to merge all SSCCs from the
|
|
// top of ROOT that have an index greater to the one of
|
|
// the SSCC of S2 (called the "threshold").
|
|
int threshold = std::abs(p.first->second);
|
|
std::list<state*> rem;
|
|
bool acc = false;
|
|
|
|
trace << "***PASS 1: CYCLE***\n";
|
|
|
|
while (threshold < scc.top().index)
|
|
{
|
|
assert(!scc.empty());
|
|
assert(!arc.empty());
|
|
|
|
acc |= scc.top().is_accepting;
|
|
acc_cond |= scc.top().condition;
|
|
acc_cond |= arc.top();
|
|
|
|
rem.splice(rem.end(), scc.rem());
|
|
scc.pop();
|
|
arc.pop();
|
|
|
|
}
|
|
|
|
// Note that we do not always have
|
|
// threshold == scc.top().index
|
|
// after this loop, the SSCC whose index is threshold might have
|
|
// been merged with a lower SSCC.
|
|
|
|
// Accumulate all acceptance conditions into the merged SSCC.
|
|
scc.top().is_accepting |= acc;
|
|
scc.top().condition |= acc_cond;
|
|
|
|
scc.rem().splice(scc.rem().end(), rem);
|
|
bool is_accepting_sscc = (scc.top().is_accepting)
|
|
|| (scc.top().condition == a_->all_acceptance_conditions());
|
|
|
|
if (is_accepting_sscc)
|
|
{
|
|
trace
|
|
<< "PASS 1: SUCCESS: a_->is_livelock_accepting_state(curr): "
|
|
<< a_->is_livelock_accepting_state(curr) << '\n';
|
|
trace
|
|
<< "PASS 1: scc.top().condition : "
|
|
<< bdd_format_accset(a_->get_dict(), scc.top().condition)
|
|
<< '\n';
|
|
trace
|
|
<< "PASS 1: a_->all_acceptance_conditions() : "
|
|
<< (a_->all_acceptance_conditions()) << '\n';
|
|
trace
|
|
<< ("PASS 1 CYCLE and (scc.top().condition == "
|
|
"a_->all_acceptance_conditions()) : ")
|
|
<< (scc.top().condition
|
|
== a_->all_acceptance_conditions()) << std::endl;
|
|
|
|
trace
|
|
<< "PASS 1: bddtrue: " << (a_->all_acceptance_conditions()
|
|
== bddtrue) << '\n';
|
|
|
|
trace
|
|
<< "PASS 1: bddfalse: " << (a_->all_acceptance_conditions()
|
|
== bddfalse) << '\n';
|
|
|
|
clear(h, todo, ta_init_it_);
|
|
return true;
|
|
}
|
|
|
|
//ADDLINKS
|
|
if (activate_heuristic && a_->is_livelock_accepting_state(curr)
|
|
&& is_stuttering_transition)
|
|
{
|
|
trace << "PASS 1: heuristic livelock detection \n";
|
|
const state* dest = p.first->first;
|
|
std::set<const state*, state_ptr_less_than> liveset_dest =
|
|
liveset[dest];
|
|
|
|
std::set<const state*, state_ptr_less_than> liveset_curr =
|
|
liveset[curr];
|
|
|
|
int h_livelock_root = 0;
|
|
if (!livelock_roots.empty())
|
|
h_livelock_root = h[livelock_roots.top()];
|
|
|
|
if (heuristic_livelock_detection(dest, h, h_livelock_root,
|
|
liveset_curr))
|
|
{
|
|
clear(h, todo, ta_init_it_);
|
|
return true;
|
|
}
|
|
|
|
std::set<const state*, state_ptr_less_than>::const_iterator it;
|
|
for (const state* succ: liveset_dest)
|
|
if (heuristic_livelock_detection(succ, h, h_livelock_root,
|
|
liveset_curr))
|
|
{
|
|
clear(h, todo, ta_init_it_);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
clear(h, todo, ta_init_it_);
|
|
|
|
if (disable_second_pass || livelock_acceptance_states_not_found)
|
|
return false;
|
|
|
|
return livelock_detection(a_);
|
|
}
|
|
|
|
bool
|
|
ta_check::heuristic_livelock_detection(const state * u,
|
|
hash_type& h, int h_livelock_root, std::set<const state*,
|
|
state_ptr_less_than> liveset_curr)
|
|
{
|
|
int hu = h[u];
|
|
|
|
if (hu > 0) // colour[u] == GREY
|
|
{
|
|
|
|
if (hu >= h_livelock_root)
|
|
{
|
|
trace << "PASS 1: heuristic livelock detection SUCCESS\n";
|
|
return true;
|
|
}
|
|
|
|
liveset_curr.insert(u);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
ta_check::livelock_detection(const ta_product* t)
|
|
{
|
|
// We use five main data in this algorithm:
|
|
|
|
// * sscc: a stack of strongly stuttering-connected components (SSCC)
|
|
|
|
|
|
// * h: a hash of all visited nodes, with their order,
|
|
// (it is called "Hash" in Couvreur's paper)
|
|
hash_type h;
|
|
|
|
// * num: the number of visited nodes. Used to set the order of each
|
|
// visited node,
|
|
|
|
trace
|
|
<< "PASS 2" << std::endl;
|
|
|
|
int num = 0;
|
|
|
|
// * todo: the depth-first search stack. This holds pairs of the
|
|
// form (STATE, ITERATOR) where ITERATOR is a tgba_succ_iterator
|
|
// over the successors of STATE. In our use, ITERATOR should
|
|
// always be freed when TODO is popped, but STATE should not because
|
|
// it is also used as a key in H.
|
|
std::stack<pair_state_iter> todo;
|
|
|
|
// * init: the set of the depth-first search initial states
|
|
std::queue<spot::state*> ta_init_it_;
|
|
|
|
const ta::states_set_t init_states_set = a_->get_initial_states_set();
|
|
ta::states_set_t::const_iterator it;
|
|
for (it = init_states_set.begin(); it != init_states_set.end(); ++it)
|
|
{
|
|
state* init_state = (*it);
|
|
ta_init_it_.push(init_state);
|
|
}
|
|
|
|
while (!ta_init_it_.empty())
|
|
{
|
|
// Setup depth-first search from initial states.
|
|
{
|
|
state* init = ta_init_it_.front();
|
|
ta_init_it_.pop();
|
|
|
|
if (!h.emplace(init, num + 1).second)
|
|
{
|
|
init->destroy();
|
|
continue;
|
|
}
|
|
|
|
sscc.push(num);
|
|
sscc.top().is_accepting = t->is_livelock_accepting_state(init);
|
|
ta_succ_iterator_product* iter = t->succ_iter(init);
|
|
iter->first();
|
|
todo.emplace(init, iter);
|
|
inc_depth();
|
|
}
|
|
|
|
while (!todo.empty())
|
|
{
|
|
|
|
state* curr = todo.top().first;
|
|
|
|
// We are looking at the next successor in SUCC.
|
|
ta_succ_iterator_product* succ = todo.top().second;
|
|
|
|
// If there is no more successor, backtrack.
|
|
if (succ->done())
|
|
{
|
|
// We have explored all successors of state CURR.
|
|
|
|
// Backtrack TODO.
|
|
todo.pop();
|
|
dec_depth();
|
|
trace << "PASS 2 : backtrack\n";
|
|
|
|
// fill rem with any component removed,
|
|
auto i = h.find(curr);
|
|
assert(i != h.end());
|
|
|
|
sscc.rem().push_front(curr);
|
|
inc_depth();
|
|
|
|
// When backtracking the root of an SSCC, we must also
|
|
// remove that SSCC from the ROOT stacks. We must
|
|
// discard from H all reachable states from this SSCC.
|
|
assert(!sscc.empty());
|
|
if (sscc.top().index == i->second)
|
|
{
|
|
// removing states
|
|
for (auto j: sscc.rem())
|
|
h[j] = -1;
|
|
dec_depth(sscc.rem().size());
|
|
sscc.pop();
|
|
}
|
|
|
|
delete succ;
|
|
// Do not delete CURR: it is a key in H.
|
|
|
|
continue;
|
|
}
|
|
|
|
// We have a successor to look at.
|
|
inc_transitions();
|
|
trace << "PASS 2 : transition\n";
|
|
// Fetch the values destination state we are interested in...
|
|
state* dest = succ->current_state();
|
|
|
|
bool is_stuttering_transition = succ->is_stuttering_transition();
|
|
// ... and point the iterator to the next successor, for
|
|
// the next iteration.
|
|
succ->next();
|
|
// We do not need SUCC from now on.
|
|
|
|
auto i = h.find(dest);
|
|
|
|
// Is this a new state?
|
|
if (i == h.end())
|
|
{
|
|
|
|
// Are we going to a new state through a stuttering transition?
|
|
|
|
if (!is_stuttering_transition)
|
|
{
|
|
ta_init_it_.push(dest);
|
|
continue;
|
|
}
|
|
|
|
// Number it, stack it, and register its successors
|
|
// for later processing.
|
|
h[dest] = ++num;
|
|
sscc.push(num);
|
|
sscc.top().is_accepting = t->is_livelock_accepting_state(dest);
|
|
|
|
ta_succ_iterator_product* iter = t->succ_iter(dest);
|
|
iter->first();
|
|
todo.emplace(dest, iter);
|
|
inc_depth();
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
dest->destroy();
|
|
}
|
|
|
|
// If we have reached a dead component, ignore it.
|
|
if (i->second == -1)
|
|
continue;
|
|
|
|
//self loop state
|
|
if (!curr->compare(i->first))
|
|
{
|
|
state* self_loop_state = curr;
|
|
|
|
if (t->is_livelock_accepting_state(self_loop_state))
|
|
{
|
|
clear(h, todo, ta_init_it_);
|
|
trace << "PASS 2: SUCCESS\n";
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Now this is the most interesting case. We have reached a
|
|
// state S1 which is already part of a non-dead SSCC. Any such
|
|
// non-dead SSCC has necessarily been crossed by our path to
|
|
// this state: there is a state S2 in our path which belongs
|
|
// to this SSCC too. We are going to merge all states between
|
|
// this S1 and S2 into this SSCC.
|
|
//
|
|
// This merge is easy to do because the order of the SSCC in
|
|
// ROOT is ascending: we just have to merge all SSCCs from the
|
|
// top of ROOT that have an index greater to the one of
|
|
// the SSCC of S2 (called the "threshold").
|
|
int threshold = i->second;
|
|
std::list<state*> rem;
|
|
bool acc = false;
|
|
|
|
while (threshold < sscc.top().index)
|
|
{
|
|
assert(!sscc.empty());
|
|
|
|
acc |= sscc.top().is_accepting;
|
|
|
|
rem.splice(rem.end(), sscc.rem());
|
|
sscc.pop();
|
|
|
|
}
|
|
// Note that we do not always have
|
|
// threshold == sscc.top().index
|
|
// after this loop, the SSCC whose index is threshold might have
|
|
// been merged with a lower SSCC.
|
|
|
|
// Accumulate all acceptance conditions into the merged SSCC.
|
|
sscc.top().is_accepting |= acc;
|
|
|
|
sscc.rem().splice(sscc.rem().end(), rem);
|
|
if (sscc.top().is_accepting)
|
|
{
|
|
clear(h, todo, ta_init_it_);
|
|
trace
|
|
<< "PASS 2: SUCCESS" << std::endl;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
}
|
|
clear(h, todo, ta_init_it_);
|
|
return false;
|
|
}
|
|
|
|
void
|
|
ta_check::clear(hash_type& h, std::stack<pair_state_iter> todo,
|
|
std::queue<spot::state*> init_states)
|
|
{
|
|
|
|
set_states(states() + h.size());
|
|
|
|
while (!init_states.empty())
|
|
{
|
|
a_->free_state(init_states.front());
|
|
init_states.pop();
|
|
}
|
|
|
|
// Release all iterators in TODO.
|
|
while (!todo.empty())
|
|
{
|
|
delete todo.top().second;
|
|
todo.pop();
|
|
dec_depth();
|
|
}
|
|
}
|
|
|
|
void
|
|
ta_check::clear(hash_type& h, std::stack<pair_state_iter> todo,
|
|
spot::ta_succ_iterator* init_states_it)
|
|
{
|
|
|
|
set_states(states() + h.size());
|
|
|
|
delete init_states_it;
|
|
|
|
// Release all iterators in TODO.
|
|
while (!todo.empty())
|
|
{
|
|
delete todo.top().second;
|
|
todo.pop();
|
|
dec_depth();
|
|
}
|
|
}
|
|
|
|
std::ostream&
|
|
ta_check::print_stats(std::ostream& os) const
|
|
{
|
|
// ecs_->print_stats(os);
|
|
os << states() << " unique states visited" << std::endl;
|
|
|
|
//TODO sscc;
|
|
os << scc.size() << " strongly connected components in search stack"
|
|
<< std::endl;
|
|
os << transitions() << " transitions explored" << std::endl;
|
|
os << max_depth() << " items max in DFS search stack" << std::endl;
|
|
return os;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
}
|