modelcheck: rewrite and use argp

* tests/Makefile.am, tests/ltsmin/check.test,
tests/ltsmin/finite.test, tests/ltsmin/finite2.test,
tests/ltsmin/kripke.test, tests/ltsmin/modelcheck.cc: here.
This commit is contained in:
Etienne Renault 2016-03-10 13:27:42 +01:00
parent b4bbf50794
commit 4337abc5a6
6 changed files with 355 additions and 335 deletions

View file

@ -18,6 +18,10 @@
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "config.h"
#include "bin/common_conv.hh"
#include "bin/common_setup.hh"
#include "bin/common_output.hh"
#include <spot/ltsmin/ltsmin.hh>
#include <spot/twaalgos/dot.hh>
#include <spot/tl/defaultenv.hh>
@ -32,128 +36,139 @@
#include <spot/kripke/kripkegraph.hh>
#include <spot/twaalgos/hoa.hh>
static void
syntax(char* prog)
{
// Display the supplied name unless it appears to be a libtool wrapper.
char* slash = strrchr(prog, '/');
if (slash && (strncmp(slash + 1, "lt-", 3) == 0))
prog = slash + 4;
const char argp_program_doc[] =
"Process model and formula to check wether a "
"model meets a specification.\v\
Exit status:\n\
0 No counterexample found\n\
1 A counterexample has been found\n\
2 Errors occurs during processing";
unsigned DOT_MODEL = 1;
unsigned DOT_PRODUCT = 2;
unsigned DOT_FORMULA = 4;
// Handle all options specified in the command line
struct mc_options_
{
bool compute_counterexample = false;
unsigned dot_output = 0;
bool is_empty = false;
char* formula = nullptr;
char* model = nullptr;
bool selfloopize = true;
char* dead_ap = nullptr;
bool use_timer = false;
unsigned compress = 0;
bool kripke_output = false;
} mc_options;
std::cerr << "usage: " << prog << " [options] model formula\n\
\n\
Options:\n\
-dDEAD use DEAD as property for marking DEAD states\n\
(by default DEAD = true)\n\
-e[ALGO] run emptiness check, expect an accepting run\n\
-E[ALGO] run emptiness check, expect no accepting run\n\
-C compute an accepting run (Counterexample) if it exists\n\
-D favor a deterministic translation over a small transition\n\
-gf output the automaton of the formula in dot format\n\
-gm output the model state-space in dot format\n\
-gK output the model state-space in Kripke format\n\
-gp output the product state-space in dot format\n\
-T time the different phases of the execution\n\
-z compress states to handle larger models\n\
-Z compress states (faster) assuming all values in [0 .. 2^28-1]\n\
";
exit(1);
}
static int
checked_main(int argc, char **argv)
parse_opt_finput(int key, char* arg, struct argp_state*)
{
spot::timer_map tm;
bool use_timer = false;
enum { DotFormula, DotModel, DotProduct, EmptinessCheck, Kripke }
output = EmptinessCheck;
bool accepting_run = false;
bool expect_counter_example = false;
bool deterministic = false;
char *dead = nullptr;
int compress_states = 0;
const char* echeck_algo = "Cou99";
int dest = 1;
int n = argc;
for (int i = 1; i < n; ++i)
// This switch is alphabetically-ordered.
switch (key)
{
char* opt = argv[i];
if (*opt == '-')
{
switch (*++opt)
{
case 'C':
accepting_run = true;
break;
case 'd':
dead = opt + 1;
break;
case 'D':
deterministic = true;
break;
case 'e':
case 'E':
{
echeck_algo = opt + 1;
if (!*echeck_algo)
echeck_algo = "Cou99";
expect_counter_example = (*opt == 'e');
output = EmptinessCheck;
break;
}
case 'g':
switch (opt[1])
{
case 'm':
output = DotModel;
break;
case 'p':
output = DotProduct;
break;
case 'f':
output = DotFormula;
break;
case 'K':
output = Kripke;
break;
default:
goto error;
}
break;
case 'T':
use_timer = true;
break;
case 'z':
compress_states = 1;
break;
case 'Z':
compress_states = 2;
break;
default:
error:
std::cerr << "Unknown option `" << argv[i] << "'.\n";
exit(1);
}
--argc;
}
case 'c':
mc_options.compute_counterexample = true;
break;
case 'd':
if (strcmp(arg, "model") == 0)
mc_options.dot_output |= DOT_MODEL;
else if (strcmp(arg, "product") == 0)
mc_options.dot_output |= DOT_PRODUCT;
else if (strcmp(arg, "formula") == 0)
mc_options.dot_output |= DOT_FORMULA;
else
{
argv[dest++] = argv[i];
}
{
std::cerr << "Unknown argument: '" << arg
<< "' for option --dot\n";
return ARGP_ERR_UNKNOWN;
}
break;
case 'e':
mc_options.is_empty = true;
break;
case 'f':
mc_options.formula = arg;
break;
case 'k':
mc_options.kripke_output = true;
break;
case 'm':
mc_options.model = arg;
break;
case 's':
mc_options.dead_ap = arg;
break;
case 't':
mc_options.use_timer = true;
break;
case 'z':
mc_options.compress = to_unsigned(arg);
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
if (argc != 3)
syntax(argv[0]);
static const argp_option options[] =
{
// Keep each section sorted
// ------------------------------------------------------------
{ nullptr, 0, nullptr, 0, "Input options:", 1 },
{ "formula", 'f', "STRING", 0, "use the formula STRING", 0 },
// FIXME do we want support for reading more than one formula?
{ "model", 'm', "STRING", 0, "use the model stored in file STRING", 0 },
// ------------------------------------------------------------
{ nullptr, 0, nullptr, 0, "Process options:", 2 },
{ "counterexample", 'c', nullptr, 0,
"compute an accepting counterexample (if it exists)", 0 },
{ "is-empty", 'e', nullptr, 0,
"check if the model meets its specification using "
"the (sequential) algorithm as described "
"in [Renault et al, LPAR'13]. Return 1 if a counterexample "
"is found."
, 0 },
{ "selfloopize", 's', "STRING", 0,
"use STRING as property for marking deadlock "
"states (by default selfloopize is activated with STRING='true')", 0 },
{ "timer", 't', nullptr, 0,
"time the different phases of the execution", 0 },
// ------------------------------------------------------------
{ nullptr, 0, nullptr, 0, "Output options:", 3 },
{ "dot", 'd', "[model|product|formula]", 0,
"output the associated automaton in dot format", 0 },
{ "kripke", 'k', nullptr, 0,
"output the associated automaton in (internal) kripke format", 0 },
// ------------------------------------------------------------
{ nullptr, 0, nullptr, 0, "Optimization options:", 4 },
{ "compress", 'z', "INT", 0, "specify the level of compression\n"
"1 : handle large models\n"
"2 : (faster) assume all values in [0 .. 2^28-1]", 0 },
// ------------------------------------------------------------
{ nullptr, 0, nullptr, 0, "General options:", 5 },
{ nullptr, 0, nullptr, 0, nullptr, 0 }
};
const struct argp finput_argp = { options, parse_opt_finput,
nullptr, nullptr, nullptr,
nullptr, nullptr };
const struct argp_child children[] =
{
{ &finput_argp, 0, nullptr, 1 },
{ &misc_argp, 0, nullptr, -1 },
{ nullptr, 0, nullptr, 0 }
};
static int checked_main()
{
spot::default_environment& env =
spot::default_environment::instance();
spot::atomic_prop_set ap;
auto dict = spot::make_bdd_dict();
spot::const_kripke_ptr model = nullptr;
@ -162,213 +177,198 @@ checked_main(int argc, char **argv)
spot::emptiness_check_instantiator_ptr echeck_inst = nullptr;
int exit_code = 0;
spot::postprocessor post;
spot::formula deadf = nullptr;
spot::formula deadf = spot::formula::tt();
spot::formula f = nullptr;
spot::timer_map tm;
if (!dead || !strcasecmp(dead, "true"))
if (mc_options.selfloopize)
{
deadf = spot::formula::tt();
}
else if (!strcasecmp(dead, "false"))
{
deadf = spot::formula::ff();
}
else
{
deadf = env.require(dead);
if (mc_options.dead_ap == nullptr ||
!strcasecmp(mc_options.dead_ap, "true"))
deadf = spot::formula::tt();
else if (!strcasecmp(mc_options.dead_ap, "false"))
deadf = spot::formula::ff();
else
deadf = env.require(mc_options.dead_ap);
}
if (output == EmptinessCheck)
if (mc_options.formula != nullptr)
{
const char* err;
echeck_inst = spot::make_emptiness_check_instantiator(echeck_algo, &err);
if (!echeck_inst)
{
std::cerr << "Failed to parse argument of -e/-E near `"
<< err << "'\n";
exit_code = 1;
goto safe_exit;
}
tm.start("parsing formula");
{
auto pf = spot::parse_infix_psl(mc_options.formula, env, false);
exit_code = pf.format_errors(std::cerr);
f = pf.f;
}
tm.stop("parsing formula");
tm.start("translating formula");
{
spot::translator trans(dict);
// if (deterministic) FIXME
// trans.set_pref(spot::postprocessor::Deterministic);
prop = trans.run(&f);
}
tm.stop("translating formula");
atomic_prop_collect(f, &ap);
if (mc_options.dot_output & DOT_FORMULA)
{
tm.start("dot output");
spot::print_dot(std::cout, prop);
tm.stop("dot output");
}
}
tm.start("parsing formula");
{
auto pf = spot::parse_infix_psl(argv[2], env, false);
exit_code = pf.format_errors(std::cerr);
f = pf.f;
}
tm.stop("parsing formula");
if (exit_code)
goto safe_exit;
tm.start("translating formula");
{
spot::translator trans(dict);
if (deterministic)
trans.set_pref(spot::postprocessor::Deterministic);
prop = trans.run(&f);
}
tm.stop("translating formula");
atomic_prop_collect(f, &ap);
if (output != DotFormula)
if (mc_options.model != nullptr)
{
tm.start("loading ltsmin model");
try
{
model = spot::ltsmin_model::load(argv[1]).kripke(&ap, dict, deadf,
compress_states);
}
catch (const std::runtime_error& e)
{
model = spot::ltsmin_model::load(mc_options.model)
.kripke(&ap, dict, deadf, mc_options.compress);
}
catch (std::runtime_error& e)
{
std::cerr << e.what() << '\n';
}
tm.stop("loading ltsmin model");
if (!model)
{
exit_code = 1;
goto safe_exit;
}
{
exit_code = 2;
goto safe_exit;
}
if (output == DotModel)
{
tm.start("dot output");
spot::print_dot(std::cout, model);
tm.stop("dot output");
goto safe_exit;
}
if (output == Kripke)
{
tm.start("kripke output");
spot::print_hoa(std::cout, model);
tm.stop("kripke output");
goto safe_exit;
}
if (mc_options.dot_output & DOT_MODEL)
{
tm.start("dot output");
spot::print_dot(std::cout, model);
tm.stop("dot output");
}
if (mc_options.kripke_output)
{
tm.start("kripke output");
spot::print_hoa(std::cout, model);
tm.stop("kripke output");
}
}
if (output == DotFormula)
if (mc_options.formula != nullptr &&
mc_options.model != nullptr)
{
tm.start("dot output");
spot::print_dot(std::cout, prop);
tm.stop("dot output");
goto safe_exit;
product = spot::otf_product(model, prop);
if (mc_options.is_empty)
{
const char* err;
echeck_inst = spot::make_emptiness_check_instantiator("Cou99", &err);
if (!echeck_inst)
{
std::cerr << "Unknown emptiness check algorihm `"
<< err << "'\n";
exit_code = 1;
goto safe_exit;
}
auto ec = echeck_inst->instantiate(product);
assert(ec);
int memused = spot::memusage();
tm.start("running emptiness check");
spot::emptiness_check_result_ptr res;
try
{
res = ec->check();
}
catch (std::bad_alloc)
{
std::cerr << "Out of memory during emptiness check."
<< std::endl;
if (!mc_options.compress)
std::cerr << "Try option -z for state compression." << std::endl;
exit_code = 2;
exit(exit_code);
}
tm.stop("running emptiness check");
memused = spot::memusage() - memused;
ec->print_stats(std::cout);
std::cout << memused << " pages allocated for emptiness check"
<< std::endl;
if (!res)
{
std::cout << "no accepting run found";
}
else if (!mc_options.compute_counterexample)
{
std::cout << "an accepting run exists "
<< "(use -c to print it)" << std::endl;
exit_code = 1;
}
else
{
exit_code = 1;
spot::twa_run_ptr run;
tm.start("computing accepting run");
try
{
run = res->accepting_run();
}
catch (std::bad_alloc)
{
std::cerr << "Out of memory while looking for counterexample."
<< std::endl;
exit_code = 2;
exit(exit_code);
}
tm.stop("computing accepting run");
if (!run)
{
std::cout << "an accepting run exists" << std::endl;
}
else
{
tm.start("reducing accepting run");
run = run->reduce();
tm.stop("reducing accepting run");
tm.start("printing accepting run");
std::cout << *run;
tm.stop("printing accepting run");
}
}
}
if (mc_options.dot_output & DOT_PRODUCT)
{
tm.start("dot output");
spot::print_dot(std::cout, product);
tm.stop("dot output");
}
}
product = spot::otf_product(model, prop);
if (output == DotProduct)
{
tm.start("dot output");
spot::print_dot(std::cout, product);
tm.stop("dot output");
goto safe_exit;
}
assert(echeck_inst);
{
auto ec = echeck_inst->instantiate(product);
bool search_many = echeck_inst->options().get("repeated");
assert(ec);
do
{
int memused = spot::memusage();
tm.start("running emptiness check");
spot::emptiness_check_result_ptr res;
try
{
res = ec->check();
}
catch (const std::bad_alloc&)
{
std::cerr << "Out of memory during emptiness check.\n";
if (!compress_states)
std::cerr << "Try option -z for state compression.\n";
exit_code = 2;
exit(exit_code);
}
tm.stop("running emptiness check");
memused = spot::memusage() - memused;
ec->print_stats(std::cout);
std::cout << memused << " pages allocated for emptiness check"
<< std::endl;
if (expect_counter_example == !res &&
(!expect_counter_example || ec->safe()))
exit_code = 1;
if (!res)
{
std::cout << "no accepting run found";
if (!ec->safe() && expect_counter_example)
{
std::cout << " even if expected" << std::endl;
std::cout << "this may be due to the use of the bit"
<< " state hashing technique" << std::endl;
std::cout << "you can try to increase the heap size "
<< "or use an explicit storage"
<< std::endl;
}
std::cout << std::endl;
break;
}
else if (accepting_run)
{
spot::twa_run_ptr run;
tm.start("computing accepting run");
try
{
run = res->accepting_run();
}
catch (const std::bad_alloc&)
{
std::cerr
<< "Out of memory while looking for counterexample.\n";
exit_code = 2;
exit(exit_code);
}
tm.stop("computing accepting run");
if (!run)
{
std::cout << "an accepting run exists" << std::endl;
}
else
{
tm.start("reducing accepting run");
run = run->reduce();
tm.stop("reducing accepting run");
tm.start("printing accepting run");
std::cout << *run;
tm.stop("printing accepting run");
}
}
else
{
std::cout << "an accepting run exists "
<< "(use -C to print it)" << std::endl;
}
}
while (search_many);
}
safe_exit:
if (use_timer)
if (mc_options.use_timer)
tm.print(std::cout);
tm.reset_all(); // This helps valgrind.
return exit_code;
}
int
main(int argc, char **argv)
main(int argc, char** argv)
{
auto exit_code = checked_main(argc, argv);
setup(argv);
const argp ap = { nullptr, nullptr, nullptr,
argp_program_doc, children, nullptr, nullptr };
if (int err = argp_parse(&ap, argc, argv, ARGP_NO_HELP, nullptr, nullptr))
exit(err);
auto exit_code = checked_main();
// Additional checks to debug reference counts in formulas.
assert(spot::fnode::instances_check());