spot/src/taalgos/emptinessta.cc
Alexandre Duret-Lutz fd5fbda4dd Use emplace() for associative containers.
* HACKING: Adjust requirements.  g++4.8 is now OK
for all our targets.
* iface/dve2/dve2.cc, src/dstarparse/dstarparse.yy
src/dstarparse/nsa2tgba.cc, src/graph/ngraph.hh,
src/ltlast/atomic_prop.cc, src/ltlast/binop.cc, src/ltlast/bunop.cc,
src/ltlast/multop.cc, src/ltlast/unop.cc, src/ltlvisit/mark.cc,
src/ltlvisit/relabel.cc, src/taalgos/emptinessta.cc,
src/taalgos/tgba2ta.cc, src/tgba/tgbaexplicit.hh, src/tgba/tgbagraph.hh,
src/tgba/tgbasafracomplement.cc, src/tgba/tgbatba.cc,
src/tgbaalgos/cycles.cc, src/tgbaalgos/degen.cc,
src/tgbaalgos/dtbasat.cc, src/tgbaalgos/dtgbasat.cc,
src/tgbaalgos/emptiness.cc, src/tgbaalgos/gtec/gtec.cc,
src/tgbaalgos/ltl2tgba_fm.cc, src/tgbaalgos/magic.cc,
src/tgbaalgos/ndfs_result.hxx, src/tgbaalgos/reachiter.cc,
src/tgbaalgos/scc.cc, src/tgbaalgos/sccfilter.cc, src/tgbaalgos/se05.cc,
src/tgbaalgos/simulation.cc, src/tgbaalgos/tau03.cc,
src/tgbaalgos/tau03opt.cc, src/tgbaalgos/weight.cc: Use emplace()
instead of insert(make_pair(...)) or insert(...::value_type(...)).
2014-07-31 16:59:47 +02:00

653 lines
20 KiB
C++

// -*- coding: utf-8 -*-
// Copyright (C) 2010, 2011, 2012, 2013, 2014 Laboratoire de Recherche
// et Développement de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//#define TRACE
#include <iostream>
#ifdef TRACE
#define trace std::clog
#else
#define trace while (0) std::clog
#endif
#include "emptinessta.hh"
#include "misc/memusage.hh"
#include <cstdlib>
#include "tgba/bddprint.hh"
namespace spot
{
ta_check::ta_check(const ta_product* a, option_map o) :
a_(a), o_(o)
{
is_full_2_pass_ = o.get("is_full_2_pass", 0);
}
ta_check::~ta_check()
{
}
bool
ta_check::check(bool disable_second_pass,
bool disable_heuristic_for_livelock_detection)
{
// We use five main data in this algorithm:
// * scc: (attribute) a stack of strongly connected components (SCC)
// * arc, a stack of acceptance conditions between each of these SCC,
std::stack<bdd> arc;
// * h: a hash of all visited nodes, with their order,
// (it is called "Hash" in Couvreur's paper)
hash_type h;
// * num: the number of visited nodes. Used to set the order of each
// visited node,
int num = 1;
// * todo: the depth-first search stack. This holds pairs of the
// form (STATE, ITERATOR) where ITERATOR is a ta_succ_iterator_product
// over the successors of STATE. In our use, ITERATOR should
// always be freed when TODO is popped, but STATE should not because
// it is also used as a key in H.
std::stack<pair_state_iter> todo;
std::unordered_map<const state*, std::string,
state_ptr_hash, state_ptr_equal> colour;
trace
<< "PASS 1" << std::endl;
std::unordered_map<const state*,
std::set<const state*, state_ptr_less_than>,
state_ptr_hash, state_ptr_equal> liveset;
std::stack<spot::state*> livelock_roots;
bool livelock_acceptance_states_not_found = true;
bool activate_heuristic = !disable_heuristic_for_livelock_detection
&& (is_full_2_pass_ == disable_second_pass);
// Setup depth-first search from initial states.
const ta* ta_ = a_->get_ta();
const kripke* kripke_ = a_->get_kripke();
state* kripke_init_state = kripke_->get_init_state();
bdd kripke_init_state_condition = kripke_->state_condition(
kripke_init_state);
spot::state* artificial_initial_state = ta_->get_artificial_initial_state();
ta_succ_iterator* ta_init_it_ = ta_->succ_iter(artificial_initial_state,
kripke_init_state_condition);
kripke_init_state->destroy();
for (ta_init_it_->first(); !ta_init_it_->done(); ta_init_it_->next())
{
state_ta_product* init = new state_ta_product(
(ta_init_it_->current_state()), kripke_init_state->clone());
if (!h.emplace(init, num + 1).second)
{
init->destroy();
continue;
}
scc.push(++num);
arc.push(bddfalse);
ta_succ_iterator_product* iter = a_->succ_iter(init);
iter->first();
todo.emplace(init, iter);
inc_depth();
//push potential root of live-lock accepting cycle
if (activate_heuristic && a_->is_livelock_accepting_state(init))
livelock_roots.push(init);
while (!todo.empty())
{
state* curr = todo.top().first;
// We are looking at the next successor in SUCC.
ta_succ_iterator_product* succ = todo.top().second;
// If there is no more successor, backtrack.
if (succ->done())
{
// We have explored all successors of state CURR.
// Backtrack TODO.
todo.pop();
dec_depth();
trace << "PASS 1 : backtrack\n";
if (a_->is_livelock_accepting_state(curr)
&& !a_->is_accepting_state(curr))
{
livelock_acceptance_states_not_found = false;
trace << "PASS 1 : livelock accepting state found\n";
}
// fill rem with any component removed,
auto i = h.find(curr);
assert(i != h.end());
scc.rem().push_front(curr);
inc_depth();
// set the h value of the Backtracked state to negative value.
// colour[curr] = BLUE;
i->second = -std::abs(i->second);
// Backtrack livelock_roots.
if (activate_heuristic && !livelock_roots.empty()
&& !livelock_roots.top()->compare(curr))
livelock_roots.pop();
// When backtracking the root of an SSCC, we must also
// remove that SSCC from the ROOT stacks. We must
// discard from H all reachable states from this SSCC.
assert(!scc.empty());
if (scc.top().index == std::abs(i->second))
{
// removing states
for (auto j: scc.rem())
h[j] = -1; //colour[*i] = BLACK;
dec_depth(scc.rem().size());
scc.pop();
assert(!arc.empty());
arc.pop();
}
delete succ;
// Do not delete CURR: it is a key in H.
continue;
}
// We have a successor to look at.
inc_transitions();
trace << "PASS 1: transition\n";
// Fetch the values destination state we are interested in...
state* dest = succ->current_state();
bdd acc_cond = succ->current_acceptance_conditions();
bool curr_is_livelock_hole_state_in_ta_component =
(a_->is_hole_state_in_ta_component(curr))
&& a_->is_livelock_accepting_state(curr);
// May be Buchi accepting scc or livelock accepting scc
// (contains a livelock accepting state that have no
// successors in TA).
scc.top().is_accepting = (a_->is_accepting_state(curr)
&& (!succ->is_stuttering_transition()
|| a_->is_livelock_accepting_state(curr)))
|| curr_is_livelock_hole_state_in_ta_component;
bool is_stuttering_transition = succ->is_stuttering_transition();
// ... and point the iterator to the next successor, for
// the next iteration.
succ->next();
// We do not need SUCC from now on.
// Are we going to a new state?
auto p = h.emplace(dest, num + 1);
if (p.second)
{
// Number it, stack it, and register its successors
// for later processing.
scc.push(++num);
arc.push(acc_cond);
ta_succ_iterator_product* iter = a_->succ_iter(dest);
iter->first();
todo.emplace(dest, iter);
//colour[dest] = GREY;
inc_depth();
//push potential root of live-lock accepting cycle
if (activate_heuristic && a_->is_livelock_accepting_state(dest)
&& !is_stuttering_transition)
livelock_roots.push(dest);
continue;
}
// If we have reached a dead component, ignore it.
if (p.first->second == -1)
continue;
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SSCC. Any such
// non-dead SSCC has necessarily been crossed by our path to
// this state: there is a state S2 in our path which belongs
// to this SSCC too. We are going to merge all states between
// this S1 and S2 into this SSCC.
//
// This merge is easy to do because the order of the SSCC in
// ROOT is ascending: we just have to merge all SSCCs from the
// top of ROOT that have an index greater to the one of
// the SSCC of S2 (called the "threshold").
int threshold = std::abs(p.first->second);
std::list<state*> rem;
bool acc = false;
trace << "***PASS 1: CYCLE***\n";
while (threshold < scc.top().index)
{
assert(!scc.empty());
assert(!arc.empty());
acc |= scc.top().is_accepting;
acc_cond |= scc.top().condition;
acc_cond |= arc.top();
rem.splice(rem.end(), scc.rem());
scc.pop();
arc.pop();
}
// Note that we do not always have
// threshold == scc.top().index
// after this loop, the SSCC whose index is threshold might have
// been merged with a lower SSCC.
// Accumulate all acceptance conditions into the merged SSCC.
scc.top().is_accepting |= acc;
scc.top().condition |= acc_cond;
scc.rem().splice(scc.rem().end(), rem);
bool is_accepting_sscc = (scc.top().is_accepting)
|| (scc.top().condition == a_->all_acceptance_conditions());
if (is_accepting_sscc)
{
trace
<< "PASS 1: SUCCESS: a_->is_livelock_accepting_state(curr): "
<< a_->is_livelock_accepting_state(curr) << '\n';
trace
<< "PASS 1: scc.top().condition : "
<< bdd_format_accset(a_->get_dict(), scc.top().condition)
<< '\n';
trace
<< "PASS 1: a_->all_acceptance_conditions() : "
<< (a_->all_acceptance_conditions()) << '\n';
trace
<< ("PASS 1 CYCLE and (scc.top().condition == "
"a_->all_acceptance_conditions()) : ")
<< (scc.top().condition
== a_->all_acceptance_conditions()) << std::endl;
trace
<< "PASS 1: bddtrue: " << (a_->all_acceptance_conditions()
== bddtrue) << '\n';
trace
<< "PASS 1: bddfalse: " << (a_->all_acceptance_conditions()
== bddfalse) << '\n';
clear(h, todo, ta_init_it_);
return true;
}
//ADDLINKS
if (activate_heuristic && a_->is_livelock_accepting_state(curr)
&& is_stuttering_transition)
{
trace << "PASS 1: heuristic livelock detection \n";
const state* dest = p.first->first;
std::set<const state*, state_ptr_less_than> liveset_dest =
liveset[dest];
std::set<const state*, state_ptr_less_than> liveset_curr =
liveset[curr];
int h_livelock_root = 0;
if (!livelock_roots.empty())
h_livelock_root = h[livelock_roots.top()];
if (heuristic_livelock_detection(dest, h, h_livelock_root,
liveset_curr))
{
clear(h, todo, ta_init_it_);
return true;
}
std::set<const state*, state_ptr_less_than>::const_iterator it;
for (const state* succ: liveset_dest)
if (heuristic_livelock_detection(succ, h, h_livelock_root,
liveset_curr))
{
clear(h, todo, ta_init_it_);
return true;
}
}
}
}
clear(h, todo, ta_init_it_);
if (disable_second_pass || livelock_acceptance_states_not_found)
return false;
return livelock_detection(a_);
}
bool
ta_check::heuristic_livelock_detection(const state * u,
hash_type& h, int h_livelock_root, std::set<const state*,
state_ptr_less_than> liveset_curr)
{
int hu = h[u];
if (hu > 0) // colour[u] == GREY
{
if (hu >= h_livelock_root)
{
trace << "PASS 1: heuristic livelock detection SUCCESS\n";
return true;
}
liveset_curr.insert(u);
}
return false;
}
bool
ta_check::livelock_detection(const ta_product* t)
{
// We use five main data in this algorithm:
// * sscc: a stack of strongly stuttering-connected components (SSCC)
// * h: a hash of all visited nodes, with their order,
// (it is called "Hash" in Couvreur's paper)
hash_type h;
// * num: the number of visited nodes. Used to set the order of each
// visited node,
trace
<< "PASS 2" << std::endl;
int num = 0;
// * todo: the depth-first search stack. This holds pairs of the
// form (STATE, ITERATOR) where ITERATOR is a tgba_succ_iterator
// over the successors of STATE. In our use, ITERATOR should
// always be freed when TODO is popped, but STATE should not because
// it is also used as a key in H.
std::stack<pair_state_iter> todo;
// * init: the set of the depth-first search initial states
std::queue<spot::state*> ta_init_it_;
const ta::states_set_t init_states_set = a_->get_initial_states_set();
ta::states_set_t::const_iterator it;
for (it = init_states_set.begin(); it != init_states_set.end(); ++it)
{
state* init_state = (*it);
ta_init_it_.push(init_state);
}
while (!ta_init_it_.empty())
{
// Setup depth-first search from initial states.
{
state* init = ta_init_it_.front();
ta_init_it_.pop();
if (!h.emplace(init, num + 1).second)
{
init->destroy();
continue;
}
sscc.push(num);
sscc.top().is_accepting = t->is_livelock_accepting_state(init);
ta_succ_iterator_product* iter = t->succ_iter(init);
iter->first();
todo.emplace(init, iter);
inc_depth();
}
while (!todo.empty())
{
state* curr = todo.top().first;
// We are looking at the next successor in SUCC.
ta_succ_iterator_product* succ = todo.top().second;
// If there is no more successor, backtrack.
if (succ->done())
{
// We have explored all successors of state CURR.
// Backtrack TODO.
todo.pop();
dec_depth();
trace << "PASS 2 : backtrack\n";
// fill rem with any component removed,
auto i = h.find(curr);
assert(i != h.end());
sscc.rem().push_front(curr);
inc_depth();
// When backtracking the root of an SSCC, we must also
// remove that SSCC from the ROOT stacks. We must
// discard from H all reachable states from this SSCC.
assert(!sscc.empty());
if (sscc.top().index == i->second)
{
// removing states
for (auto j: sscc.rem())
h[j] = -1;
dec_depth(sscc.rem().size());
sscc.pop();
}
delete succ;
// Do not delete CURR: it is a key in H.
continue;
}
// We have a successor to look at.
inc_transitions();
trace << "PASS 2 : transition\n";
// Fetch the values destination state we are interested in...
state* dest = succ->current_state();
bool is_stuttering_transition = succ->is_stuttering_transition();
// ... and point the iterator to the next successor, for
// the next iteration.
succ->next();
// We do not need SUCC from now on.
auto i = h.find(dest);
// Is this a new state?
if (i == h.end())
{
// Are we going to a new state through a stuttering transition?
if (!is_stuttering_transition)
{
ta_init_it_.push(dest);
continue;
}
// Number it, stack it, and register its successors
// for later processing.
h[dest] = ++num;
sscc.push(num);
sscc.top().is_accepting = t->is_livelock_accepting_state(dest);
ta_succ_iterator_product* iter = t->succ_iter(dest);
iter->first();
todo.emplace(dest, iter);
inc_depth();
continue;
}
else
{
dest->destroy();
}
// If we have reached a dead component, ignore it.
if (i->second == -1)
continue;
//self loop state
if (!curr->compare(i->first))
{
state* self_loop_state = curr;
if (t->is_livelock_accepting_state(self_loop_state))
{
clear(h, todo, ta_init_it_);
trace << "PASS 2: SUCCESS\n";
return true;
}
}
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SSCC. Any such
// non-dead SSCC has necessarily been crossed by our path to
// this state: there is a state S2 in our path which belongs
// to this SSCC too. We are going to merge all states between
// this S1 and S2 into this SSCC.
//
// This merge is easy to do because the order of the SSCC in
// ROOT is ascending: we just have to merge all SSCCs from the
// top of ROOT that have an index greater to the one of
// the SSCC of S2 (called the "threshold").
int threshold = i->second;
std::list<state*> rem;
bool acc = false;
while (threshold < sscc.top().index)
{
assert(!sscc.empty());
acc |= sscc.top().is_accepting;
rem.splice(rem.end(), sscc.rem());
sscc.pop();
}
// Note that we do not always have
// threshold == sscc.top().index
// after this loop, the SSCC whose index is threshold might have
// been merged with a lower SSCC.
// Accumulate all acceptance conditions into the merged SSCC.
sscc.top().is_accepting |= acc;
sscc.rem().splice(sscc.rem().end(), rem);
if (sscc.top().is_accepting)
{
clear(h, todo, ta_init_it_);
trace
<< "PASS 2: SUCCESS" << std::endl;
return true;
}
}
}
clear(h, todo, ta_init_it_);
return false;
}
void
ta_check::clear(hash_type& h, std::stack<pair_state_iter> todo,
std::queue<spot::state*> init_states)
{
set_states(states() + h.size());
while (!init_states.empty())
{
a_->free_state(init_states.front());
init_states.pop();
}
// Release all iterators in TODO.
while (!todo.empty())
{
delete todo.top().second;
todo.pop();
dec_depth();
}
}
void
ta_check::clear(hash_type& h, std::stack<pair_state_iter> todo,
spot::ta_succ_iterator* init_states_it)
{
set_states(states() + h.size());
delete init_states_it;
// Release all iterators in TODO.
while (!todo.empty())
{
delete todo.top().second;
todo.pop();
dec_depth();
}
}
std::ostream&
ta_check::print_stats(std::ostream& os) const
{
// ecs_->print_stats(os);
os << states() << " unique states visited" << std::endl;
//TODO sscc;
os << scc.size() << " strongly connected components in search stack"
<< std::endl;
os << transitions() << " transitions explored" << std::endl;
os << max_depth() << " items max in DFS search stack" << std::endl;
return os;
}
//////////////////////////////////////////////////////////////////////
}