spot/src/ltlvisit/nenoform.cc
Damien Lefortier e48338e8d8 Modify the ELTL parser to be able to support PSL operators. Add a
new keyword in the ELTL format: finish, which applies to an
automaton operator and tells whether it just completed.

* src/eltlparse/eltlparse.yy: Clean it. Add finish.
* src/eltlparse/eltlscan.ll: Add finish.
* src/formula_tree.cc, src/formula_tree.hh: New files. Define a
small AST representing formulae where atomic props are unknown
which is used in the ELTL parser.
* src/ltlast/automatop.cc, ltlast/automatop.hh, ltlast/nfa.cc,
ltlast/nfa.hh: Adjust.
* src/ltlast/unop.cc, src/ltlast/unop.hh: Finish is an unop.
* src/ltlvisit/basicreduce.cc, src/ltlvisit/nenoform.cc,
src/ltlvisit/reduce.cc, src/ltlvisit/syntimpl.cc,
src/ltlvisit/tostring.cc, src/ltlvisit/tunabbrev.cc,
src/tgba/formula2bdd.cc, src/tgbaalgos/ltl2tgba_fm.cc,
src/tgbaalgos/ltl2tgba_lacim.cc: Handle finish in switches.
* src/tgbaalgos/eltl2tgba_lacim.cc: Translate finish.
* src/tgbatest/eltl2tgba.test: More tests.
2009-06-05 12:01:24 +02:00

222 lines
4.9 KiB
C++

// Copyright (C) 2003, 2004 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING. If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
#include "nenoform.hh"
#include "ltlast/allnodes.hh"
#include <cassert>
namespace spot
{
namespace ltl
{
namespace
{
class negative_normal_form_visitor: public visitor
{
public:
negative_normal_form_visitor(bool negated)
: negated_(negated)
{
}
virtual
~negative_normal_form_visitor()
{
}
formula* result() const
{
return result_;
}
void
visit(atomic_prop* ap)
{
formula* f = ap->ref();
if (negated_)
result_ = unop::instance(unop::Not, f);
else
result_ = f;
}
void
visit(constant* c)
{
if (!negated_)
{
result_ = c;
return;
}
switch (c->val())
{
case constant::True:
result_ = constant::false_instance();
return;
case constant::False:
result_ = constant::true_instance();
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(unop* uo)
{
formula* f = uo->child();
switch (uo->op())
{
case unop::Not:
result_ = recurse_(f, negated_ ^ true);
return;
case unop::X:
/* !Xa == X!a */
result_ = unop::instance(unop::X, recurse(f));
return;
case unop::F:
/* !Fa == G!a */
result_ = unop::instance(negated_ ? unop::G : unop::F,
recurse(f));
return;
case unop::G:
/* !Ga == F!a */
result_ = unop::instance(negated_ ? unop::F : unop::G,
recurse(f));
return;
case unop::Finish:
result_ = unop::instance(unop::Finish, recurse_(f, false));
if (negated_)
result_ = unop::instance(unop::Not, result_);
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(binop* bo)
{
formula* f1 = bo->first();
formula* f2 = bo->second();
switch (bo->op())
{
case binop::Xor:
/* !(a ^ b) == a <=> b */
result_ = binop::instance(negated_ ? binop::Equiv : binop::Xor,
recurse_(f1, false),
recurse_(f2, false));
return;
case binop::Equiv:
/* !(a <=> b) == a ^ b */
result_ = binop::instance(negated_ ? binop::Xor : binop::Equiv,
recurse_(f1, false),
recurse_(f2, false));
return;
case binop::Implies:
if (negated_)
/* !(a => b) == a & !b */
result_ = multop::instance(multop::And,
recurse_(f1, false),
recurse_(f2, true));
else
result_ = binop::instance(binop::Implies,
recurse(f1), recurse(f2));
return;
case binop::U:
/* !(a U b) == !a R !b */
result_ = binop::instance(negated_ ? binop::R : binop::U,
recurse(f1), recurse(f2));
return;
case binop::R:
/* !(a R b) == !a U !b */
result_ = binop::instance(negated_ ? binop::U : binop::R,
recurse(f1), recurse(f2));
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(automatop* ao)
{
bool negated = negated_;
negated_ = false;
automatop::vec* res = new automatop::vec;
unsigned aos = ao->size();
for (unsigned i = 0; i < aos; ++i)
res->push_back(recurse(ao->nth(i)));
result_ = automatop::instance(ao->nfa(), res, negated);
}
void
visit(multop* mo)
{
/* !(a & b & c) == !a | !b | !c */
/* !(a | b | c) == !a & !b & !c */
multop::type op = mo->op();
if (negated_)
switch (op)
{
case multop::And:
op = multop::Or;
break;
case multop::Or:
op = multop::And;
break;
}
multop::vec* res = new multop::vec;
unsigned mos = mo->size();
for (unsigned i = 0; i < mos; ++i)
res->push_back(recurse(mo->nth(i)));
result_ = multop::instance(op, res);
}
formula*
recurse_(formula* f, bool negated)
{
return negative_normal_form(f, negated);
}
formula*
recurse(formula* f)
{
return recurse_(f, negated_);
}
protected:
formula* result_;
bool negated_;
};
}
formula*
negative_normal_form(const formula* f, bool negated)
{
negative_normal_form_visitor v(negated);
const_cast<formula*>(f)->accept(v);
return v.result();
}
}
}